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Abstract. Soft constraints play a major role in AI, since they allow to
restrict the set of possible worlds (obtained from hard constraints) to a
small fraction of preferred or most plausible states. Only a few formalisms
fully integrate soft and hard constraints. A prominent example is Qual-
itative Choice Logic (QCL), where propositional logic is augmented by
a dedicated connective and preferred models are discriminated via ac-
ceptance degress determined by this connective. In this work, we follow
an analogous approach in terms of syntax but propose an alternative
semantics. The key idea is to assign to formulas a set of models plus a
partial relation on these models. Preferred models are then obtained from
this partial relation. We investigate properties of our logic which demon-
strate that our semantics shows some favorable behavior compared to
QCL. Moreover, we provide a partial complexity analysis of our logic.

1 Introduction

One major problem for handling preferences or soft constraints is often the sheer
amount of alternatives. This makes the representation of preferences as an order
relation on the set of alternatives impractical in many applications. Languages
that represent preferences succinctly help to circumvent this problem, e.g. CP-
Nets (introduced in [3]) and its many extensions. However, for many applications,
it is even impractical to represent the set of alternatives explicitly, especially if
possible combinations of objects are considered, e.g. collections of goods in fair
division problems [4] or sets of possible outcomes in decision problems [1].

It is thus a natural, yet challenging, approach to apply preferences without
explicitly materializing the set of all alternatives. Indeed, many logical languages
in the area of knowledge representation propose an integration of hard and soft
constraints, see e.g. [6], but often the two concepts remain conceptually sepa-
rated. However, integrating the representation of the preference relation in the
representation of the set of alternatives offers several advantages. Apart from ob-
vious gains in usability and ease of implementation it could also lead to higher
efficiency because the construction of the preference relation can be limited to the
actual alternatives. The most prominent approach in this direction is Qualita-
tive Choice Logic (QCL) [5]. QCL extends propositional logic to a language that
can represent sets of alternatives and preferences, i.e. hard and soft constraints,
at once, by introducing a dedicated connective called ordered disjunction. We
would argue, however, that the actual semantics of QCL behaves unintuitively
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in many situations and is, in the end, not entirely convincing (problems of QCL
are discussed in more detail in Section 5). Therefore, we propose a new logic
that is inspired by, and has the same syntax as, QCL with a completely new
semantics.

Our logic relies on a simple idea for the semantics, where every formula is
not only assigned a set of models but also a partial relation on these models.
The main aim of the paper is to evaluate our approach along the following axes
of desired properties:

1. Extending propositional logic: Formulas without specified preference
should behave like propositional formulas.

2. Rules of propositional logic: As many rules of propositional logic such
as associativity and distributivity as possible should hold in the logic.

3. Expressiveness: Every partial order on every set of models should be ex-
pressible.

4. Simulate QCL on ”basic choice formulas”: Basic choice formulas are
a fragment of QCL that behaves very naturally, hence our logic should be
equivalent to QCL on this fragment.

5. Good computational properties: The complexity of problems like check-
ing whether a model is preferred to another should remain on a complexity
level comparable to similar problems in propositional logic.

As we will show, the first, third and fourth requirements are fully satisfied by
our logic. Concerning the second property, we show that many important rules
of classical logic hold in our logic as well, but some don’t. The fifth property is
still open as we only have preliminary results on the complexity of our logic.

The rest of the paper is structured roughly around these properties. The next
section introduces the logic and discusses its definition; as we will see the first
property follows directly from the definition. Section 4 discusses equivalence of
formulas in our logic and shows which rules of propositional logic are satisfied by
our logic. We then proceed with the expressiveness of our logic addressing the
third property from the above list. Section 5 then is concerned with the relation
between our logic and QCL. Finally, Section 6 presents some partial results on
the complexity of our logic.

Previous and Related Work. In the past, several preference logics were pro-
posed. Perhaps the most influential work in this area is von Wright’s paper
“The logic of preferences” [12] that could even be considered as reference text
on preference logics according to van Benthem [11]. Von Wright and his many
successors (see, for example, [8] and [10]) develop logic languages that allow to
reason (only) about preferences. The aim of this work is to establish a logic
that allows to reason about truth and preferences, or in other words to specify
hard and soft constraints at the same time. This concept is quite well stud-
ied for first order logic, mostly from a database perspective (see, for example,
[9]). For propositional logic, the problem seems to be less well studied. Besides
the aforementioned QCL and the closely related Conjunctive Choice Logic [2],
nested circumscription [7] provides an alternative idea that provides a handle
for minimization of models of subformulas.
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2 Introducing Our Logic

Syntax. Syntactically, our logic is propositional logic with the connectives ∧, ∨
and ¬ extended by an additional connective �.

Definition 1 The set PF(V ) of formulas of preference logic over a set of vari-
ables V is defined recursively as:

– v ∈ PF(V ) for all v ∈ V .
– (A ∧B) ∈ PF(V ) if A,B ∈ PF(V ).
– (A ∨B) ∈ PF(V ) if A,B ∈ PF(V ).
– (¬A) ∈ PF(V ) if A ∈ PF(V ).
– (A � B) ∈ PF(V ) if A,B ∈ PF(V ).

For every V , we define ⊥ = A ∧ ¬A for some fixed A ∈ PF(V ) and > = ¬⊥.

The intended meaning of A � B is A or B but preferably A. Therefore, from
the perspective of truth A � B is equivalent to A ∨B.

Definition 2 Assume A ∈ PF(V ). Then the propositional projection of A,
denoted prop(A), is the propositional formula obtained from replacing every oc-
currence of � in A with ∨.

Semantics. The semantics of our logic relies on two constituents, one related
to truth and one related to preferences. The former is given by the classical
evaluation of the propositional projection of the formula.

Definition 3 Let A ∈ PF(V ). We call a set M ⊆ V a model of A and write
M |= A if it is a model of prop(A). MA denotes the set of all models of A.

Preferences, on the other hand, are represented by a relation between models.
Let A ∈ PF(V ) and M,N ∈ MA. We define a relation RA on MA and write
M ≥A N if M is preferred to N for A. As usual, we write M >A N for M ≥A N
and not M ≤A N as well as M =A N for M ≥A N and M ≤A N . The definition
of RA is based inductively on the relations of the subformulas of A and depends
on the form of A. In the following we introduce and discuss the definition for
every type of formula separately. For atomic formulas, there is no reason to prefer
any model over any other model.

Definition 4 RA = ∅ for A = v with v ∈ V .

For A = ¬B, we observe that, in general, RB contains no information on the
models of ¬B. For example, for B = ((a∧c) � (b∧c)), it seems impossible to us,
to use any preferences between the models {a, c}, {a, b, c}, {b, c} of B to justify
any preferences between the models {a}, {b}, {a, b}, {c}, ∅ of A. To circumvent
this problem, we use the rather crude method of erasing all preferences.

Definition 5 RA = ∅ for A = ¬B.
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In practice, this is equivalent to using positive and negative literals instead
of ¬. We chose the presented definition, among other reasons, in order to follow
the same intuition as QCL.

One of the major questions for formulas of the form A = B ◦ C for ◦ ∈
{∧,∨,�} is, how to deal with conflicting preferences in RB and RC . In the case
A = B � C, we can use the additional information that the subformula B is
”more important” than C. Hence, the preferences of B should ”overwrite” the
preferences of C. The preferences of C are only considered for models M and N
if both do not satisfy B. Additionally, we, of course, need to add new preferences
that codify that B is preferred to C.

Definition 6 For A = B � C, M ≥A N if:

– M ≥B N ;
– M,N /∈MB and M ≥C N ;
– M ∈MB and N /∈MB.

In the other two cases, where both subformulas are equally important, there
are two approaches to dealing with conflicting preferences. The first approach
is combining the preferences of both subformulas. Intuitively, this means that if
there is a reason to prefer M over N in one of the subformulas of A, then M is
preferred to N in A. We believe that this is the correct notion for formulas of
the form A = B ∧ C.

Definition 7 For A = B ∧ C, M ≥A N if:

– M ≥B N or M ≥C N ;
– there exists N ′ ∈MA, such that M ≥A N ′ ≥A N ;

The second approach is to demand that both subformuals agree in their
preference and ignoring inconclusive preferences. This approach appears to be a
natural fit for formulas of the form A = B ∨ C. We additionally have to treat
the case that M is preferred to N in one of the subformulas, say B, but at least
one of the two models does not satisfy C. In this case, we keep the preference
of from B unless M does not model C but N does, as this can be seen as a
preference of N over M for C.

Definition 8 For A = B ∨ C, M ≥A N if:

– Either M >B N and M >C N holds or M =B N and M =C N holds.
– Either N 6∈ MB and M ≥C N holds or N 6∈ MC and M ≥B N holds.

Example 9 Let A = (a � b) ∧ (b � a) over V = {a, b}. We have MA =
{{a, b}, {a}, {b}} and {a, b} >A {a}, {a, b} >A {b}, and {a} =A {b}. For B =
(a � b) ∨ (b � a), we have MB =MA but RB is empty.

It is possible to use the first approach for ∨ and the second one for ∧. The
resulting ”strong or” and ”weak and” are expressible in our language as we will
see in Section 4. This concludes the definition of RA.
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Definition 10 We call (MA, RA) the evaluation of A. We say that two formu-
las A,B are equivalent, in symbols A ≡ B, if (MA, RA) = (MB , RB).

We observe that the evaluation of ⊥ = A ∧ ¬A is given by (∅, ∅) and for
> = ¬⊥ we have as an evalution (2V , ∅). Furthermore, we observe that for any
A, that (A ∨⊥) yields the same evaluation as A, while (A ∨>) yields the same
evaluation as >.

Another issue is the explicit transitivity in Definition 7. Otherwise, for ex-
ample, A = (c ∨ (a � b)) ∧ (a ∨ (b � c)) would lead to a non transitive relation
containing a ≥A b and b ≥A c but not a ≥A c. We next show that RA is indeed
transitive, even though we only explicitly specified this for conjunction.

Proposition 11 Let A be a formula and M,N,O ∈ MA. Then M ≥A N and
N ≥A O implies M ≥A O.

Proof. We prove the claim by an induction on the formula complexity of A: The
cases A = ai, A = B ∧ C and A = ¬B are clear.

Now assume A = B ∨ C. First assume M,N,O |= B ∧ C. Then we know
M ≥B N ≥B O and M ≥C N ≥C O and hence by induction M ≥B O and
M ≥C O. Obviously either M >B O or M =B O holds. Observe that M >B O
holds if and only if M >B N or N >B O holds. We assume M >B N . Then
M ≥A N can only be true if M >C N holds. Hence M >C O and therefore
M ≥A O holds. On the other hand M =B O implies M =C O by a symmetric
argument and hence also M ≥A O. Now assume O 6|= B. Then N ≥C O must
hold. Furthermore, because N must be a model of C, we know that M ≥C N
must hold. Therefore, by induction, M ≥C O, which implies M ≥A O, because
O 6|= B. Observe that N 6|= B and N ≥A O imply O 6|= B and hence M ≥A O by
the argument above. Furthermore M 6|= B and M ≥A N imply N 6|= B, hence
again M ≥A O. The remaing cases, O 6|= C, N 6|= C and M 6|= C are symmetric.

Finally, assume A = B � C. If M ≥B N ≥B O or M,N,O ∈MC \MB and
M ≥C N ≥C O we get M ≥A O by induction. Observe that the only remaing
possible cases are either M ≥B N and O ∈ MC \ MB or M ∈ MB , N,O ∈
MC \MB and N ≥B O. In both cases we know M ∈MB and O ∈MC \MB ,
hence M ≥A O. �

In general, the relation ≥A is not reflexive, hence it is not a partial order.
It would be possible to change this, by defining M =A M for all M ∈ MA.
From a technical standpoint, the resulting logic is nearly equivalent and basi-
cally all results in this paper would carry over to this logic. (Obviously, the
results on expressiveness would change a bit, as only reflexive relations could
be expressed.) However, adding reflexiveness would complicate notation in some
places, therefore we omitted it from the definition.

The main aim of the relation RA is to determine preferred models. We define
them next.

Definition 12 Let A ∈ PF(V ). We say that a model M ∈ MA is a most
preferred model of A if there is no N ∈ MA such that N >A M . We write
pref (A) for the set of most preferred models of A.
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3 Equivalence-Preserving Replacements

Two important concepts of equivalence of formulas are semantic equivalence and
replacement equivalence. These two concepts coincide for propositional logic, but
typically are distinct concepts in logics which are concerned with preferences.
We show that the two concepts are closely related for our logic.

Replacements are denoted via C[A/B], which stands for the formula obtained
from C by replacing an occurrence of A by B.

Definition 13 We say two formulas A,B ∈ PF(V ) are replacement pref-
equivalent if for all C ∈ PF(V ), pref (C[A/B]) = pref (C).

Theorem 14 A,B ∈ PF(V ) are replacement equivalent iff A ≡ B.

Proof. A ≡ B, i.e. (MA, RA) = (MB , RB), implies replacement pref-equivalence
between A and B because the evaluation of a formula only depends on the evalu-
ation of its subformulas and not on their syntax. So assume there are replacement
pref-equivalent formulas A and B but (MA, RA) 6= (MB , RB). First assume
MA 6= MB . Then, without loss of generality, there is a model M ∈ MA such
that M 6∈ MB holds. Consider the formula DM =

∧
v∈M v ∧

∧
v∈V \M ¬v. Now

let C = A∧DM . ThenMC = {M} andMC(A/B) = ∅. Hence, pref (C) = {{M}}
and pref (C[A/B]) = ∅. Now assume MA =MB and RA 6= RB . Wlog, there is
(M,N) ∈ RA and (M,N) 6∈ RB . For C = A ∧ (DN � DM ) (with DM , DN as
used above), we get pref (C[A/B]) = {{N}} while pref (C) = {{M,N}}. �

In what follows, we explore which rules of equivalence from propositional
logic hold in our logic. Before analysing several rules, we provide a different
characterization for RA in order to ease proofs. For sets X and Y we shall write
X
∣∣
Y

for X ∩ Y ; however, we use X
∣∣
Y

also as short hand for X ∩ (Y × Y ) when
clear from the context. Furthermore, for a set of tuples X we write Xr for the
reverse set, i.e. Xr := {(b, a) | (a, b) ∈ X}. We write X4Y for the symmetric
difference of X and Y , i.e X4Y := (X ∪ Y ) \ (X ∩ Y ). Finally, we write trcl(R)
for the transitive closure of a relation R.

Proposition 15 Let A,B,C ∈ PF(V ), v ∈ V . Then, the following holds:

– If A = v or A = ¬B, then RA = ∅.
– If A = B ∧ C, then RA = trcl

(
(RB ∪RC)

∣∣
MA

)
.

– If A = B ∨ C, then RA = ((RB ∩ RC) \ (Rr
B4Rr

C)) ∪ RB

∣∣
MA×MB\MC

∪
RC

∣∣
MA×MC\MB

.

– If A = B � C, then RA = RB ∪RC

∣∣
MB\MA

∪
(
MB × (MC \MB)

)
.

Proof. We prove this by an induction on the formula complexity of a formula A:
The cases A = v and A = ¬B are clear.

Assume A = B ∧ C. It is clear that (M,N) ∈ (RB ∪RC)
∣∣
MA

iff M,N |= B,

M,N |= C and (M,N) ∈ RB or (M,N) ∈ RC holds. Transitive closure of RA

follows by defintion of the semantics for conjunction cf. Definition 7.
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>,⊥-rules A ∧ > ≡ A; A ∧ ⊥ ≡ ⊥; A ∨ ⊥ ≡ A; A ∨ > ≡ >; > � A ≡ >; A � ⊥ ≡ A

De Morgan’s law ¬(A ∧B) ≡ (¬A ∨ ¬B); ¬(A ∨B) ≡ (¬A ∧ ¬B)

Triple Negation ¬¬¬A ≡ ¬A
Commutativity A ∧B ≡ B ∧A; A ∨B ≡ B ∨A

Associativity (A ∨B) ∨ C ≡ A ∨ (B ∨ C); (A � B) � C ≡ A � (B � C)

Absorption A ∧ (A ∨B) ≡ A; A ∧ (A � B) ≡ A; A � (A ∧B) ≡ A

Neutrality A ∧A ≡ A; A ∨A ≡ A; A � A ≡ A
Table 1. Laws of our preference logic

Now assume A = B∨C. First observe that (M,N) ∈ (RB ∩RC)\ (Rr
A4Rr

B)
is equivalent to (M,N) ∈ RB , (M,N) ∈ RC and (N,M) either in RB and RC or
in neither. By induction, this is equivalent to M =B N and M =C N in the first
case and equivalent to M >B N and M >C N in the second. Now observe that
(M,N) ∈ RB

∣∣
MA×MB\MC

holds if and only if N 6|= C and M ≥B N . Finally,

(M,N) ∈ RC

∣∣
MA×MC\MB

iff N 6|= B and M ≥C N .

Finally, assume A = B � C. By induction (M,N) ∈ RB iff M ≥B N .
(M,N) ∈ RC

∣∣
MC\MB

iff M,N 6|= B and M ≥C N . Finally, (M,N) ∈ (MB ×
(MC \MB)) iff M |= B and N 6|= C. �

Many classical rules of equivalence hold also for our preference logic.

Theorem 16 The equivalences in Table 1 hold.

Proof. For all A ≡ B in table 1, MA = MB follows easily from the rules
of propositional logic. We show three of the >,⊥-rules. First observe RA∧> =
trcl(RA ∪ ∅)

∣∣
MA

= RA. Then RA∨⊥ = RA

∣∣
MA\∅

∪∅
∣∣
∅\MA

∪(RA∩∅)\(Rr
A4∅) =

RA. And finally RA∨> = RA

∣∣
MA\2V

∪ ∅
∣∣
2V
∪ (RA ∩ ∅) \ (Rr

A4∅) = R> = ∅. De

Morgan’s law and triple negation follow immediately from the definition of ¬
and the fact that they hold in classical logic. Commutativity is also clear by
definition. We show the associativity of �:

R(A�B)�C = (RA ∪RB

∣∣
MB\MA

∪ (MA × (MB \MA)))∪

RC

∣∣
MC\(MA∪MB)

∪ ((MA ∪MB)× (MC \ (MA ∪MB))) =

RA ∪RB

∣∣
MB\MA

∪RC

∣∣
MC\(MA∪MB)

∪ (MA × (MB \MA))

∪ ((MA ∪MB)× (MC \ (MA ∪MB))) =

RA ∪RB

∣∣
MB\MA

∪RC

∣∣
MC\(MA∪MB)

∪ ((MB \MA)× (MC \ (MA ∪MB)))∪

(MA × ((MB ∪MC) \MA)) =

RA ∪ (RB ∪RC

∣∣
MC\MB

∪ (MB × (MC \MB)))
∣∣
(MB∪MC)\MA

∪ (MA × ((MB ∪MC) \MA)) = RA�(B�C)

Associativity of ∨ and the absorption rules can be shown similarly. �
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However, a few important rules from classical logic do not hold. Obviously
double negation, i.e. ¬¬A ≡ A is not true. Furthermore ∧ is not associative.
For example for A = ¬b ∧ ((b � a) ∧ (a � b)) we have ({a}, {a}) ∈ RA but
for B = (¬b ∧ (b � a)) ∧ (a � b) we have RB = ∅. For absorption, we have
a∨ (a∧ b) 6≡ a, a∧ (b � a) 6≡ a and (a∧ b) � a 6≡ a. Finally, the distribution law
does not hold. For example A = a ∨ ((a � b) ∧ (b � a)) implies (b, b) ∈ RA but
B = (a ∨ (a � b)) ∧ (a ∨ (b � a)) implies (b, b) 6∈ RB .1

4 Expressiveness

We want to show that every transitive relation on any set of models can be
represented by our logic. As a helpful tool for this proof, we introduce two new
connectives, the “strong or” and the “weak and” mentioned earlier. These are
not necessary, as they can be expressed through the other connectives, but are
useful short hands.

Definition 17 For formulas A and B we write A+B for (A∨ (¬A∧B))∧ (B∨
(¬B ∧A)) and A uB for (A ∨B) ∧ ¬(A ∧ ¬B) ∧ ¬(¬A ∧B).

Proposition 18 A+B is evaluated as (MA ∪MB , trcl(RA ∪RB)) and AuB
is evaluated as (MA ∩MB , (RA ∩RB) \ (Rr

A4Rr
B)).

Proof. This is shown by an easy computation. In fact,MA+B =MA∪MB and
MAuB =MA ∩MB follows from classical logic.
For A+B we have

RA+B = trcl((RA∨(¬A∧B) ∪RB∨(¬B∧A))
∣∣
MA∪MB

),

where

RA∨(¬A∧B) = (RA ∩R¬A∧B) \ (Rr
A4Rr

¬A∧B) ∪RA

∣∣
MA∨(¬A∧B)×MA\M¬A∧B

∪

R¬A∧B
∣∣
MA∨(¬A∧B)×M¬A∧B\MA

Observe that MA∨(¬A∧B) is a superset of MA and MA \ M¬A∨B is MA.

Hence RA

∣∣
MA∨(¬A∧B)×MA\M¬A∧B

is (a super set of) RA

∣∣
MA

, which is just

RA. Furthermore, every tuple in RA∨(¬A∧B) is either from RA or RB because
R¬A = ∅. Therefore RA ⊆ RA∨(¬A∧B) ⊆ RA ∪ RB holds. By symmetry also,
RB ⊆ RB∨(¬B∧A) ⊆ RA ∪RB holds. Hence,

RA ∪RB ⊆ RA∨(¬A∧B) ∪RB∨(¬B∧A) ⊆ RA ∪RB

and therefore RA+B = trcl(RA ∪RB).

1 It is also possible to construct a (more complicated) counter example if we assume
that the relation is always reflexive
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For A uB we have

RAuB = trcl(RA∨B ∪R¬(A∧¬B) ∪R¬(¬A∧B))
∣∣
MA∩MB

= trcl(RA∨B ∪ ∅ ∪ ∅)
∣∣
MA∩MB

= trcl((RA ∩RB) \ (Rr
A4Rr

B) ∪RA

∣∣
MA∪MB×MA\MB

∪

RB

∣∣
MA∪MB×MB\MA

)
∣∣∣
MA∩MB

= (RA ∩RB) \ (Rr
A4Rr

B)

This concludes the proof. �

We even prove that every relation can be represented with a special kind of
formula, a formula without nested preferences:

Definition 19 We say a formula A is a formula without nested preferences if
for every subformula B � C of A, � does neither occur in B nor in C.

Theorem 20 Let ≥ be a transitive relation on M ⊆ P(V ), a set of models.
Then, there exists a formula without nested preferences over the variables V
that is evaluated to (M,≥).

Proof. Say M1 ≥M2 holds for M1,M2 ∈M. We already used formulas DM1
and

DM2
which have only M1 resp. M2 as a model in the proof of theorem 14. Then

DM1
� DM2

is evaluated as ({M1,M2}, {(M1,M2)}) and we say DM1
� DM2

expresses M1 ≥ M2. Now let D1, . . . , Dn for n = | ≥ | be formulas expressing
all preferences in ≥. Then D1 + · · · + Dn + DM1 + · · · + DMm for m = |M | is
evaluated as (M,≥). �

5 Relation to QCL

We briefly review the main definition for qualitative choice logic (QCL) follow-
ing [5]. The syntax of QCL is the same as the syntax of our logic defined in
Definition 1 (note that in QCL the “preferential” connective is usually repre-

sented by symbol
→
× and is called ordered disjunction; we shall use � to allow

for easier comparison).

Definition 21 The optionality of a formula A is given as folllows

– opt(A) = 1 if A is an atom or of form ¬B;
– opt(A) = max (opt(B), opt(C)) if A = B ◦ C, ◦ ∈ {∧,∨};
– opt(A) = opt(B) + opt(C) if A = B � C.

Definition 22 Let A be a formula and M ∈ MA. The degree i of satisfaction
(|=i) of A in M is defined as

– M |=1 A if A is an atom or of form ¬B;
– for A = B ∧ C: M |=k A iff M |=m B, M |=n C and k = max (m,n)
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– for A = B ∨ C: M |=k A if

• M |=k B and for no j < k: M |=j C, or
• M |=k C and for no j < k: M |=j B;

– for A = B � C: M |=k A if M |=k B or (M |=1 ¬B, M |=m C, and
k = m+ opt(A)).

We can now define preferred models in QCL as follows.

Definition 23 An interpretation M is a preferred QCL model of a formula A
if M ∈ MA, M |=k A and there is no N such that N |=m A with m < k. We
denote the set of QCL-preferred models of a formula A by pref QCL(A).

As we will see below the preferred models of QCL and our logic coincide on
certain fragments. They are not equivalent, in general. In fact, this is on purpose,
since, as we show next, QCL behaves unintuitively in certain cases. This is due
to the quite syntactic-driven notion of satisfaction degrees.

Example 24 In QCL, there exist formulas A and B such that pref QCL(A) 6=
pref QCL(A[B/B � B]), i.e. in contrast to our logic, QCL does not account for
neutrality w.r.t. the preferential connective. In fact, take A = ((a � b)∨(a � c))∧
¬a and A′ obtained from A by replacing the first occurrence of a in A by a � a.
First observe that MA =MA′ = {{b}, {c}, {b, c}}. For each M ∈ MA we have
M |=2 A, and thus each M ∈MA is a preferred QCL model of A. However, for
A′ we observe that {b} |=3 A

′ while {b, c} |=2 A
′ and {c} |=2 A

′. Thus only {b, c}
and {c} are preferred QCL models of A′. Hence, pref QCL(A) 6= pref QCL(A′).

In order to clarify the relation between our logic and QCL, let us define
certain normal forms.

Definition 25 We say a preference logic formula A is in

– Conjunctive Form if A is build of classical formulas, ¬,∧ and �.
– Disjunctive Form if A is build of classical formulas, ¬,∨ and �.
– Normal Form if A is build of classical formulas and �.

Formulas in Normal Form are called basic choice formulas in QCL.

Theorem 26 Let M and N be models of a formula A in Conjunctive Form,
such that M |=m A and N |=n A Then, m ≥ n implies M ≥A N .

Proof. We prove the result by induction on the formula complexity. If A is a
classical formula or ¬B for some formula B the result is clear because every
model has satisfaction degree 1.

Assume A = B ∧ C for formulas B,C. If M has smaller satisfaction degree
than N then the satisfaction degree of M is smaller than the satisfaction degree
of N for either B or C, hence by induction N ≥B M , resp. N ≥C M . Therefore
N ≥A M .
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Finally, assume A = B � C for formulas B and C. We distinguish three cases:
(1) if M and N are both models of B the satisfaction degrees of M and N are the
same for A and B, hence, by induction M ≥B N holds, therefore also M ≥A N .
(2) if M and N are both a model of C but not of B, the satisfaction degrees
of M and N with respect to A only differs in a constant from the satisfaction
degrees with respect to C, hence, by induction, M ≥A N . (3) if M is a model
of B and N is not a model of B, we have M ≥A N by definition. �

For formulas in Disjunctive Form, the relation between satisfaction degrees
and the relational structure in our logic is the other way around.

Theorem 27 Let M and N be models of a formula A in Disjunctive Form, such
that M |=m A and N |=n A Then, M >A N implies m > n.

Proof. We prove the result by induction on the formula complexity. If A is a
classical formula or ¬B for some formula B, the result is clear because RA = ∅.

Assume A = B ∨ C for formulas B,C. There are three cases in which M is
strictly preferred to N . First, M is strictly preferred to N for both B and C.
Then the satisfaction degree of M is smaller than the satisfaction degree of N for
both B or C by induction, hence also for A. Second, M and N are both models
of B but N is not a model of C and M is preferred to N for B. Then, we know
by induction that the satisfaction degree of M is smaller than the satisfaction
degree of N for B and the satisfaction degree of N is infinity for C. The third
case is symmetric to the second case.

Finally, assume A = B � C for formulas B and C. We distinguish three
cases: First, if M and N are both models of B then M >A N if and only if
M >B N but as the satisfaction degrees of M and N are the same for A and B
we know by induction that the satisfaction degree of M is smaller than the one of
N . If M and N are both a model of C but not of B, then M >A N iff M >C N
but as the satisfaction degrees of M and N with respect to A only differs in a
constant from the satisfaction degrees with respect to C, we can apply induction
again. Finally, if M is a model of B and N is not a model of B, we know that
the satisfaction degree of M is smaller than the one of N by definition. �

Corollary 28 Let M and N be models of a formula A in Normal Form, such
that M |=m A and N |=n A Then, M ≥A N iff m ≥ n.

The following example further illustrates the difference between QCL and
our logic.

Example 29 First we observe that formulas (a � b)∨(b � a) and (a � b)∧(b �
a) are equally evaluated in QCL and our logic. Both deliver all models, {a},{b}
and {a, b}, as preferred models for both formulas, reflecting the fact that the
preferences in the formula are cyclic.

On the other hand, let φ = (a ∧ ¬b) � (a ∧ b) � (¬a ∧ b) and ψ = (¬a ∧
b) � (a ∧ b) � (a ∧ ¬b). Then the QCL-preferred model of φ ∧ ψ is {a, b},
while φ ∨ ψ delivers two QCL-preferred models {a} and {b}. Our logic takes a
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different view and combines the implictly obtained relations {a} > {a, b} > {b}
and {b} > {a, b} > {a}. In fact, we have as preferred models for φ ∧ ψ, {a, b},
{a} and {b}, reflecting that the relation becomes cyclic. For φ∨ψ, we obtain the
same preferred models, however for a different reason, namely that no relation
appears in both subformulas. while QCL again delivers {a} and {b}.

6 Complexity

The basic computational problems in our logic are model checking, satisfiability
and testing if one model is preferred to another. By the definition of truth in
our logic, the first two problems have the same complexity in our logic as in
propositional logic, i.e. model checking is in P and satisfiability is NP-complete.
The complexity of the model preference problem, on the other hand, is still open.

Problem 1 (Model preference) Let A ∈ PF(V ) and let M and N be models
of A. Does M ≥A N hold?

While we do not know the complexity of the model preference problem on
arbitrary preference formulas, we know the complexity for the fragments intro-
duced in section 5.

Proposition 30 The model preference problem is in P for formulas in Disjunc-
tive From.

Proof. By definition, the relation between M and N does not depend on the
relation between any other models for formulas in Disjunctive Form. Hence, we
can easily track the relation between the models M and N in a bottom up
manner through the syntax tree. �

Observe that every formula in Normal Form is also in Disjunctive Form,
hence the model preference problem for formulas in Normal Form is also in P.
The model preference problem for formulas in Conjunctive From, on the other
hand, is harder, because we have to compute the transitive closure of the relation
in the ∧ step. Indeed, this problem is NP-complete. We need a lemma and an
additional definition to prove this.

Definition 31 Let A ∈ PF(V ) and let (M,N) be a preference introduced by a
subformula D = B � C or D = B ∧ C (via transitivity). We say the preference
survives until A if there is no subformula E of A containing D such that

– E = ¬F
– E = F ∨G and (M,N) 6∈ RE

– E = F ∧G and (M,N) 6∈ (RF ∩RG)
∣∣
ME

– E = F � G and (M,N) 6∈ RF ∪RG

∣∣
MG\MF

Lemma 32 Let A be a formula in Conjunctive Form, such that some subfor-
mula D = B � C or D = B ∧ C of A introduces preferences (M,N), (M ′, N)
and (M ′, N ′). Then, if (M,N) and (M ′, N ′) survive until A then also (M ′, N)
survives until A.
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Proof. Let E be the smallest subformula of A such that (M ′, N) does not survive
until E. Obviously, E = ¬F is not possible. Now assume E = F ∧ G and D is
a subformula of F . Then (M ′, N) does not survive until E if and only if either
M ′ or N is not a model of E. But the first case contradicts the assumption that
(M ′, N ′) survives and the second case contradicts the assumption that (M,N)
survives. Now assume E = F � G and D is a subformula of F . Then (M ′, N ′)
survives until E if it survives until F which is does by choice of E. Finally,
assume E = G � F and D is a subformula of F . Then (M ′, N) does not survive
until E if and only if either M ′ or N is a model of G. However this leads to a
contradiction as in the ∧ case. �

Proposition 33 The model preference problem is in NP for formulas in Con-
junctive Form.

Proof. Let A ∈ PF(V ) and let M,N be models of A. We enumerate all � and
∧ occurring in A as �i and ∧i and write Ai �i Bi and Ai ∧i Bi for the respec-
tive subformulas in A. Then, for every triple (�i,∧j ,�k) we guess a sequence
◦1, N1, ◦2, N2, . . . , Nn, ◦n, for n = |A|4, where for every l ≤ n, Nl is a model and
◦l is either �i for some i or a triple (�i,∧j ,�k). Furthermore, ◦1 is either �i

or a triple containing �i as the first element. Analogously, ◦n is either �k or a
triple containing �k is the last position.

Now, we label every triple either valid or unvalid in an order such that when
we label a triple (�i,∧j ,�k), we already labeled all triples containing ∧m for
all ∧m contained in Aj ∧j Bj . First, we verify, that �i,�k and all �o and ∧m
occurring in the sequence guessed for the triple, are contained in Aj ∧j Bj . If
not, we label the triple unvalid. Otherwise, we check for every pair of models
(Nl, Nl+1) if it is valid for its operator ◦l+1. This is done in the following way:

If ◦l+1 =�o, we check if Nl |= Ao. Nl+1 6|= Ao and Nl+1 |= Bo, i.e. if
Nl ≥Ao�oBo Nl+1. If no, the pair is not valid. If yes, we check if the preference
survives until Aj ∧j Bj and Nl ≥Aj∧jBj Nl+1 holds. Observe that this is a ptime
check. If no, the pair is unvalid, if yes, the pair is valid.

So now assume ◦l+1 = (�m,∧n,�o). First, we check if the triple is valid. If no,
the pair is unvalid. Otherwise, let ◦∗1, N∗1 , ◦∗2, N∗2 , . . . , N∗n∗ , ◦∗n∗ be the sequence
guessed for (�m,∧n,�o). If ◦∗1 =�p, we check if Nl ≥p N

∗
1 was introduced by

Ap �p Bp and survives until An∧nBn. If ◦∗1 = (�∗i ,∧∗j ,�∗k), we check if the pair
(Nl, N

∗
1 ) is valid for that triple. Then, we do the same checks for ◦∗n and Nl+1.

If all these checks are positive, the pair is valid and if all the pairs occurring in
the sequence are valid, the triple (�i,∧j ,�k) is valid.

Now to check if M ≥A N , we do the following, we go through the syntax
tree of A in a bottom up manner and check if the preference M ≥D N is
introduced by any subformula, and if yes, if it survives until A. For subformulas
Ai �i Bi, it is clear how to check, if M ≥Ai�iBi N is introduced. For Aj ∧j Bj ,
if M,N |= Aj ∧j Bj we look for every valid triple (�i ∧j ,�k) containing ∧j we
check if (M,N1) is a valid pair for ◦1 and if (Nn, N) is a valid pair for ◦n. If
both checks are positive for any valid triple, M ≥Aj∧jBj

N is introduced.
The correctness of this algorithm relies on the following two facts: (1) If there

is a valid sequence for a triple, then there is a valid sequence for that triple that
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contains each triple and each �i at most once. (2) Let B = Ai∧iBi be a subfor-
mula of A and let M,N be a models of B. Finally, let ◦1, N1, ◦2, N2, . . . , Nn, ◦n be
a valid sequence for the triple (�j ,∧i,�k). If M ◦1N1 is valid and there exists a
second sequence ◦∗1, N∗1 , ◦∗2, N∗2 , . . . , N∗n∗ , ◦∗n∗ also valid for the triple (�j ,∧i,�k)
and N ◦∗1 N∗1 is valid, then also N ◦1 N1 is valid.

The first result guarantees that it suffices to look at sequence of length less
than |A|4, the second result guarantees that it suffices to guess one sequence per
triple. (1) holds, because if Ni◦iNi+1◦i+1 . . . Nj ◦jNj+1 is valid and ◦i = ◦j then
Ni ◦iNj+1 is also valid by the definition of validity. (2) follows from Lemma 32.
�

This proof does not work for arbitrary formulas, because Lemma 32 does
not hold for arbitrary formulas. Assume, for example, that A � B introduces
(M,N), (M ′, N) and (M ′, N ′), that (N,M), (N ′,M ′) 6∈ RA�B holds and that
C is a formula such that M >C N and M ′ >C N ′ holds, but not M ′ ≥C N .2

Then (M,N) and (M ′, N ′) survive until (A � B) ∨ C, but (M ′, N) does not.

Proposition 34 The model preference problem is NP-hard for formulas in Con-
junctive Form.

Proof. Let A be a propositional formula. Now let x be a new variable not oc-
curring in A. Then let B = ((A ∧ ¬x) � x) ∧ (x � (A ∧ ¬x)). Obvious, B is
a formula in Conjunctive Form. We claim that {x} ≥B {x} if and only if A is
satisfiable. First assume A is satisfiable and M is a model of A. Then M is also
a model of A ∧ ¬x. Therefore, M and {x} are models of C = (A ∧ ¬x) � x
and M ≥C x holds. Similarly, M and {x} are models of D = x � (A ∧ ¬x)
and x ≥D M holds. Hence x ≥B M ≥B x and by transitivity x ≥B x. Now as-
sume A is not satisfiable. Then A∧¬x is also not satisfiable. Therefore, we have
MC = {M ∈ 2V | x ∈ M} and RC = ∅. Similarly, MD = MC and RD = ∅.
Hence RB = ∅. �

7 Conclusion

We presented a new logic for handling hard and soft constraints at once. The logic
has a straightforward semantics that assigns every formula a set of models and a
transitive relation on this set. We have shown that replacement pref-equivalence
and semantic equivalence coincide for our logic and that many desirable equiv-
alences known from propositional logic hold. Furthermore, we have shown that
every transitive relation on every set of models can be expressed using a formula
without nested preferences. We proved that our logic coincides with qualitative
choice logic [5] on formulas in certain normal form and compares favorably with
it on arbitrary formulas. Finally, we have shown that the model preference prob-
lem is in P for formulas in Disjunctive Form and NP-complete for formulas in
Conjunctive From.

2 Such a C exists by Theorem 20
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In the future, we want to pinpoint the complexity of the model preference
problem for arbitrary formulas as well as the complexity of some other, related,
problems like finding a preferred model. Furthermore, we would like to compare
our logic to other formalisms from the literature like Conjunctive Choice Logic
[2] and nested circumscription [7]. We would like to consider other preference
operators in our framework. Finally, we want to define an entailment relation
and study its properties.
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