
Efficiency of a good but not linear nominal unification

algorithm

Weixi Ma1, Jeremy G. Siek2, David Thrane Christiansen3, and Daniel P.
Friedman4

1 Indiana University, Bloomington, Indiana, U.S.A.
mvc@iu.edu

2 Indiana University, Bloomington, Indiana, U.S.A.
jsiek@indiana.edu

3 Galois, Inc., Portland, Oregon, U.S.A.
dtc@galois.com

4 Indiana University, Bloomington, Indiana, U.S.A.
dfried@indiana.edu

Abstract

We present a nominal unification algorithm that runs in O(n × log(n) × G(n)) time,
where G is the functional inverse of Ackermann’s function. Nominal unification gener-
ates a set of variable assignments if there exists one, that makes terms involving binding
operations α-equivalent. We preserve names while using special representations of de
Bruijn numbers to enable efficient name management. We use Martelli-Montanari style
multi-equation reduction to generate these name management problems from arbitrary
unification terms.

1 Introduction and background

Equational theories over terms, such as the α, β, and η in the λ-calculus [Church, 1941], are a
critical component of programming languages and formal systems. As users of logic program-
ming languages and theorem provers, we desire such rules to be available out of the box. Two
theories provide this convenience: Miller’s higher-order pattern unification [Miller, 1989] and
Urban et al.’s nominal unification [Urban et al., 2004]. Higher-order pattern unification, the
foundation of Isabelle [Paulson, 1986], λProlog [Nadathur et al., 1988], and Twelf [Pfenning
and Schürmann, 1999], handles a fragment of the βη-rules. Nominal unification, the unification
modulo the α-rule, has inspired extensions of logic programming languages such as αProlog [Ch-
eney and Urban, 2004] and αKanren [Byrd and Friedman, 2007], as well as theorem provers
such as Nominal Isabelle [Urban and Tasson, 2005] and αLeanTAP [Near et al., 2008]. Al-
though these two theories can be reduced to one another [Cheney, 2005, Levy and Villaret,
2012], implementing higher-order pattern unification is more complicated because it has to deal
with β-reduction and capture-avoiding substitution. An implementation of nominal unification,
in which unification does not involve explicit β-reduction, is more straightforward and easier to
formalize.

Concerning time complexity, Qian [1996] has proven that higher-order pattern unification is
decidable in linear time. Still, it has been an open problem whether there exists a nominal unifi-
cation algorithm that can do better than O(n2). Levy and Villaret [2012] give a quadratic-time
reduction from nominal unification to higher-order pattern unification. Meanwhile, algorithmic
advances by Paterson and Wegman [1978] and Martelli and Montanari [1982] for unification
have inspired many improvements to the efficiency of nominal unification. Ideas like applying

Mauricio Ayala Rincon
32nd International Workshop on Unification (UNIF 2018), Informal Proceedings
Oxford, 7th July, 2018�

Mauricio Ayala Rincon


Mauricio Ayala Rincon


Mauricio Ayala Rincon




Efficiency of a good but not linear nominal unification algorithm Ma, Siek, Christiansen, and Friedman

swappings lazily and composing swappings eagerly and sharing subterms have also been ex-
plored. Calvès [2010] describes quadratic algorithms that extend the Paterson-Wegman and
Martelli-Montanari’s algorithms with name (atom) handling; Levy and Villaret [2010] describe
a quadratic algorithm that reduces unification problems to a sequence of freshness and equality
constraints and then solves the constraints.

The inefficiency of these nominal unification algorithms comes from the swapping actions.
To decide the α-equivalence of two names, we need to linearly traverse a list whose length
is the number of binders. One might try to replace these lists with some structures of better
lookup efficiency, such as hashtables, but then composing two swappings would take linear time,
and that operation is also rather frequent. Here, we present an algorithm that does not use
swappings but instead represents names with de Bruijn numbers. De Bruijn numbers enable
the use of persistent hashtables, in particular, Bagwell’s Hash Array Mapped Trie (HAMT).
HAMTs provide efficient lookup and they use sharing to avoid the linear-time costs that would
normally be associated with duplicating a hashtable [Bagwell, 2001].

We organize this paper as follows. In section 2, we provide an alternative representation
of de Bruijn numbers that is suitable for unification. In section 3, we describe the abstract
machines for name management and unification. In section 4, we discuss the time complexity
of this algorithm. The proofs of our claims are in progress and are available at the authors’
Github,1 formalized in Agda.

2 De Bruijn numbers should coexist with names

Figure 1: Terms
t, l, r ::= a name

| λa.t abstraction
| (l r) combination

Figure 2: Free and bound
a /∈ Φ

Φ ` Fr a [Free]

(name→idxΦ a) = i
(idx→nameΦ i) = a

Φ ` Bd a i [Bound]

Figure 3: ≈-rules
a1 = a2
Φ1 ` Fr a1 Φ2 ` Fr a2
〈a1; Φ1〉 ≈ 〈a2; Φ2〉

[Same-Free]

i1 = i2
Φ1 ` Bd a1 i1 Φ2 ` Bd a2 i2

〈a1; Φ1〉 ≈ 〈a2; Φ2〉
[Same-Bound]

De Bruijn numbers are a technique for
representing syntax with binding struc-
ture [de Bruijn, 1972]. A de Bruijn number is
a natural number that indicates the distance
from a name’s occurrence to its correspond-
ing binder. When all names in an expres-
sion are replaced with their corresponding
de Bruijn numbers, a direct structural equal-
ity check is sufficient to decide α-equivalence.
Many programming languages use de Bruijn
numbers in their internal representations for
machine manipulation during operations such
as type checking. The idea of using names
for free variables and numbers for bound
variables, known as the locally nameless ap-
proach [Charguéraud, 2012], is employed for
formalizing programming language metathe-
ory [Aydemir et al., 2006, 2008]. Also, de
Bruijn numbers, combined with explicit sub-
stitution, have been introduced in higher-
order unification [Dowek et al., 2000] to im-
prove the efficiency of unification.

Despite the convenience when implement-
ing α-equivalence, programs written with de Bruijn numbers are notoriously difficult for humans

1https://github.com/mvcccccc/UNIF2018

2

https://github.com/mvcccccc/UNIF2018
https://github.com/mvcccccc/UNIF2018


Efficiency of a good but not linear nominal unification algorithm Ma, Siek, Christiansen, and Friedman

to read and understand. What’s worse, as pointed out by Berghofer and Urban [2007], translat-
ing pencil-and-paper style proofs to versions using de Bruijn numbers is surprisingly involved:
such a translation may alter the structure of proofs. Thus, recovering proofs with explicit names
from proofs that use de Bruijn numbers is difficult or even impossible. Thus, for the sake of
both readers and writers of proofs, it is worth providing an interface with names.

If our concern is simply deciding α-equivalence between expressions, an easy way to use
de Bruijn numbers while preserving names is to traverse the expressions, annotate each name
with its de Bruijn number, then read back the expressions without numbers. This approach,
however, does not work for unification, because it only contains the mapping from names to
numbers. In unification modulo α-equivalence, one frequently needs the mapping from numbers
to names to decide what name to assign to a unification variable.

We represent de Bruijn numbers by static closures. Such closures preserve the mappings in
both directions: names to numbers and numbers to names.

Definition 2.1. A closure is an ordered pair 〈t; Φ〉 of a term t, defined in Figure 1, and a
scope Φ, where the scope is an ordered list of names for the binders in the enclosing context.
The name of the innermost binder is written first in Φ.

When the term of a closure is a name, the closure itself represents a de Bruijn number. Con-
sider the term λ a.λ b.a. The de Bruijn number of the name a is 1 and the closure-representation
of this number is 〈a; (b a)〉. We can retrieve the number-representation by finding the position
of the first appearance of the name in the scope. In this case, the position of a in the scope
(b a) is 1, its de Bruijn number. The de Bruijn number of b would have been 0 if the closure
had been 〈b; (b a)〉

Figure 4: Unification terms and problems
X vars
a, b names
xs ::= ε list of vars

| X,xs
t, l, r ::= a

| λa.t abstractions
| (l r) combinations
| X

eν ::= 〈a; Φ〉 = 〈a; Φ〉 ν-equation
| 〈a; Φ〉 = 〈X; Φ〉

pν ::= ε ν-problems
| eν , pν

eδ ::= 〈X; Φ〉 = 〈X; Φ〉 δ-equation
pδ ::= ε δ-problems

| eδ, pδ

We define three operations on scopes: ext
extends the scope by consing a name to the
front of the scope; idx→name yields the name
of a given index counting from the leftmost in
the scope; and name→idx yields the location
of the first appearance of a given name count-
ing from the front. When repeated names ap-
pear, the first appearance in a scope shadows
the others.

Figure 2 defines the free and bound rela-
tions “constructively,” with de Bruijn num-
bers serving as evidence that variables are
well-scoped. When a name, a, does not ap-
pear in the scope, Φ, we say, “a is free with
respect to Φ,” written as Φ ` Fr a; when a’s
first appearance in Φ is the position i, we say,
“a is bound at i with respect to Φ,” written
as Φ ` Bd a i. The Bound rule needs two
premises to be algorithmic for either a name
or index input, and prevent incorrect results caused by shadowing. For example, given the
index 1 and the scope (a a), the relation, (a a) ` Bd a 1, does not hold. Figure 3 defines the
rules that decide α-equivalent of two names w.r.t. their scopes, written as 〈a; Φ〉 ≈ 〈a; Φ〉.

3



Efficiency of a good but not linear nominal unification algorithm Ma, Siek, Christiansen, and Friedman

3 Unification

In Figure 4, we introduce unification variables, abbreviated as vars. Now, let’s consider a
simplified unification problem: a variable can only be instantiated by a name, that is, finding
the unifier of two terms that share the same structure but differ in names and variables. A
unifier consists of two parts: σ and δ.

Figure 5: ν-machine

σ ` pν ⇒ν σ

σ0 ` ε⇒ν σ0
[Empty]

〈a1; Φ1〉 ≈ 〈a2; Φ2〉
σ0 ` p⇒ν σ1

σ0 ` 〈a1; Φ1〉 = 〈a2; Φ2〉, p⇒ν σ1
[N-N]

〈a1; Φ1〉 ≈ 〈a2; Φ2〉
{X2/a2} ∪ σ0 ` p⇒ν σ1

σ0 ` 〈a1; Φ1〉 = 〈X2; Φ2〉, p⇒ν σ1
[N-V]

Figure 6: δ-machine and the pull operation

σ; pδ ` xs⇒δ σ; pδ
σ;xs ` pδ ⇒pull σ;xs

σ; δ ` ε⇒δ σ; δ
[Empty-Xs]

σ; ε ` xs⇒δ σ; ε
[Empty-D]

σ0;xs0 ` δ0(X) ⇒pull σ
′
0;xs1

σ′
0; δ0 \ δ0(X) ` xs1 ⇒δ σ1; δ1
σ0; δ0 ` X,xs0 ⇒δ σ1; δ1

[Pull]

σ;xs ` ε⇒pull σ;xs
[Empty]

〈a1; Φ1〉 ≈ 〈a2; Φ2〉 [N-N]
σ0(X1) = a1 σ0(X2) = a2
σ0;xs0 ` p⇒pull σ1;xs1

σ0;xs0 ` 〈X1; Φ1〉 = 〈X2; Φ2〉, p⇒pull σ1;xs1

〈a1; Φ1〉 ≈ 〈a2; Φ2〉 [N-V]
σ0(X1) = a1 X2 /∈ dom(σ0)
{X2/a2} ∪ σ0; (X2, xs0) ` p⇒pull σ1;xs1

σ0;xs0 ` 〈X1; Φ1〉 = 〈X2; Φ2〉, p⇒pull σ1;xs1

A substitution, σ, is a partial finite func-
tion from unification variables, Xi, to terms,
ti. For readability, we write σ as a set,
{X1/t1, ..., Xj/tj} and we write {X/t} ∪ σ
for extending σ with X/t. For the simplified
problems, we restrict t to a name.

A closure equation is a pair of two
closures that are α-equivalent. ∆ stands
for a set of closure equations. We write
∆ as {(〈t1; Φ1〉 〈t′1; Φ′

1〉), ..., (〈ti; Φ1〉 〈t′i; Φ′
1〉)}

and we write {(〈t; Φ〉 〈t′; Φ′〉)}∪∆ for extend-
ing ∆ with (〈t; Φ〉 〈t′; Φ′〉). δ is a special form
of ∆: for each equation in δ, the terms on
both sides are variables. Given a variable X,
δ(X) yields the list of closure equations where
X appears at least once.

The simplified problem is about solving
three kinds of problems: unifying a closure
equation that has a name term on one side
and a var term on the other side, abbreviated
to N-V, and similarly N-N and V-V. We refer
to an N-N or N-V equation as an eν and refer
to a V-V equation as an eδ. Given two lists
of these closure equations, pν and pδ, we first
run the ν-machine, defined in Figure 5, on pν
to generate a substitution. The δ-machine,
defined in Figure 6, then computes the final
unifier on three inputs: the substitution re-
sulting from the ν-machine, δ, and a list of
known variables, initialized by the domain of
the substitution. If no transitions apply, the
machine fails and the unification problem has
no unifier.

Lemma 3.1. For all finite inputs, the ν-
machine and the δ-machine terminate; for
all finite inputs, the ν-machine and the δ-
machine succeed with the most general unifier
if and only if one exists.

Proof. By structural induction on the transi-
tions of the machines.

4



Efficiency of a good but not linear nominal unification algorithm Ma, Siek, Christiansen, and Friedman

Now the question is how to generalize the previous algorithm, that is, given two arbitrary
terms, where a variable may be instantiated by any term besides names, can we re-shape the
two terms to create a proper input to the two machines?

Here we use the idea of Martelli and Montanari [1982]: finding the shared shape of two
terms by computing the common parts and frontiers over a multi-equation. They define the
common part of two terms to be a term obtained by superimposing, and the frontier to be
the substitution that captures the differences between each term and the common part. For
example, given distinct names a, b, and c, distinct vars X and Y , and two terms (aX) and
(Y (b c)), the common part is the term (Y X), and the frontier is the substitution {Y/a, X/(b c)}.
A multi-equation, defined in Figure 7, groups together many closures to be unified, where the
variable closures are on the left-hand side, and the non-variable closures are on the right-hand
side.

The ρ-machine, defined in Figure 8, reduces an arbitrary nominal unification problem to
pν , pδ, and a substitution where the codomain is unrestricted. Each ⇒s transition computes
the common part and the frontier of a multi-equation. For readability, the sketch only shows
the rules for multi-equations with two closures. A multi-equation with more than two closures
is handled by simultaneously applying the rule to all closures. Unlike the Martelli-Montanari
algorithm, the ρ-machine finds the maximum common part instead of the minimum. Thus,
in the V-C, V-A, and V-A′ rules, we need two operators, new-name and new-var, to create
new names and new variables for the shapes that fit with combinations and abstractions. The
ordering of multi-equation is the same with Martelli-Montanari: for each multi-equation, we
count the appearances of its left-hand side variables in other multi-equations of U and select
the multi-equation associated with the smallest counter each time.

Conjecture 3.1. Given a unification problem, we run the ρ-machine, the ν-machine, and the
δ-machine in sequence. The algorithm terminates; if the algorithm fails, i.e. no transitions
apply, the problem has no solution; if the algorithm terminates, then the result of the δ-machine
is the mgu.

5



Efficiency of a good but not linear nominal unification algorithm Ma, Siek, Christiansen, and Friedman

Figure 7: Multi-equations
e ::= (〈t; Φ〉 〈t; Φ〉) multi-equation
| 〈t; Φ〉, e

U ::= ε list of multi-equations
| e, U

Figure 8: ρ-machine

pν ; pδ;σ ` U ⇒ρ pν ; pδ;σ
pν ; pδ;σ ` e⇒s pν ; pδ;σ

p0; δ0;σ0 ` ε⇒ρ p0; δ0;σ0
[Empty]

p0; δ0;σ0 ` e ⇒s p
′
0; δ′0;σ′

0
p′0; δ′0;σ′

0 ` U ⇒ρ p1; δ1;σ1

p0; δ0;σ0 ` (e, U)⇒ρ p1; δ1;σ1
[Step]

p1 = (〈a1; Φ1〉 〈a2; Φ2〉) ∪ p0
p0; δ0;σ0 ` (〈a1; Φ1〉 〈a2; Φ2〉)⇒s p1; δ0;σ0

[N-N]

p1 = (〈a1; Φ1〉 〈X2; Φ2〉) ∪ p0
p0; δ0;σ0 ` (〈a1; Φ1〉 〈X2; Φ2〉)⇒s p1; δ0;σ0

[N-V]

δ1 = (〈X1; Φ1〉 〈X2; Φ2〉) ∪ δ0
p0; δ0;σ0 ` (〈X1; Φ1〉 〈X2; Φ2〉)⇒s p0; δ1;σ0

[V-V]

p0; δ0;σ0 ` (〈l1; Φ1〉 〈l2; Φ2〉) ⇒s p
′
0; δ′0;σ′

0
p′0; δ′0;σ′

0 ` (〈r1; Φ1〉 〈r2; Φ2〉)⇒s p1; δ1;σ1

p0; δ0;σ0 ` (〈(l1 r1); Φ1〉 〈(l2 r2); Φ2〉)⇒s p1; δ1;σ1
[C-C]

Φ′
1 = (extΦ1 a1) Φ′

2 = (extΦ2 a2)
p0; δ0;σ0 ` (〈t1; Φ′

1〉 〈t2; Φ′
2〉)⇒s p1; δ1;σ1

p0; δ0;σ0 ` (〈λ a1.t1; Φ1〉 〈λ a2.t2; Φ2〉)⇒s p1; δ1;σ1
[A-A]

Xl = (new-var) Xr = (new-var)
p0; δ0; {X1/(Xl, Xr)} ∪ σ0 ` (〈Xl; Φ1〉 〈l2; Φ2〉)⇒s p

′
0; δ′0;σ′

0
p′0; δ′0;σ′

0 ` (〈Xr; Φ1〉 〈r2; Φ2〉)⇒s p1; δ1;σ1

p0; δ0;σ0 ` (〈X1; Φ1〉 〈(l2 r2); Φ2〉)⇒s p1; δ1;σ1
[V-C]

Φ′
1 = (extΦ1 a1) Φ′

2 = (extΦ2 a2) Φ1 ` Fr a1 a2 = (new-name) Xt = (new-var)
p0; δ0; {X1/λ a1.Xt} ∪ σ′

0 ` (〈Xt; Φ′
1〉 〈t2; Φ′

2〉)⇒s p1; δ1;σ1

p0; δ0;σ0 ` (〈X1; Φ1〉 〈λ a2.t2; Φ2〉)⇒s p1; δ1;σ1
[V-A]

Φ′
1 = (extΦ1 a1) Φ′

2 = (extΦ2 a2) Φ1 ` Bd a1 i Φ2 ` Bd a2 i Xt = (new-var)
p0; δ0; {X1/λ a1.Xt} ∪ σ′

0 ` (〈Xt; Φ′
1〉 〈t2; Φ′

2〉)⇒s p1; δ1;σ1

p0; δ0;σ0 ` (〈X1; Φ1〉 〈λ a2.t2; Φ2〉)⇒s p1; δ1;σ1
[V-A′]

6



Efficiency of a good but not linear nominal unification algorithm Ma, Siek, Christiansen, and Friedman

4 A note on time complexity

In the previous sections, we represent scopes by lists for simplicity, but lists are inefficient for
variable lookup. To have better time complexity, we represent a scope with a counter and
two persistent hashtables. One hashtable maps from names to numbers, the other maps from
numbers to names, and the counter is used to track the de Bruijn number. When we extend
a scope with a name, we extend the two hashtables with the corresponding maps and add one
to the counter. A persistent hashtable, in practice, has constant time for update and lookup,
although the worst case scenario could be O(log(n)). Thus, ext, idx→name, and name→idx

are all logarithmic time. In addition, using persistent structures avoids copying the entire
data-structure when branching, in particular, during the C-C rule of the ρ-machine. Also, we
implement δ with a hashtable that maps from a variable to the list that contains its closure
equations, i.e., the equation 〈X1; Φ1〉 ≈ 〈X2; Φ2〉 exists in both X1’s entry and Y2’s entry in the
hashtable.

Now the ν-machine and the δ-machine are both worst case O(n × log(n)), where n is the
sum of name and variable occurrences. The algorithm of Martelli-Montanari is O(n × G(n)),
when representing sets with UNION-FIND [Tarjan, 1975], where n is the number of variable
occurrences in the original terms. The ρ-machine is similar except that two new factors are
involved: the update operation of HAMT and the generation of names and variables. We
consider the former one to have O(log(n)) complexity, and we implement name and variable
creation with state monads [Moggi, 1991] to have constant time. Thus reducing an arbitrary
unification problem to the input of the ν and δ machines becomes O(n× log(n)×G(n)).

Acknowledgment

We thank Christian Urban for the discussion and inspiration and the anonymous reviewers for
their comments and suggestions.

References

Brian Aydemir, Aaron Bohannon, and Stephanie Weirich. Nominal Reasoning Techniques in
Coq. In International Workshop on Logical Frameworks and Meta-Languages: Theory and
Practice, LFMTP ’06, Seattle, WA, USA, August 2006.

Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and Stephanie
Weirich. Engineering formal metatheory. In Proceedings of the 35th Annual SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’08, pages 3–15, New
York, NY, USA, 2008.

Phil Bagwell. Ideal Hash Trees. Technical Report EPFL-REPORT-169879, Ecole polytechnique
fédérale de Lausanne, November 2001.

Stefan Berghofer and Christian Urban. A Head-to-Head Comparison of De Bruijn Indices and
Names. ENTCS 174, (5):53–67, June 2007.

William E. Byrd and Daniel P. Friedman. αKanren A Fresh Name in Nominal Logic Program-
ming. Université Laval Technical Report, (DIUL-RT-0701, Scheme Workshop ’07, editor
Danny Dubé):79 – 90, 2007.

Christophe Calvès. Complexity and Implementation of Nominal Algorithms. PhD thesis. King’s
College of London, 2010.

7



Efficiency of a good but not linear nominal unification algorithm Ma, Siek, Christiansen, and Friedman

Arthur Charguéraud. The locally nameless representation. Journal of Automated Reasoning,
49(3):363–408, October 2012.

James Cheney. Relating nominal and higher-order pattern unification. In Proceedings of UNIF
2005, pages 104–119, 2005.

James Cheney and Christian Urban. αProlog: A logic programming language with names,
binding and α-equivalence. In Logic Programming, LNCS 3132, pages 269–283. Springer,
Berlin, Heidelberg, September 2004.

Alonzo Church. The Calculi of Lambda-conversion. Princeton University Press, Humphrey
Milford Oxford University Press, 1941.

Nicolaas G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for auto-
matic formula manipulation, with application to the Church-Rosser theorem. Indagationes
Mathematicae (Proceedings), 75(5):381–392, January 1972.

Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Higher Order Unification via Explicit
Substitutions. Information and Computation, 157(1):183–235, February 2000.

Jordi Levy and Mateu Villaret. An Efficient Nominal Unification Algorithm. In Proceedings of
the 21st International Conference on Rewriting Techniques and Applications, RTA ’10, pages
209–226, Edinburgh, Scottland, UK, 2010.

Jordi Levy and Mateu Villaret. Nominal unification from a higher-order perspective. ACM
Transactions on Computational Logic, 13(2):1–31, April 2012.

Alberto Martelli and Ugo Montanari. An efficient unification algorithm. ACM Trans. Program.
Lang. Syst., 4(2):258–282, April 1982.

Dale Miller. A logic programming language with lambda-abstraction, function variables, and
simple unification. In Extensions of Logic Programming, LNCS 475, pages 253–281. Springer,
Berlin, Heidelberg, December 1989.

Eugenio Moggi. Notions of Computation and Monads. Inf. Comput. 93, 93(1):55–92, July 1991.
G. Nadathur, D. Miller, University of Pennsylvania Department of Computer, and Information

Science. An Overview of Lambda Prolog, volume 116 of LINC LAB. University of Pennsyl-
vania, Department of Computer and Information Science, 1988.

Joseph P. Near, William E. Byrd, and Daniel P. Friedman. αleanTAP: A declarative theorem
prover for first-order classical logic. In Logic Programming, LNCS 5366, pages 238–252.
Springer, Berlin, Heidelberg, December 2008.

M. S. Paterson and M. N. Wegman. Linear unification. Journal of Computer and System
Sciences, 16(2):158–167, April 1978.

Lawrence C. Paulson. Natural deduction as higher-order resolution. The Journal of Logic
Programming, 3(3):237–258, October 1986.

Frank Pfenning and Carsten Schürmann. System Description: Twelf — A Meta-Logical Frame-
work for Deductive Systems. In CADE-16, LNCS 1632, pages 202–206. Springer, Berlin,
Heidelberg, July 1999.

Z. Qian. Unification of Higher-order Patterns in Linear Time and Space. Journal of Logic and
Computation, 6(3):315–341, June 1996.

Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM, 22(2):
215–225, April 1975.

Christian Urban and Christine Tasson. Nominal techniques in Isabelle/HOL. In CADE-20,
LNCS 3632, pages 38–53. Springer, Berlin, Heidelberg, July 2005.

Christian Urban, Andrew M. Pitts, and Murdoch J. Gabbay. Nominal unification. Theoretical
Computer Science, 323(1-3):473–497, September 2004.

8


	Introduction and background
	De Bruijn numbers should coexist with names
	Unification
	A note on time complexity

