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Abstract. Reasoning about exceptions in ontologies is nowadays one of the chal-

lenges the description logics community is facing. The paper describes a prefer-

ential approach for dealing with exceptions in Description Logics, based on the

rational closure. The rational closure has the merit of providing a simple and ef-

ficient approach for reasoning with exceptions, but it does not allow independent

handling of the inheritance of different defeasible properties of concepts. In this

work we outline a possible solution to this problem by introducing a variant of the

lexicographical closure, that we call skeptical closure, which requires to construct

a single base. A preliminary version of this work appeared in [22].

1 Introduction

Reasoning about exceptions in ontologies is nowadays one of the challenges the de-

scription logics community is facing, a challenge which is at the very roots of the de-

velopment of non-monotonic reasoning in the 80s. Many non-monotonic extensions of

Description Logics (DLs) have been developed incorporating non-monotonic features

from most non-monotonic formalisms in the literature [2, 19, 25, 10, 21, 31, 8, 14, 37, 7,

20, 32, 13, 26, 30, 28], or defining new constructions and semantics such as in [6, 9].

The paper is based on a preferential approach for dealing with exceptions in descrip-

tion logics, where a typicality operator is used to select the typical (or most preferred)

instances of a concept [25]. This approach, as the preferential approach in [10], has been

developed along the lines of the preferential semantics introduced by Kraus, Lehmann

and Magidor [33, 34].

We focus on the rational closure for DLs [14, 17, 13, 28, 12] and, in particular, on the

construction developed in [28], which is semantically characterized by minimal (canon-

ical) preferential models. While the rational closure provides a simple and efficient

approach for reasoning with exceptions, exploiting polynomial reductions to standard

DLs [27], the rational closure does not allow an independent handling of the inheritance

of different defeasible properties of concepts1 so that, if a subclass of C is exceptional

for a given aspect, it is exceptional tout court and does not inherit any of the typical

properties of C. This problem was called by Pearl [39] “the blocking of property inher-

itance problem”, and it is an instance of the “drowning problem” in [5].

1 By properties of a concept, here we generically mean characteristic features of a class of

objects (represented by a set of inclusion axioms) rather than roles (properties in OWL [38]).
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To cope with this problem Lehmann [35] introduced the notion of the lexicographic

closure, which was extended to Description Logics by Casini and Straccia [16], while

in [17] the same authors develop an inheritance-based approach for defeasible DLs.

Other proposals to deal with this “all or nothing” behavior in the context of DLs are the

logic of overriding, DLN , by Bonatti, Faella, Petrova and Sauro [6], a nonmonotonic

description logic in which conflicts among defaults are solved based on specificity, and

the work by Gliozzi [29], who develops a semantics for defeasible inclusions in which

models are equipped with several preference relations.

In this paper we will consider a variant of the lexicographic closure. The lexico-

graphic closure allows for stronger inferences with respect to rational closure, but com-

puting the defeasible consequences in the lexicographic closure may require to compute

several alternative bases [35], namely, consistent sets of defeasible inclusions which are

maximal with respect to a (seriousness) ordering. We propose an alternative notion of

closure, the skeptical closure, which can be regarded as a more skeptical variant of the

lexicographic closure. It is a refinement of rational closure which allows for stronger

inferences, but it is weaker than the lexicographic closure and its computation does not

require to generate all the alternative maximally consistent bases. Roughly speaking,

the construction is based on the idea of building a single base, i.e. a single maximal con-

sistent set of defeasible inclusions, starting with the defeasible inclusions with highest

rank and progressively adding less specific inclusions, when consistent, but excluding

the defeasible inclusions which produce a conflict at a certain stage without considering

alternative consistent bases.

Schedule of the paper is the following. In section 2 we recall the definition of ratio-

nal closure for ALC in [28]. In section 3, we define the new closure and in Section 4

we conclude the paper with some discussion of related work.

2 The rational closure

We briefly recall the logic ALC+TR which is at the basis of a rational closure construc-

tion proposed in [28] for ALC, which extends to ALC the notion of rational closure

introduced by Lehmann and Magidor [34]. The idea underlying ALC + TR is that of

extending the standard ALC with concepts of the form T(C), whose intuitive meaning

is that T(C) selects the typical instances of a concept C, to distinguish between the

properties that hold for all instances of concept C (C ⊑ D), and those that only hold

for the typical such instances (T(C) ⊑ D). The ALC + TR language is defined as

follows: CR := A | ⊤ | ⊥ | ¬CR | CR ⊓ CR | CR ⊔ CR | ∀R.CR | ∃R.CR, and

CL := CR | T(CR), where A is a concept name and R a role name. A KB is a pair

K = (T ,A), where the TBox T contains a finite set of concept inclusions CL ⊑ CR

and the ABox A contains a finite set of assertions of the form CR(a) and R(a, b), for

a, b individual names.

The semantics of ALC +TR is defined in terms of rational models: ordinary models of

ALC are equipped with a preference relation < on the domain, whose intuitive meaning

is to compare the “typicality” of domain elements: x < y means that x is more typical

than y. The instances of T(C) are the instances of concept C that are minimal with

respect to <. We refer to [28] for a detailed description of the semantics and we denote

by |=ALC+TR
entailment in ALC +TR.
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The rational closure construction assigns a rank to each concept of the KB (the high-

est the rank, the more specific is the concept). It is based on the notion of exceptionality.

Roughly speaking T(C) ⊑ D holds in the rational closure of K if C is less exceptional

than C ⊓ ¬D. We shortly recall the construction of the rational closure w.r.t. TBox.

Definition 1 (Exceptionality of concepts and inclusions). Let E be a TBox and C a

concept. C is exceptional for E if and only if E |=ALC+TR
T(⊤) ⊑ ¬C.2 An inclusion

T(C) ⊑ D is exceptional for E if C is exceptional for E. The set of inclusions in TBox

which are exceptional for E will be denoted by E(E).

Given a TBox T , it is possible to define a sequence of non increasing subsets of TBox

ordered according to the exceptionality of the elements E0 ⊇ E1 ⊇ E2 . . . by letting

E0 = T and, for i > 0, Ei = E(Ei−1)∪{C ⊑ D ∈ TBox s.t. T does not occurr in C}.

Observe that, being KB finite, there is an n ≥ 0 such that, for all m > n,Em = En

or Em = ∅. A concept C has rank i (denoted rank(C) = i) for T , iff i is the least

natural number for which C is not exceptional for Ei. If C is exceptional for all Ei

then rank(C) = ∞ (C has no rank). The rank of a typicality inclusion T(C) ⊑ D is

rank(C). Rational closure builds on this notion of exceptionality:

Definition 2 (Rational closure of TBox [28]). Let K = (T ,K) be a DL knowledge

base. A typicality inclusion T(C) ⊑ D is in the rational closure of K w.r.t. TBox if

either rank(C) < rank(C ⊓ ¬D) or rank(C) = ∞.

Exploiting the fact that entailment in ALC + TR can be polynomially encoded into

entailment in ALC , it is easy to see that deciding if an inclusion T(C) ⊑ D belongs to

the rational closure of TBox is a problem in EXPTIME [28].

Example 1. Let K be the knowledge base with the following TBox T :

T(Student) ⊑ ¬Pay Taxes

T(WStudent) ⊑ Pay Taxes

T(Student) ⊑ Young

WStudent ⊑ Student

stating that typical students do not pay taxes and are young, while typical working stu-

dents (which are students) do pay taxes. We can see that Student has rank 0, while

WStudent has rank 1 (as working students falsify the first default) and:

E0 = T ; E1 = {T(WStudent)⊑ Pay Taxes , WStudent ⊑ Student};
and the defeasible inclusions T(Student⊓ Italian) ⊑ ¬Pay Taxes and T(WStudent

⊓Italian) ⊑ Pay Taxes both belong, as expected, to the rational closure of K , as be-

ing Italian is irrelevant with respect to being or not a typical student. However, we

cannot conclude that T(WStudent) ⊑ Y oung, as concept WStudent is exceptional

w.r.t. Student concerning the property of paying taxes and, hence, it does not inherit

any defeasible property of Student .

In this example the rational closure is too weak to infer that typical working students, as

all typical students, are young. The lexicographic closure [35] strengthens the rational

2 Observe that, as the instances of concept ⊤ are all the domain elements, T(⊤) is the set of all

the preferred domain elements w.r.t. <
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closure by allowing to retain, roughly speaking, as many as possible of the defeasible

properties, lgiving preference to the more specific properties. In the example, the prop-

erty of students of being Young would be inherited by working students, as it is consis-

tent with all the other (strict or defeasible) properties of WStudent (those in E1). In the

general case, there may be exponentially many alternative sets of defeasible inclusions

(bases) which are maximal and consistent for a given concept and the lexicographic clo-

sure considers all of them to conclude that a defeasible inclusion is accepted. Besides

specificity, the lexicographic closure also considers the number of defaults accepted, for

each rank, in the alternative bases and gives preference to those bases maximizing the

number of defaults with the highest rank. In the next section we propose an approach

weaker than the lexicographic closure, which leads to the construction of a single base.

3 From the lexicographic to the skeptical closure

Given a concept B, one wants to identify the defeasible properties of the B-elements.

Assume that the rational closure of the knowledge base K has already been constructed

and that k is the rank of concept B in the rational closure. The typical B elements

are clearly compatible with all the defeasible inclusions in Ek, but they might satisfy

other defeasible inclusions with lower rank, i.e. those included in E0, E1, . . . , Ek−1.

In general, there may be alternative maximal sets of defeasible inclusions compatible

with B, among which one would prefer those that maximize the number of defeasible

inclusions with higher rank. This is indeed what is done by the lexicographic closure

[35], which considers alternative maximally preferred sets of defaults called “bases”,

which, roughly speaking, maximize the number of defaults of higher ranks with respect

to those with lower ranks (the so called degree of seriousness), and where situations

which violate more defaults with a certain rank are considered to be less plausible than

situations which violates less defaults with the same rank. As a difference, in the follow-

ing, we aim at defining a construction which skeptically builds a single set of defeasible

inclusions compatible with B.

Let SB be the set of typicality inclusions T(C) ⊑ D in K which are individually

compatible with B w.r.t. Ek, that is

SB = {T(C) ⊑ D ∈ TBox | Ek ∪ {T(C) ⊑ D} 6|=ALC+TR
T(⊤) ⊑ ¬B}.

Clearly, although each defeasible inclusion in SB is compatible with B, it might be the

case that overall set SB is not compatible with B, i.e., Ek ∪ SB |=ALC+TR
T(⊤) ⊑

¬B. When compatible with B, SB is the unique maximal basis with respect to the

seriousness ordering in [35] (as defined for constructing the lexicographic closure).

When SB is not compatible with B, we cannot use all the defeasible inclusions in

SB to derive conclusions about typical B elements. In this case, we can either just use

the defeasible inclusions in Ek , as in the rational closure, or we can additionally use

a subset of the defeasible inclusions SB . For instance, we can additionally use all the

defeasible inclusions in SB with rank k−1 (let us call this set SB
k−1

), provided they are

(altogether) compatible with B and Ek. Then, we can, possibly, add all the defeasible

inclusions with rank k − 2 which are individually compatible with B w.r.t. Ek ∪ SB
k−1

(let us call them SB
k−2

), provided they are altogether compatible with B, Ek and SB
k−1

,

and so on and so forth, for lower ranks. This leads to the construction below.
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Definition 3. Given two sets of defeasible inclusionsS andS′, S is globally compatible

with B w.r.t. S′ if S ∪ S′ 6|=ALC+TR
T(⊤) ⊑ ¬B.

Definition 4. Let B be a concept such that rank(B) = k. The skeptical closure of K

with respect to B is the set of inclusions Ssk,B = Ek ∪SB
k−1

∪SB
k−2

∪ . . .∪SB
h where:

- SB
i ⊆ Ei − Ei+1 is the set of defeasible inclusions with rank i which are individually

compatible with B w.r.t. Ek ∪ SB
k−1

∪ SB
k−2

∪ . . . ∪ SB
i+1 (for each finite rank i ≤ k);

- h is the least j (for 0 ≤ j ≤ k − 1) such that SB
j is globally compatible with B w.r.t.

Ek ∪ SB
k−1

∪ SB
k−2

∪ . . . ∪ SB
j+1, if such a j exists; Ssk,B = Ek, otherwise.

Intuitively, Ssk,B contains, for each rank j, all the defeasible inclusions having rank

j which are compatible with B and with the more specific defeasible inclusions (with

rank > j). As SB
h−1

is not included in the skeptical closure, it must be that Ek ∪SB
k−1

∪

SB
k−2

∪ . . .∪ Sh ∪ SB
h−1

|=ALC+TR
T(⊤) ⊑ ¬B i.e., the set SB

h−1
contains conflicting

defeasible inclusions which are not overridden by more specific ones. In this case, the

inclusions in SB
h−1

(and all the defeasible inclusions with rank lower than h−1) are not

included in the skeptical closure w.r.t. B. Let us now define entailment of a defeasible

inclusion from the skeptical closure of TBox.

Definition 5. Let T(B) ⊑ D be a defeasible inclusion and let k = rank(B) be the

rank of concept B in the rational closure. T(B) ⊑ D is in the skeptical closure of

TBox if Ssk,B |=ALC+TR
T(⊤) ⊑ (¬B ⊔D).

After the rational closure of the TBox has been computed, the identification of the de-

feasible inclusions in Ssk,B requires a number of entailment checks which is linear in

the number of defeasible inclusions in TBox: the individual compatibility of a defeasi-

ble inclusion of rank i in TBox has to be checked only once to compute SB
i ; also, for

each rank i of the rational closure (in the worst case), a (global) compatibility check is

needed for SB
i .

In Example 1 the inclusion T(WStudent) ⊑ Young is in the skeptical closure of

TBox, as WStudent has rank 1 and inclusion T(Student) ⊑ Young in E0 is compati-

ble with WStudent . No other inclusions with rank 0 are compatible with E1.

Example 2. Let us consider, instead, the knowledge base K ′ with TBox:

T(Student) ⊑ ¬Pay Taxes

T(Worker) ⊑ Pay Taxes

T(Student) ⊑ Young

WStudent ⊑ Student ⊓Worker

the inclusion T(WStudent) ⊑ Young is not in the skeptical closure of TBox ′, as

SWStudent
0 is not compatible with WStudent (w.r.t. E1), due to the conflicting defaults

concerning tax payment for Worker and Student (both with rank 0). Hence, the de-

feasible property that typical students are young is not inherited by typical working

students.

Notice that, the property that typical working students are young is accepted in the

lexicographic closure of K ′, as there are two bases (the one including T(Student) ⊑
¬Pay Taxes and the other T(Worker) ⊑ Pay Taxes), both containing T(Student)
⊑ Young. The skeptical closure is indeed weaker than the lexicographic closure.
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4 Conclusions and related work

We have introduced a weaker variant of the lexicographic closure [35, 16], which deals

with the problem of “all or nothing” affecting the rational closure without generating

alternative “bases”. Other refinements of the rational closure, also deal with this lim-

itation of the rational closure, are the relevant closure [11] and the inheritance-based

rational closure [15, 17], In particular, in [15, 17], a new closure operation is defined by

combining the rational closure with defeasible inheritance networks. The inheritance-

based rational closure, in Example 2, is able to conclude that typical working students

are young, relying on the fact that only the information related to the connection of

WStudent and Young (and, in particular, only the defeasible inclusions occurring on

the routes connecting WStudent and Young in the corresponding net) are used in the

rational closure construction for answering the query.

Another approach which deals with the above problem of “inheritance with excep-

tions” has been proposed by Bonatti et al. in [6], where the logic DLN captures a form

of “inheritance with overriding”: a defeasible inclusion is inherited by a more specific

class if it is not overridden by more specific (conflicting) properties. In Example 2, our

construction behaves differently from DLN , as in DLN the concept WStudent has an

inconsistent prototype, as working students inherit two conflicting properties by super-

classes: the property of students of paying taxes and the property of workers of paying

taxes. In the skeptical closure one cannot conclude that T(WStudent) ⊑ ⊥ and, using

the terminology in [6], the conflict is “silently removed”. In this respect, the skepti-

cal closure appears to be weaker than DLN , although it shares with DLN (and with

lexicographic closure) a notion of overriding.

Bozzato et al. in [9] present an extension of the CKR framework in which defeasible

axioms can be included in the global context and can be overridden by knowledge in

a local context. Exceptions have to be justified in terms of semantic consequence. A

translation of extended CHRs (with knowledge bases in SROIQ-RL) into Datalog

programs under the answer set semantics is also defined.

Concerning the multipreference semantics introduced in [29] (and further refined in

[23]) to provide a semantic strengthening of the rational closure, we have shown in [23]

that a variant of Lehmann’s lexicographic closure (which does not take into account

the number of defaults within the same level, but only their subset inclusion) provides

a sound approximation of the multipreference semantics. We expect that the skeptical

closure introduced in this work is still a sound, though weaker, approximation for the

multipreference semantics in [23].

Detailed comparisons and the study of the semantics underlying the skeptical clo-

sure will be subject of future work. The relationships among the above variants of ra-

tional closure for DLs and the notions of rational closure for DLs developed in the

contexts of fuzzy logic [18] and probabilistic logics [36] have to be investigated as well.

As it has been show in [3] for the propositional logic case, KLM preferential logics and

the rational closure [33, 34], the probabilistic approach [1], the system Z [39] and the

possibilistic approach [4, 3] are all related with each other, and similar relations might

be expected to hold for the non-monotonic extensions of description logics as well. Al-

though the skeptical closure has been defined based on the preferential extension of
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ALC, the same construction could be adopted for more expressive description logics,

provided the rational closure can be defined [24], as well as for the propositional case.
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