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Abstract

We study decision procedures for two knowledge problems critical to the verification
of security protocols, namely the intruder deduction and the static equivalence problems.
These problems can be related to particular forms of context matching and context uni-
fication. Both problems are defined with respect to an equational theory and are known
to be decidable when the equational theory is given by a subterm convergent term rewrite
system. In this note we extend this to consider a subterm convergent equational term
rewrite system defined modulo an equational theory, like Commutativity or Associativity-
Commutativity. We show that for certain classes of such equational theories, namely the
shallow classes, the two knowledge problems remain decidable.

1 Introduction

Verifying the security of protocols requires the development of specific decision procedures to
reason about the knowledge of an intruder. Two important measures of this knowledge are
(intruder) deduction [17, 18] and static equivalence [2]. The deduction problem is the question
of whether an intruder, given his deductive capability and a sequence of messages representing
their knowledge, can obtain some secret. This is a critical measure of the capability of the
protocol to maintain secrets. Deducibility is needed for many questions about the security of
protocols. However, there are some questions for which we need to be able to decide more
than deducibility. For some protocols, in addition to deducibility, we would like to determine
whether an intruder can distinguish between different runs of the protocol. For example, in
protocols which attempt to transmit encrypted votes we would like to know if, to the attacker,
two different votes are indistinguishable. Static equivalence measures this property.
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Much work has gone into investigating and developing decision procedures for the deduction
and the static equivalence problems [2,6,8,10,12]. In this work the security protocols are often
represented by equational theories with the theories of interest usually defined as unions of
several simpler sub-theories. In this paper, we focus on decision procedures for the deduction
problem and the static equivalence problem in equational theories E = E1∪E2 where E1 and E2

are possibly non-disjoint. Until now, the following scenarios have been successfully investigated:
E1 is given by a subterm convergent term rewrite system, and E2 is empty [2]; E1 and E2 are
disjoint [9]; E1 and E2 share only constructors [12]. In this paper, we consider the case where
E1 is given by a term rewrite system which is both subterm and convergent modulo E2. We
then show that the methods of [2] can be extended to subterm convergent rewrite systems for
a significant class of E2 theories.

2 Preliminaries

We assume the reader is familiar with equational unification and term rewrite systems. We
review some critical definitions below but a more complete overview can be found in [5].

A finite convergent term rewrite system (TRS) R is said to be subterm convergent if for any
l → r ∈ R, r is either a strict subterm of l or a ground term. An equational theory is subterm
convergent if it is presented by a subterm convergent TRS.

The size of a term t is denoted by |t| and defined in the usual way as follows: |f(t1, . . . , tn)| =
1+Σni=1|ti| if f is a n-ary function symbol with n ≥ 1, |c| = 1 if c is a constant, and |x| = 0 if x is
a variable. The size of a TRS R is denoted by |R| and defined as follows: |R| = max{l→r∈R} |l|.
Since a variable cannot occur as the left-hand side of any rule in R, we have that |R| ≥ 1 for
any non-empty TRS R. When R is empty, we define |R| = 1.

Equational Theories. Let us introduce the different classes of theories considered in the pa-
per. An equational theory E is finite if for each term t, there are only finitely many terms s such
that t =E s. Matching in finite theories is finitary. A sufficient condition to get a finite theory
is to assume that E is permutative. An equational theory E is permutative if for each axiom
l = r in E, l and r contain the same symbols with the same number of occurrences. Well-known
theories such as Associativity (A), Commutativity (C), and Associativity-Commutativity (AC)
are permutative theories. Unification in permutative theories is undecidable in general [19].

A theory E is syntactic if it has a finite resolvent presentation S, that is a finite set of
equational axioms S such that each equality t =E u has an equational proof t ↔∗S u with at
most one step ↔S applied at the root position. A theory E is shallow if variables can only
occur at a depth at most 1 in axioms of E. Shallow theories are syntactic theories for which
unification is finitary [7]. The theory AC is permutative and syntactic, while C is permutative
and shallow.

Notions of Knowledge. The applied pi calculus and frames are used to model attacker
knowledge [3]. In this model, the set of messages or terms which the attacker knows, and which
could have been obtained from observing one or more protocol sessions, are the set of terms in
Ran(σ) of the frame φ = νñ.σ, where σ is a substitution ranging over ground terms. We also
need to model cryptographic concepts such as nonces, keys, and publicly known values. We do
this by using names, which are essentially free constants. Here also, we need to track the names
which the attacker knows, such as public values, and the names which the attacker does not
know a priori, such as freshly generated nonces. ñ consists of a finite set of restricted names,
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these names represent freshly generated names which remain secret from the attacker. The set
of names occurring in a term t is denoted by fn(t).

Definition 1 (Deduction Problem [2]). Let φ = νñ.σ be a frame, and t a ground term. We
say that t is deduced from φ modulo E, denoted by φ `E t, if there exists a term s such that
sσ =E t and fn(s) ∩ ñ = ∅. The term s is called a recipe of t in φ modulo E.

Another form of knowledge is the ability to tell if two frames are statically equivalent modulo
E, sometimes also called indistiguishability.

Definition 2 (Static Equivalence [2]). Two terms s and t are equal in a frame φ = νñ.σ
modulo an equational theory E, denoted (s =E t)φ, iff sσ =E tσ, and ñ ∩ (fn(s) ∪ fn(t)) = ∅.
Two frames φ = νñ.σ and ψ = νñ.τ are statically equivalent modulo E, denoted as φ ≈E ψ, if
Dom(σ) = Dom(τ) and for all terms s and t, we have (s =E t)φ iff (s =E t)ψ.

Both deduction and static equivalence are known to be decidable in subterm convergent
theories [2]. In the following, we lift this result to term rewrite systems that are subterm
convergent modulo some equational theory.

3 Subterm Equational Convergent TRS

Consider (Σ, E) = (Σ1 ∪ Σ2, R1 ∪ E2) where (Σ1 ∪ Σ2, R1) is a TRS modulo a finite theory
(Σ2, E2) (for instance Σ2 = {+} and E2 = AC(+)). The rewrite relation of R1 modulo E2 is
defined as usual: s →R1,E2

t if there exist some position p in s, some rule l → r ∈ R1 and
a substitution µ such that s|p =E2 lµ and t = s[rµ]p. We assume that →R1,E2 is convergent
modulo E2 [15]. This implies the uniqueness of normal forms modulo E2 and the decidability of
the word problem modulo E: for any terms s and t, we have s =E t iff (s ↓R1,E2

) =E2
(t ↓R1,E2

).
In the following, we say that a term or a substitution is normalized if it is normalized w.r.t
→R1,E2

. A frame φ = νñ.σ is said to be normalized if σ is normalized.

Definition 3. Let Σ1 and Σ2 be two disjoint signatures, and (Σ2, E2) a finite theory. A subterm
E2-convergent TRS (Σ1 ∪Σ2, R1) is a TRS such that →R1,E2

is convergent modulo E2 and for
any l→ r in R1, l is not Σ2-rooted and r is a strict subterm of l or a ground term.

Example 1. The following TRSs are subterm AC(+)-convergent:

{occ(x+ k, k)→ ok} {rm(x+ k, k)→ x}
{dec(enc(x, k + y), k)→ x} {dec(enc(x, k), k + y)→ x}

In the case of subterm convergent TRSs (modulo the empty theory), the decision procedure
for the deduction problem computes deducible terms among the set of subterms occurring in
the frame. When considering a non-empty theory E2, we have to introduce an extended notion
of subterm to capture the fact that matching modulo E2 is now performed when applying a
rewrite step modulo E2.

In the rest of this section we assume that E2 is both permutative and syntactic. While this
may seem somewhat restrictive it allows for the consideration of theories such as AC and C
which are found in a large number of security protocols. Both AC and C are indeed syntactic
theories [16].

Given a term t, St(t) is the finite set of terms in t inductively defined as follows:

St(t) = {t′ | t′ =E2
t} ∪

{
t′ t′ ∈ St(xiσ), f(x1, . . . , xm)σ =E2

t, f ∈ Σ1 ∪ Σ2

x1, . . . , xm are pairwise disjoint variables

}
3
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This definition is well-founded since E2 is permutative. There exists a mutation-based E2-
matching algorithm [11] since E2 is syntactic, and so St(t) is computable.

For a set of terms T , St(T ) =
⋃
t∈T St(t), and for a substitution σ, St(σ) = St(Ran(σ)).

Proposition 1. For any terms t, t′, t =E2 t
′ implies St(t) = St(t′), and for any position p in

t, St(t|p) ⊆ St(t).

The following result states that we cannot generate a new term outside St(t) by rewriting
terms in St(t) (except the ground right-hand sides of R1).

Lemma 1. If lσ =E2 t, then for any position p of l, (l|p)σ ∈ St(t).

Proof. By structural induction on l.
If l is a variable, this is trivial since the only possible position is ε and l|ε = l.
Assume l is a term f(l1, . . . , lm) and σ is a substitution such that f(l1, . . . , lm)σ =E2 t.
If there is an equational step at the root position, then there exist some terms g1, . . . , gm

such that l1σ =E2
g1, . . . , lmσ =E2

gm and f(g1, . . . , gm) =E2
t. By definition of St(t) and

Proposition 1, the terms g1, . . . , gm are in St(t), and so l1σ, . . . , lmσ ∈ St(t).
If there is no equational step at the root position, then t is of the form f(t1, . . . , tm) and

l1σ =E2 t1, . . . , lmσ =E2 tm. By definition of St(t) and Proposition 1, the terms t1, . . . , tm are
in St(t), and so l1σ, . . . , lmσ ∈ St(t).

4 Decision Procedures

From now on, we assume that E2 is a shallow permutative theory, e.g., Commutativity.

Deduction. The decision procedure for the deduction problem requires the computation of
some finite deducible terms defining the so-called completion of a given frame.

Definition 4. Let φ = νñ.σ be a normalized frame. The set of local deducible terms in φ is
the smallest set D such that:

• Ran(σ) ⊆ D,

• if t1, . . . , tn ∈ D and f(t1, . . . , tn) ∈ St(σ) then f(t1, . . . , tn) ∈ D,

• if t ∈ D, t′ ∈ St(σ), t =E2
t′, then t′ ∈ D,

• if there is a root reduction s[r̄] →ε
R1,E2

t where |s| ≤ |R1|, fn(s) ∩ ñ = ∅, r̄ ∈ D and
t ∈ St(σ), then t ∈ D.

Let σ∗ = σ{χu 7→ u | u ∈ D\Ran(σ)} where χu is a fresh variable. The frame φ∗ = νñ.σ∗
is called the completion of φ with respect to R1. The recipe substitution of φ is ζφ = {χu 7→
ζu | u ∈ D\Ran(σ)} where ζu denotes an arbitrary recipe of u w.r.t. φ.

The decision procedure is based on the following reduction lemma, using the facts that
the completion is computable and the deduction problem is decidable in the empty equational
theory.

Lemma 2. Let E = R1 ∪ E2 where R1 is any subterm E2-convergent TRS and E2 is any
shallow permutative theory. For any normalized frame φ and any normalized term t, we have
that φ `E t if and only if φ∗ ` t.
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Static Equivalence. The decision procedure for the static equivalence is based on the com-
putation of small equalities bounded by the size of R1.

Definition 5. Let φ = νñ.σ be a normalized frame. The set Eq(φ) is the set of equalities
tζφ = t′ζφ such that (tζφ)σ =E (t′ζφ)σ where t, t′ are Σ-terms, (fn(t) ∪ fn(t′)) ∩ ñ = ∅,
|t|, |t′| ≤ |R1|. Given any frame ψ = νñ.τ , the fact that tτ =E t′τ for any t = t′ ∈ Eq(φ) is
denoted by ψ |= Eq(φ).

To get a decision procedure, it remains to show that checking small equalities defined by
Eq are sufficient to prove the static equivalence of the two input frames. Note that the check
of each of these equalities is effective since the E-equality is decidable.

Lemma 3. Let E = R1 ∪ E2 where R1 is any subterm E2-convergent TRS and E2 is any
shallow permutative theory. For any normalized frames φ and ψ, we have that φ ≈E ψ iff
ψ |= Eq(φ) and φ |= Eq(ψ).

Main result. According to the above reduction lemmas, we get the following result.

Theorem 1. Let E = R1 ∪ E2 where R1 is any subterm E2-convergent TRS and E2 is any
shallow permutative theory. Then, deduction and static equivalence are decidable in E.

To prove both reduction lemmas (Lemma 2 and Lemma 3) and so Theorem 1, we reuse the
same approach as in [1, 2] by applying two technical lemmas.

The first lemma in the appendix of [1] can be generalized as follows.

Lemma 4. Let E = R1∪E2 where R1 is any subterm E2-convergent TRS and E2 is any shallow
permutative theory. For any terms s and t satisfying the name restriction, if sφ∗ =E2 tφ∗ and
ψ |= Eq(φ) then (sζφ)ψ =E (tζφ)ψ.

Then, the second lemma in the appendix of [1] is generalized in the following way.

Lemma 5. Let E = R1∪E2 where R1 is any subterm E2-convergent TRS and E2 is any shallow
permutative theory. For any term s satisfying the name restriction and for any term t such
that sφ∗ →R1,E2

t, there exists a term u satisfying the name restriction such that t =E2
uφ∗

and for any frame ψ such that ψ |= Eq(φ), (sζφ)ψ =E (uζφ)ψ.

The proofs of Lemma 4 and Lemma 5 can be found in [13]. The assumption that E2 is
shallow permutative allows us to get simple proofs.

We are working on generalizing Theorem 1 to syntactic permutative theories E2 like for
instance Associativity-Commutativity. In this general case, the related reduction lemmas for the
deduction problem and the static equivalence should be more complicated to express. Indeed, we
may have to integrate a deduction procedure modulo E2 in the construction of the completion,
and a static equivalence procedure modulo E2 to get a reduction lemma for static equivalence
in R1 ∪ E2.

5 Related Work and Conclusion

The intruder deduction problem corresponds to the general cap problem studied in [4]. Among
other results, it is shown in [4] that the general cap problem is in NP for dwindling convergent
rewrite systems, which are indeed subterm convergent theories. The NP procedure is given
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by a saturation procedure used to complete the knowledge given by the input frame. In the
conclusion of [4], the extension to AC-rewrite systems is mentioned as an interesting future
work.

Currently we assume in Definition 3 that the Σ2-symbols are constructors, i.e., not appearing
at the root of the left-hand sides of the rewrite system. However, this appears to be more
restrictive than needed. Indeed, it should be possible to remove this restriction and consider
a more relaxed definition where the Σ2-symbols are not necessarily constructors. This would
allow us to solve the deduction and static equivalence problem in a larger class of theories.
For example, we could then consider the theory of Abelian Pre-Group (APG) defined by the
following C-convergent TRS:

RAPG = {x ∗ e→ x, x ∗ i(x)→ e, i(i(x))→ x, i(e)→ e}

where C = {x ∗ y = y ∗ x}. In [20], APG = RAPG ∪ C was considered as an approximation to
deal with unification in homomorphic encryption over Abelian groups. Theorem 1 would then
allow us to also solve the problems of deduction and static-equivalence in APG.

The next step of our work is to go beyond the class of shallow permutative theories, in
order to take into account a larger class including AC. Due to the potential interest of AC
in protocol analysis, it is useful to be able to handle some AC-rewrite systems and to study
the AC-extension of saturation procedures that have been developed for the intruder deduction
problem, the static equivalence [6], and the static inclusion [14].

Another challenging problem is to investigate the equational extension of the combination
procedure developed in [12] for the deduction and the static equivalence in unions of theories
sharing absolutely free constructors. This would permit us to consider shared AC-constructors.

Acknowledgments: We would like to thank Véronique Cortier for helpful comments and
discussions.
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