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Abstract. In this paper we introduce a concept of a minimal and complete
set of E-unifiers λUΣE(Γ ) for a unification problem Γ, based on homeomor-
phic embedding modulo an equational theory E. We propose a definitional
framework based on notions and definitions of standard unification theory of
first order terms extended to the (homeomorphic) embedding order modulo E.
The main result is that the set λUΣE(Γ ) always exists for a finite signature
Σ and it is always finite.

1. Introduction

Ordering is a well established concept in mathematics and it plays an important role in many
areas of computer science too. Quasi orderings (qo) and most noteably well founded quasi or-
derings (wfo) and well quasi orderings (wqo) in particular are of great general interest, see [13].
Probably the most popular application within our own field is the use of certain quasi orders and
well quasi orders on first order terms to prove the termination of rewriting rules, see [3, 4].

In the theory of E-unification of terms based on a signature Σ and an equational theory E, the
set UΣE(Γ) denotes the set of all E-unifiers of a unification problem Γ. Of great interest is now
to find a complete and minimal subset of UΣE(Γ), denoted as µUΣE(Γ), from which all other
E-unifiers can be obtained.

Equality on terms induced by the equational theory E will be denoted as =E and the E-
subsumption order on terms is denoted as ≤E . So, if there are two unifiers τ and σ for the terms
s and t, such that sτ =E tτ and sσ =E tσ and there is a substitution λ, such that τ =E σλ, then
τ is an instance of σ, or σ subsumes τ , denoted σ ≤E τ . This led to the notion of a most general
E-unifier (mgu), that is an E-unifier, which is not an instance of any other E-unifier. The set of
most general unifiers is denoted as µUΣE(Γ) and every E-unifier is E-subsumed by some element
of µUΣE(Γ), that is, it can be obtained by instantiaton in an automated reasoning process, such
as resolution [17]. Often we shall drop the E in E-unifiers if it is understood from the context.

To illustrate the role of orderings in E-unification, consider the equational theory A for free
semigroups with the axiom of associativity for terms built over a binary function symbol f with A =

{f(x, f(y, z)) = f(f(x, y), z)}. This is also known as the word (or string) algebra and the notation
is that of words (strings), where we just drop the function symbol f and have concatenation of
symbols.
For example the string unification problem Γ1 = {ax =? xa} has most general unifiers of the form
σn = {x ↦ an ∶ n ≧ 1}. Because the σn are ground substitutions, they are incomparable with
respect to the subsumption order, so µUΣA(Γ1) = {σn ∶ n ≧ 1} is an infinite set and therefore Γ is
of unification type infinitary. Furthermore, since the subsumption order is not a well quasi order,
there are equational theories such that the set of mgus does not exist (see[2][18][9]).

In order to address these problems, we proposed the encompassment of terms (see e.g.[11])
to be generalized to the notion of encompassment of unifers and introduced the notion of an
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essential unifier. We say σ is encompassed by τ , σ ⊑E τ , iff each domain variable x of τ is also
a domain variable of σ and xτ has an instance of xσ as a subterm (modulo E). E-unifiers, which
do not encompass any other unifier are then called essential unifiers and the complete set of
essential unifiers is denoted as eUΣE(Γ) for a unification problem Γ. If µUΣE(Γ) exists, we have
eUΣE(Γ) ⊆ µUΣE(Γ), that is, the encompassment order generalizes the subsumption order and
there are even cases where an E-unification problem with an infinite set of mgus reduces to a finite
set of essential unifiers [10, 18]. Moreover it can happen, that an equational theory E, for which
µUΣE(Γ) does not exist may have a minimal and complete set of essential unifiers eUΣE(Γ).

For example the unification type of Γ1 from above changes drastically using the encompassment
order: the essential unifier σ1 = {x↦ a} encompasses all the other most general unifiers σn = {x↦
an}, n > 1, because σ1 ⊑A σn, n > 1. More precisely encompassment allows the decomposition
σn = λnσ1, where λn = {x↦ anx}, n ≧ 0. So the minimal and complete set of essential unifiers for
Γ1 is eUΣE(Γ1) = {σ1}, that is, it is unitary instead of infinitary as it is under the subsumption
ordering.

Nevertheless there are still essentially infinitary string unification problems, as the following
example shows. Let Γ2 = {xby =? ayayb} be the string unification problem, which has eUΣA(Γ2) =

{{x ↦ abna, y ↦ bn} ∶ n > 0} as its minimal and complete set of essential unifiers. The unifiers
are incomparable with respect to encompassment, because abna can not be a substring of abma
for m ≠ n. Forthermore, as the encompassment order on unifying substitutions is not a wqo,
unfortunately again, there are theories with a solvable unification problem Γ, for which eUΣE(Γ)

does not exist (see [2][8][18]).
This paper deals with a third approach, the extension of the well known homeomorphic embed-

ding of terms to a homeomorphic embedding modulo E of terms (also used in [1] with a different
definition) and to a homeomorphic embedding modulo E of substitutions, called E-embedding of
terms or substitutions respectively. Informally, the homeomorphic embedding of terms is under-
stood as follows: Let s and t be terms, then s is syntactically embedded into t, denoted as s ⊴ t iff
s=t, or s ⊴ ti for t = f(t1, ..., tn) and some i or si ⊴ ti for s = f(s1, ..., sn) and all i. For example
f(x, b) ⊴ f(g(a, x), f(x, b)) and also f(x, b) ⊴ f(f(a, h(x)), f(b, a)) and f(a, x) ⊴ f(g(a, b),x),
but f(a, b) ⋬ f(g(a, b), x).

The E-embedding order for terms, denoted as ⊴E , will be lifted to an E-embedding order
for substitutions similar to the encompassment order in [18]. We define σ ⊴E τ iff each domain
variable x of τ is also a domain variable of σ and xτ homeomorphically E-embeds xσ, that is if
τ = {xi ↦ ti} and σ = {xi ↦ si}, 1 ≦ i ≦ n, then σ ⊴E τ iff si ⊴E ti. To illustrate the effect of this
E-embedding order, take Γ2 from above as an example, where E is the equational theory A for
strings. In this case aba ⊴A ab......ba and b ⊴A b.....b, hence with σ1 = {x ↦ aba, y ↦ b} we have
σ1 ⊴A σn for all n > 1. Consequently σ1 is the only unifier and the set of embedment free unifiers
for Γ2 is λUΣA(Γ2) = {σ1} and it is finite. In fact it can be shown that the theory is even unitary
instead of infinitary under the subsumption and encompassment order [8, 9].

But in order to generalize the encompassment order for terms to the embedment order for
unification problems, we need a more general notion of embedment. This is achieved by defining,
that a term s is E-instance-embedded into a term t iff an instance of s, say sλ, is E-embedded into
t, which we call λ−embedded modulo E or λE-embedding. This is denoted as s ⩿E t . Furthermore
E-unifiers, which have no E-instance embedded unifier are called embedment free E-unifiers or
free λE-unifiers and the complete set of free λE-unifiers is denoted as λUΣE(Γ) for a unification
problem Γ.

In the following we introduce the concept of a minimal and complete set of E-unifiers based on
λE-embedding and propose a definitional framework based on notions and definitions of standard
unification theory extended to the (homeomorphic) E-embedding order.

2. Notions and Notation

Notation and basic definitions in unification theory are well known and have found their way
into many and diverse academic fields and most monographs and textbooks on automated reason-
ing have sections on unification. In the full paper to be published in a journal we unify the various
presentations of the necessary concepts for unification towards a concise notation which serves our
purpose and we show how the additional concepts for ordering E-unifiers based on homeomorphic
embedding can be built upon these definitions. These sections as well as several proofs and details
are deleted in this workshop paper.
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Our main interest is to show that the set of free λE-unifiers always exists and the main technique
to show this result is based on orderings, in particular on well quasi orderings.

Definition 1. A quasi order is a relation that is reflexive and transitive.

A term t is an instance of a term s, denoted s ≤ t, if sσ = t for some substitution σ

s ≤ t ⇐⇒ ∃σ ∶ sσ = t

We also say s (syntactically) subsumes t and this relation is a quasi order (or preorder as it is
sometimes called). We call it the subsumption order on terms.
A term t (syntactically) encompasses a term s, denoted s ⊑ t, if an instance of s is a subterm of
t. With Sub(t), the set of all subterms of t, we have:

s ⊑ t ⇐⇒ ∃σ ∶ sσ ∈ Sub(t)

Encompassment conveys the notion that s appears in t with a context “above” and a substitution
instance “below”. We say t encompasses s or s is encompassed by t and ⊑ is the encompassment
order . In particular s ⊏ t is called strict encompassment , if sσ is a proper subterm of t.

A term s is homeomorphically embedded into t iff s can be obtained from t by erasing some
parts in t. We abbreviate “homeomorphical embedding” just to “embedding”. Embedment conveys
the notion that the structure of s and some corresponding symbols appear within t. A term s

is instance-embedded into t, we also say it is λ-embedded into t, iff an instance of s, i.e. sλ, is
embedded into t. This is the main notion of this paper, which we will generalize to embedment
of substitutions later on.1

Using s ⪯ t to denote that s is a subterm of t, we have the following orders on terms, extended to
equality modulo E for the congruences induced by the equations in E. :

Definition 2. (ordering terms modulo E)

(1) A term s is an E-subterm of t, denoted s ⪯E t, iff there is an s′ =E s and a term t′ =E t
such that s′ ⪯ t′.

(2) A term s E-subsumes t, s ⩽E t, iff there exists a substitution σ with sσ =E t.
(3) A term s is E-encompassed by t, s ⊑E t iff there is a substitution σ such that sσ ⪯E t.
(4) A term s is E-embedded into a term t, denoted s ⊴E t, if s =E t, or there is a term s′ =E s

and a term t′ =E t such that s′ is syntactically embedded into t′:

s ⊴E t ⇐⇒

⎧
⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

s =E t, or

t = f(t1, . . . , tn) and ∃s
′
∈ [s]E and ∃t′i ∈ [ti]E ∶ s′ ⊴ t′i, or

t = f(t1, . . .tn), s = f(s1, . . .sn),

and ∀i ∶ s′i ⊴ t
′

i, where s
′
∈ [si]E , t

′
∈ [ti]E .

(5) A term s is E-instance-embedded into t, denoted s ⩿E t, if an instance of s is E-embedded
into t , that is sλ ⊴E t for a substitution λ. We say s is λE-embedded.

Theorem 3. The E-embedment order, ⊴E , is a quasi order on terms.

Proof. Let r, s, t be terms.
reflexivity: r ⊴E r is obvious, because terms embed themselves.
transitivity: r ⊴E s ⊴E tÔ⇒ r ⊴E t.
By Definition 2.(4) r ⊴E sÔ⇒ ∃r′ ∈ [r]E and ∃s′ ∈ [s]E ∶ r′ ⊴ s′ and
s ⊴E tÔ⇒ ∃s′′ ∈ [s]E and ∃t′′ ∈ [t]E ∶ s′′ ⊴ t′′.
Now r′ ⊴ s′ =E s′′ and s′′ ⊴ t′′ Ô⇒ r′ ⊴E t′′.
Hence r =E r′ ⊴E t′′ =E tÔ⇒ r ⊴E t.

�

Definition 4. (ordering of substitutions modulo E restricted to a set of variables)
Let V be some set of variables.

1Signs and notation are still not uniform in all related fields; our notation is used more often
in the literature on automated theorem proving and unification theory, whereas term rewriting
systems usually prefer notational conventions as proposed in [5] and [6].
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(1) A substitution σ is a sub-substitution modulo E of τ , denoted as σ ⪯
V
E τ , if Dom(σ) =

Dom(τ) and these are variables in V and for all x in this domain xσ is an E-subterm
of xτ , i.e. xσ ⪯E xτ .

(2) A substitution σ E-subsumes a substitution τ restricted to V , denoted as σ ≤
V
E τ , if there

exists a substitution λ such that σλ =VE τ . The relation ≤
V
E is called the E-subsumption

order for substitutions restricted to V.
We denote E-subsumption equivalence as σ ∼VE τ , if σ ≤

V
E τ and τ ≤VE σ.

(3) A substitution σ is E-encompassed by τ restricted to V , denoted σ ⊑
V
E τ , if there exists

λ, such that (σλ) ∣V is a sub-substitution of τ modulo E restricted to V. We denote
E-encompassment equivalence as σ ≈VE τ if σ ⊑

V
E τ and τ ⊑VE σ.

(4) A substitution σ is E-embedded into a substitution τ , denoted as σ ⊴
V
E τ , iff Dom(σ) =

Dom(τ) and for all x in this domain we have xσ ⊴
V
E xτ .

(5) A substitution σ is λE-embedded into a substitution τ , denoted as σ ⩿
V
E τ , iff Dom(σ) =

Dom(τ) and there is a substitution λ, such that ∀x ∈ V ∶ x(σλ) ∣V is E-embedded into
xτ .

The encompassment and embedment order on terms are well known as quasi orderings, but
the modulo E extension to substitutions requires verification.

Theorem 5. The E-encompassment order is a quasi order on substitutions.

For a proof see [18] and the early proof in [10].

Theorem 6. The E-embedment order is a quasi order on substitutions.

Proof. This is shown by lifting Theorem 3 for terms componentwise to substitutions.
�

Theorem 7. The λE-embedment order ⩿E is a quasi order on terms.

Proof. Let r, s, t be terms:
reflexivity: is obvious because every term λ-embeds itself.
transitivity: we show r ⩿E s ⩿E t implies r ⩿E t.
By Definition 2.(5) we have:
r ⩿E s implies ∃σ ∶ rσ ⊴E s and
s ⩿E t implies ∃τ ∶ sτ ⊴E t. Furthermore:
rσ ⊴E sÔ⇒ ∃r̃ ∈ [rσ]E and ∃s′ ∈ [s]E ∶ r̃ ⊴ s′ and
sτ ⊴E tÔ⇒ ∃s̃ ∈ [sτ]E and ∃t′ ∈ [t]E ∶ s̃ ⊴ t′.
Since it can be shown that ⊴ is substitution-composable from the right we have
r̃ ⊴ s′ Ô⇒ r̃τ ⊴ s′τ and s′τ =E s̃ ⊴ t′ Ô⇒ s′τ ⊴E t′.
Now: r̃τ ⊴ s′τ ⊴E t′ and transitivity of ⊴E implies r̃τ ⊴E t′

and r(στ) ⊴E s′τ ⊴E t′ =E t and transitivity of ⊴E
implies r(στ) ⊴E t. But this means r ⩿E t.

�

Theorem 8. The λE-embedment order is a quasi order on substitutions.

Proof. similar to Theorem 7 by lifting it componentwise to substitutions.
�

Our interest in this paragraph is on quasi orderings and the next definition lists some well
known notions, see [12, 16].

Definition 9. Let ≤ be a quasi ordering on a set S, then:

(1) An infinite sequence of elements of S, a1, a2, a3, ... is called a ≤−chain if ai ≤ ai+1 for all
i ≥ 1. The sequence a1, a2, a3, ... is said to contain a chain if it has a subsequence that
is a chain.

(2) The infinite sequence a1, a2, a3, ... is called an antichain if neither ai ≤ aj nor aj ≤ ai,
for all 1 ≤ i, j and i≠j.

(3) The quasi ordering ≤ is well-founded (wfo) if it contains no infinite strictly descending
<-chain; that is, there is no infinite sequence a1, a2, a3, ... of elements of S such that
ai > ai+1 for every i in N.
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(4) A well-quasi-ordering on S (wqo), ≤, is a quasi-ordering which is well-founded and it has
no infinite antichains in S with respect to ≤.

The following Tree Theorem due to Kruskal states that the set of finite trees over a well-
quasi-ordered set of labels is itself well-quasi-ordered under homeomorphic embedding. He uses a
notation where T(Y) denotes the collection of all (structured) trees over an alphabet Y.

Theorem 10. The Tree Theorem.
If Y is well quasi ordered then T(Y) is well quasi ordered too.

Proof. See Joseph B. Kruskal [12] and the more elegant proof by Crispin Nash-William [16]
�

The following theorem is a consequence of the tree theorem for the set of first order terms
T (F,X), built over a finite set of function symbols F and a finite set of variable symbols X.
Hereby we refer to the work of Jean H. Gallier and M. Leuschel [7, 15]. They discuss the proof
that “Given a finite alphabet Σ =F ∪X which is well quasi ordered (in our case by equality) then
⊴ is also a well quasi order on T (F, X)”. The next theorem is a genaralisation to “modulo E”.

Theorem 11. Let E be an equational theory. The E-embedding relation , ⊴E , is a well quasi
order on the set of terms built over a finite signature.

Proof. (Sketch)
(i) ⊴E is well founded .
If not, then there exists an infinite strictly descending ⊳E −chain: t1 ⊳E t2 ⊳E t3 ⊳E ....
which has the more detailed form: t′1 ⊳ t

′

2 =E t′′2 ⊳ t′3 =E t′′3 ⊳ t′4.... Now take the following
infinite sub sequence of terms t′1, t

′

2, t
′

3, .... Because of Theorem 10 there are
two indices i, j, i<j such that ti is embedded into tj , hence the chain above can not be infinite.
Thus ⊴E is well founded.
(ii) There are no antichains with respect to ⊴E .
Otherwise there is an ⊴E-antichain s1, s2, s3, ... with respect to ⊴E and it can be shown
that in this case there exists a corresponding infinite sequence of terms s′1, s

′

2,s
′

3, .... , where
s′i ∈ [si]E , i ≥ 1, which are incomparable and this again contradicts Kruskal’s theorem.

�

E-unification of first order terms is based on an infinite set of variable symbols and it is well
known, that the embedding order of terms with an infinite set of variable symbols is not a well
quasi order, since we have the antichain x1, x2, x3, .. Of course the same is the case then for
embedment modulo E.
But fortunately well foundedness of the embedding ordering is still valid, since the number of
symbols decreases in a strictly descending ⊳ −chain .

Theorem 12. Let E be an equational theory. E-embedding, ⊴E , is a well founded quasi order
on the set of terms.

Proof. The proof is based on the fact that E-equivalent terms do not have new variable symbols.
�

The next Theorem is similar and shows that λE-embedding is well foundned too.

Theorem 13. Let E be an equational theory. λE−embedding, ⩿E , is a well founded quasi
order on the set of terms.

3. Ordering E-unifiers under homeomorphic embedding

We shall now look at unification under λE-embedding, which is our main interest in this paper,
and we start with a recapitulation of the standard notions of E-unification.
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3.1. E-Unification. Let E be an equational theory and let Σ be the signature of the term algebra.
An E-unification problem is a finite set of equations

Γ = {s1 =
?
E t1, . . . , sn =

?
E tn}

An E-unifier for Γ is a substitution σ such that

s1σ =E t1σ, . . . , snσ =E tnσ

The set of all E-unifiers of Γ is denoted UΣE(Γ). A complete set of E-unifiers cUΣE(Γ) for Γ is
a set of E-unifiers, such that for every E-unifier τ there exists σ ∈ cUΣE(Γ) with σ ≤E τ . The set
µUΣE(Γ) is called a minimal complete set of E-unifiers for Γ, if it is complete and for all distinct
elements σ and σ′ in µUΣE(Γ) if σ ≤E σ′ then σ =E σ′.

3.2. E-Unifiers ordered by Homeomorphic Embedding. This paper is based on the obser-
vation that certain solutions embed the instances of other solutions. This then leads to the notion
of (embedment-) free E-unifiers, where free E-unifiers are the elements of our new minimal and
complete set of E-unifiers, which we denote as λUΣE(Γ).

Definition 14. Let E be an equational theory, Γ a solvable E-unification problem and let
UΣE(Γ ) be the set of E-unifiers for Γ . If an E-unifier σ in UΣE(Γ ) does not have any instance
E-embedded unifier (any λE-embedded unifier), then σ is called a free λE-unifier . The minimal
and complete set of free λE-unifiers will be denoted as λUΣE(Γ ).

Theorem 15. For first order terms built over a finite signature Σ and a solvable unification
problem Γ and an equational theory E: The set of free λ-unifiers, λUΣE(Γ ), exists and it is
minimal, complete and finite.

Proof. The proof is based on Theorem 11
�

It is well known that the set of terms can not be well quasi ordered since we usually have an
infinite set of variables and they form an antichain. That is, we can not use Theorem 11. But
it may be possible for an automated deduction system to set a limit to the number of variables
involved in the search for a proof and the above theorem would be still useful.

Unfortunately we do not know if the relation ⩿E is wqo2. But we know it is wellfounded and
hence we have:

Theorem 16. For a signature Σ, a solvable unification problem Γ and an equational
theory E: The set of free λE-unifiers, λUΣE(Γ ), exists and is minimal and complete. But it is
not necessarily finite .

Finally there is a standard trick used in logic programming [14] [15] as well as in termination
research for term rewriting systems [5], namely to disregard the name of a variable and simply
view all variables as the same entity. This observation led to the notion of pure embedding, which
we abbreviate to π-embedding in the following and it will be denoted as s ⊴π t. As before we
generalize embedding to instance embedding or π-embedding by saying a term s is π-embedded
into a term t, if it is λ-embedded and in addition the names of the variable symbols are ignored.
It is defined as follows:

Definition 17. (Pure E-embedding)

(1) A term s is πE-embedded into a term t, denoted s ⊴πE t, if s and t are variables, or s =E t
or there is a term s′i =E si and a term t′i =E ti such that s′i is πE- embedded into t′i :

s ⊴πE t ⇐⇒

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

s =E t, or s and t are variables or

t = f(t1, . . . , tn) and ∃s
′
∈ [s]E and ∃t′i ∈ [ti]E ∶ s′ ⊴πE t′i or

t = f(t1, . . .tn) and s = f(s1, . . .sn)
and ∀i ∶ s′i ⊴

π
E t′i, where s

′
∈ [si]E , t

′
∈ [ti]E .

(2) A term s is instance πE-embedded into a term t, denoted s ⩿πE t, if an instance of s is
πE-embedded into t , that is sλ ⊴πE t for a substitution λ.

2We have not been able to prove it (yet) nor to disprove it.
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(3) A substitution σ is instance πE−embedded into a substitution τ for a set of variables
V, denoted as σ ⩿

πV
E τ , iff Dom(σ) = Dom(τ) and there is a substitution λ, such that

∀x ∈ V ∶ x(σλ) ∣V is π-embedded into xτ .
Since instance π-embedding is a special case of λ-embedding we have (using theorem 11) that
π-embedding, s ⊴π t , is a well quasi order on the set of terms and it is now easy to show that
π-embedding is a well quasi order on the set of substitutions as well.

Theorem 18. πE-embedding is a well quasi order on the set of substitutions.

The final step is now to extend πE-embedding of substitutions to instance πE-embedding.

Theorem 19. Instance πE-embedding is a well quasi order on the set of substitutions.

E-unifiers which do not contain any instance πE-embedded unifiers are called free πE unifiers
and this set is denoted as πUΣE(Γ ).

Our main result now follows from these theorems, but note the completeness proof is more
complex than ususal, because we need a generator to compute all unifiers from πUΣE(Γ ).

Theorem 20. For first order terms built over a signature Σ, a solvable unification problem
Γ and an equational theory E: The set of free πE-unifiers, πUΣE(Γ ), exists and is minimal,
complete and finite.

4. Conclusion

These results do not imply that we have a general way of efficiently generating λUΣE(Γ ) nor
πUΣE(Γ ), which is unlikely to be found in general. We need to look for an appropriate algorithm
for each specific theory E, just as in standard unification theory and this has not been done yet.
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