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Abstract

We consider rewriting, critical pairs and confluence tests on rewrite rules using nominal
notation. Computing critical pairs is done using nominal unification, and rewriting using
nominal matching. The progress is that we permit atom variables in the notation and
in the unification algorithm, which generalizes previous approaches using usual nominal
unification
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1 Introduction

The goal of this paper is to demonstrate the expressive power of nominal unification with
atom variables [14] also in applications, where we consider rewriting and critical pairs ala
Knuth-Bendix [7] in a higher-order language with alpha-equivalence and nominal modeling,
where in the nominal unification algorithm also atom-variables are permitted in addition to
expression-variables and where the rewriting is done using a corresponding form of nominal
matching with atom variables. This generalizes the approach in [5, 2]. The application of
nominal unification with atom variables avoids guessing of (dis-)equality of atom, which is
necessary not only as a pre-procedure by the previous uses of nominal unification in rewriting,
but also in rewriting sequences in every single rewriting step.

Nominal techniques [10, 9] support machine-oriented reasoning on the syntactic level for
higher-order languages and support alpha-equivalence. An algorithm for nominal unification was
first described in [17], which outputs unique most general unifiers. More efficient algorithms are
given in [3, 8], also exhibiting a quadratic algorithm. The approach is also used in higher-order
logic programming [4] and in automated theorem provers like nominal Isabelle [15, 16]. Nominal
unification was generalized to permit also atom variables [14] where also in the generalization,
unique most general unifiers are computed, while the decision problem is NP-complete.

As an extended example, illustrating also the ideas and potentials of the nominal modelling
and unification in rewriting, in particular with atom variables, we consider the monad laws
[18]. An informal explanation is that monads are an implementation of sequential actions, as
extension of lambda calculus, where a1 >>= a2 means a sequential combination of actions: a1 is
executed before a2, and the return-value v of a1 is used in the next action, written in lambda
notation as (a2 v). Besides the operational behavior, there is a set of monad laws, describing the
desired behavior of monadic combination as an equational theory (see below). Hamana[6] used
second-order unification to show confluence. However, second-order unification is undecidable,
and thus the extension of this idea will in general lead to undecidable algorithmic questions.
Thus, we use (decidable) nominal unification with atom-variables to obtain the same result,
however, for a finer notion of unification and of equivalence.
We will use the following encoding: return is a function symbol of arity 0, app >>= are function
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symbols of arity 2, where we write >>= as infix, and app as juxtaposition. A,B,C denote
atom-variables, and other upper-case letters expression-variables.

The three monad laws are encoded as follows:

(Idl) ∅ ` (return X) >>= F → F X
(Idr) ∅ `M >>= return → M
(A) A#F,G ` (M >>=F ) >>=G → M >>= (λA.(F A) >>= G)

Additionally we add η-reduction and as a very weak version of β-reduction, we add Bβ. Note
that Bβ is a consequence of the monad laws as equations (w.r.t. α-equivalence), see Fig. 1.

(η) A#F ` (λA.F A) → F
(Bβ) A#F,G ` (λA.(F A) >>=G) X → (F X) >>= G

Note that the combined rewriting system is terminating, which is a prerequisite for applying
the technique of local confluence for showing confluence of rewrite system.

Our rewrite system is higher-order, but we only use nominal unification for computing the
critical pairs and nominal matching for rewriting, where we permit atom variables in every case.

There are the following critical pairs, using nominal unification with atom variables:

1. (Bβ) in (η).

2. (Idl) in (Bβ).

3. (Idl) equal to Idr.

4. (Idl) in A.

5. (Idr) in (Bβ).

6. (Idr) in A.

7. A in A

The critical pairs (2), (3), and (5) are trivial or easily joinable. The remaining ones are
treated separately (see Fig. 1). The pair arising from the overlap of the associativity rule
with itself needs a check if two freshness environment-expression pairs are equivalent (which
indeed they are), which is done comparing the set of ground instances, respecting the freshness
constraints.

The next example, also motivating the use of atom-variables, is a rule in the concur-
rent calculus CHF [12]. It permits rewriting let y = c x1 . . . xn in C[y] → let y =
c x1 . . . xn in C[c x1 . . . xn], and can be applied to C1[let z = c y1 . . . yn in C2[z]] even if
the yi are not pairwise different variables, which is in contrast to usual nominal rewriting using
atoms instead of atom variables, since a unique unifier covers all possibilities of equal/unequal
atoms.

2 Nominal Rewriting

We first introduce some notation [14].
Let F be a set of function symbols f ∈ F , s.t. each f has a fixed arity ar(f) ≥ 0. Let At be

the set of atoms ranged over by a, b, c. The ground language NLa is defined by the grammar:

e ::= a | (f e1 . . . ear(f)) | λa.e
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(1)

A#F,G
C#(λA.(F A) >>=G) X

(λC.(λA.(F A) >>=G) X) C
η

//

Bβ

��

(λA.(F A) >>=G) X

Bβ

��
λC.((F X) >>=G) C

η // ((F X) >>=G)

(4)

A#F,G
(return X >>=F ) >>=G

Idl
��

A // return X >>= (λA.F A >>=G)

Idl
��

F X >>=G (λA.F A >>=G) X
Bβ

oo

(6)

A#G
(M >>= return) >>=G

Idr

��

A // M >>= (λA.return A >>=G)

Idl
��

M >>=G oo
η

M >>=λA.G A

(7)

A#F,G
A′#G,G′

((M >>=F ) >>=G) >>=G′

A

��

A // ((M >>= (λA.F A >>=G)) >>=G′

A

��

(M >>=F ) >>= (λA′.G A′ >>=G′)

A

��

B#λA.F A >>=G
B#G′

M >>= (λB.((λA.F A >>=G) B >>=G′))

Bβ

��
M >>= (λB.(F B >>=G) >>=G′)

A

��
B′#F

B′#λA′.G A′ >>=G′

M >>= (λB′.F B′ >>= (λA′.G A′ >>=G′))

ooα−inst // C#G,G′

M >>= (λB.F B >>= (λC.G C >>=G′))

Figure 1: Joining the nontrivial critical pairs of Monad Theory

where λ is a binder for atoms. The basic constraint a#e is valid if a is not free in e and a set of
constraints ∇ is valid if all constraints are valid.

We will use the following definition of α-equivalence on NLa:

Definition 2.1. Syntactic α-equivalence ∼ in NLa is inductively defined:

a ∼ a
∀i : ei ∼ e′i

(f e1 . . . ear(f)) ∼ (f e′1 . . . e
′
ar(f))

e ∼ e′

λa.e ∼ λa.e′
a#e′ ∧ e ∼ (a b)·e′

λa.e ∼ λb.e′
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Note that ∼ is identical to the equivalence relation generated by α-equivalence by renaming
binders, which can be proved in a simple way by arguing on the (binding-)structure of expressions
(using deBruijn-indices) and hence ∼ is an equivalence relation on NLa. It is also a congruence
on NLa, i.e., for a context C, we have e1 ∼ e2 implies C[e1] ∼ C[e2].

Let S be a set of expression-variables ranged over by S, T and let A be the set of atom-
variables ranged over by A,B. The grammar of the nominal language NLAS with atom-variables
is:

e ::= A | S | π·A | π·S | (f e1 . . . ear(f)) | λπ·A.e
π ::= ∅ | ((π·A) (π′·A′)) · π′′

where π is a permutation and ∅ denotes the identity. Note that we permit nested permutations.
The expression ((π·A) (π′·A′)) is a single nested swapping. We assume that permutation appli-
cation is done as simplification if possible. The inverse π−1 of a permutation π = sw1· . . . ·swn

with swappings sw i is the expression swn· . . . ·sw1.
AtVar(e) are the atom-variables contained in e, ExVar(e) the expression-variables contained in
e and Var(e) = AtVar(e) ∪ ExVar(e).

The ground language of NLAS is NLa, i.e. a ground substitution replaces atom variables by
atoms and expression variables by expression in NLa.
A freshness constraint ∇ is a set (a Boolean conjunction) of constraints of the form A#e. Note
that constraints of the form π·A#e are equivalent to A#π−1·e, hence we omit them from the
syntax. ∇ is valid under a ground substitution γ, if ∇γ is valid; this is written as: γ |= ∇.

Definition 2.2. A rewrite rule is of the form (∇, l→ r), where ∇ is a freshness constraint and
l, r are expressions of NLAS and l is not an atom- nor an expression-variable, and ExVar(r) ⊆
ExVar(l). The rewrite rule is also written as ∇ ` l→ r.

We will illustrate the ideas for rewriting by two examples.

Example 2.3. Let the rewrite rule (for garbage collection) be ({A#S′}, let A = S in S′ → S′).
Then a rewrite step on the ground expression (let x = a in λb.b) without any atom- nor
expression-variables can be done as follows: We have to compute a nominal matcher of
(let A = S in S′) � (let x = a in λb.b), which results in a substitution σ = {A 7→ x;S 7→
a;S′ 7→ λb.b} and the resulting freshness constraint (A#S′)σ is valid, since x#λb.b is valid.
The resulting expression of the rewriting step is λb.b.

This form of application appears to be too restricted, since we also want to rewrite expressions
containing atom- and expression-variables, perhaps restricted by freshness constraints. In doing
so we gain the ability to rewrite a multitude of related ground expressions (all instances of the
expression-constraint pair) and are able to join critical pairs. We generalize the example and
permit atom- and expression-variables in the target expression.

Example 2.4. We use the same rewrite rule as above: ({A#S′}, let A = S in S′ → S′).
Then let the abstract expression be (let B = S3 in S4) with the additional freshness constraint
B#S4, which represents a set of ground expressions. Rewriting can informally be done as follows:
we have to compute a matcher of (let A = S in S′) � (let B = S3 in S4). This is done by
treating B,S3 and S4 like constants. The freshness constraint B#S4 is interpreted as a part of
the description of the input.

The matching substitution is σ = {A 7→ B;S 7→ S3;S′ 7→ S4}. The freshness constraint
{A#S′} of the rule is instantiated to {B#S4}, which is identical to the input constraint. Thus
the result of rewriting is (S4, {B#S4}).
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(M1)
(Γ ·∪{e � e},∇, θ)

(Γ,∇, θ)
(M2)

(Γ ·∪{π · S � e},∇, θ)
(Γ ·∪{S � π−1 · e},∇, θ)

(M3)
(Γ ·∪{S � e},∇, θ)

(Γ[e/S],∇[e/S], θ ∪ {S 7→ e})
(M4)

(Γ ·∪{π1·A � π2·B},∇, θ)
(Γ,∇∪ {A =# π−11 ·π2·B}, θ)

(M5)
(Γ ·∪{(f e1 . . . ear(f)) � (f e′1 . . . e

′
ar(f))},∇, θ)

(Γ ·∪{e1 � e′1, . . . , ear(f) � e′ar(f)},∇, θ)

(M6)
(Γ ·∪{λπ1·A1.e1 � λπ2·A2.e2},∇, θ)

(Γ ·∪{e1 � ((π1·A1) (π2·A2))·e2},∇∪ {(A1#π−11 ·(λπ2·A2.e2))}, θ)

Figure 2: Rules of NomMatchAS

2.1 Nominal Match

The goal of matching (in a first approximation) is to find out for given expressions e, e′ whether
there is a substitution θ such that eθ represents e′. Below we will use (∆, e′) as targets, i.e.,
expressions e′ that are restricted by a freshness constraint ∆. The semantics of a pair (∆, s) is
a set of ground expressions: {sσ | sσ is ground,∆σ is valid}.

The basic components of a freshness constraint ∇ are single constraints A#e. Certain basic
constraints can be written in different notation or more explicitly: (i) A1 =# π·A2 means
equality and abbreviates A1#λ(π·A2).A1; (ii) A1 6=# π·A2 means disequality and is another way
to write A1#π·A2; and (iii) A1#λπ·A2.e could be written as a disjunction (A1 =# π·A2∨A1#e)
(but we will not do this explicitely).

The rules for computing a match e � e′ (ignoring the ∆-constraints) in NLAS are in Fig. 2.
The rules operate on a triple (Γ,∇, θ) of a set of match-equations Γ, freshness constraints ∇
and a substitution θ.

Definition 2.5. A matcher for a matching problem (∆, e) � (∆′, e′) is a tuple (∇, θ) such that:

• ∇ � eθ ∼ e′, i.e. ∀γ : ∇γ is valid and eγ, e′γ ground =⇒ eσγ ∼ e′γ

• For every ground substitution γ with domain AtVar(∆′), such that γ |= ∆′, there is an
extension γ′ of γ, such that γ′ |= ∇∪∆σ. This means the following formula must hold:
∀B.∃A.(∆′ =⇒ ∇∪∆σ), where B = Var(∆′, e′) and A = Var(∇∪∆σ) \ B

Let FA(.) denote the free atom variables in a constraint or an expression.

Definition 2.6. Let the input of NomMatchAS be (∆, e) and (∆′, e′), where FA(∆′) ⊆ FA(e′)
must hold,
The matching algorithm NomMatchAS starts with Γ = ({e � e′},∆, ∅). Then it performs the
rules in Fig. 2 until the triple is (∅,∇, θ), i.e. Γ is empty.
If the process gets stuck, then there is no match.
If Γ is empty, then the second matching condition needs to be tested, i.e. the formula
∀B.∃A.(∆′ =⇒ ∇), where B = Var(∆′, e′) and A = Var(∇) \ B, must hold.

The condition ∀B.∃A.(∆′ =⇒ ∇) can be made algorithmic by only looking for equivalence
relations on B (that may be induced by the substitutions γ). I.e. for every equivalence relation ∼

5



Rewriting with Generalized Nominal Unification Y. Kutz and M. Schmidt-Schauß

on B, let EQ(∼) be the freshness constraint that exactly describes the equations and disequations
(of atom variables) for ∼: Then (∆′ ∪EQ(∼)) =⇒ (∇∪EQ(∼)) must be valid, which can be
checked in polynomial time.

Proposition 2.7. The complexity of the final test of the matching algorithm is in ΠP
2 .

Proof. The quantifiers have the effect of adding an equivalence relation on the atom-variables.
If the constraint ∆ is instantiated with atom variables by a ground substitution σ, then very
single freshness constraint A#e can be decided in polynomial time in the size of the constraint
by simply checking Aσ#eσ.

We are working on determining lower complexity bounds for a single rewriting step. The
same techniques as in [14] permit to show:

Theorem 2.8. NomMatchAS is sound and complete and computes at most one match.

2.2 Rewriting and Overlap

We define nominal rewriting of expression with atom- and expression-variables on targets
(∆, C[s]) where s is the sub-expression that is to be modified and ∆ is a freshness constraint.

Definition 2.9. Let (∇, l→ r) be a rewrite rule and let (∆, C[s]) be the object to be rewritten,
where we assume that Var(∇, l→ r) ∩Var(∆, C[s]) = ∅. (The condition can be achieved by a
renaming of ∇, l→ r.) A rewrite step is defined as follows:

Let (∇′, σ) be a nominal matcher of (∇, l) � (∆, s) computed with NomMatchAS and let
∇′′ = ∇′ ∧∇σ.

Then the result of rewriting is (∆ ∪∇′′, C[rσ]).

Now we define overlap, join and critical pairs and the Knuth Bendix-criterion in our setting.

Definition 2.10. An overlap of two (variable-disjoint) rewrite rules (∇1, l1 → r1) and (∇2, l2 →
r2) is computed by the following algorithm. Select a non-variable position p in l1, represented
by a context C, such that C[l′1] = l1 and the hole of C is at expression-position p. Apply the
unification algorithm in [14] to the equation l′1

.
= l2 and constraint ∇1 ∧ ∇2. If there is an

overlap, then the (unique) result of the unification algorithm is a constraint and a substitution
(∇′, σ), where we assume that Dom(σ) ∩ Var(∇′) = ∅. The resulting overlap expression is
(l1σ,∇′).

The critical pair consists of the corresponding rewriting results: ((r1σ,∇′), (Cσ[r2σ],∇′)).

For the final join, we have to check for the equivalence of targets (∆1, e1) and (∆2, e2). In
general this cannot be done by purely syntactic means. A correct method is to compute whether
these match each other also respecting all the freshness constraints. This test is decidable.

3 Conclusion

Future work is extend the method to equational theories that are defined in more general ways,
for example using descriptions of infinite sets of equations by context variables in rules, and
applying the nominal unification algorithm as described in [13].

A potential application are some reduction rules in the call-by-need calculus of [1] or in CHF
[11, 12], like let y = v in C[y]→ let y = v in C[v], where v is a value, or similar rules.

Further applications are other higher-order theories of data structures like the monad theory.
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