32nd International Workshop on Unification (UNIF 2018), Informal Proceedings
Oxford, 7th July, 2018

Bounded ACh Unification

Ajay Kumar Eeralla'*and Christopher Lynch?

! Department of Computer Science, University of Missouri
Columbia, USA, ae266@mail .missouri.edu
2 Department of Computer Science, Clarkson University
Potsdam, USA, clynch@clarkson.edu

Abstract

We consider the problem of unification modulo an equational theory ACh, which con-
sists of a function h which is homomorphic over an associative-commutative operator +.
Unification modulo ACh is undecidable, so we define a bounded ACh unification problem.
In this bounded version of ACh unification we essentially bound the number of times h can
be recursively applied to a term, and only allow solutions that satisfy this bound. There is
no bound on the number of occurrences of A in a term, and the 4+ symbol can be applied an
unlimited number of times. We give inference rules for solving bounded ACh unification,
and we prove that the rules are sound, complete and terminating. We have implemented
the algorithm in Maude and give experimental results. We argue that this algorithm is
useful in cryptographic protocol analysis.

1 Introduction

Unification is a method to find a solution for a set of equations. For instance, consider an

equation = + y La + b, where x and y are variables, and a, and b are constants. If + is
an uninterpreted function symbol then the equation has one solution {z +— a, y — b}, and
this unification is called syntactic unification. If the function symbol 4+ has the property of
commutativity then the equation has two solutions: {z +— a, y — b} and {z — b, y — a}; and
this is called unification modulo the commutativity theory.

Unification modulo equational theories plays a significant role in symbolic cryptographic
protocol analysis [7]. An overview and references for some of the algorithms may be seen
in [8, 6]. One such equational theory is the distributive axioms: = X (y + z) = (z X y) +
(x x 2);(y+2) xax = (yxz)+ (2 x ). A decision algorithm is presented for unification
modulo two-sided distributivity in [12]. A sub-problem of this, unification modulo one-sided
distributivity, is in greater interest since many cryptographic protocol algorithms satisfy the
one-sided distributivity. In their paper [13], Tiden and Arnborg presented an algorithm for
unification modulo one-sided distributivity: « x (y+2) = (z X y) + (z X z), and also it has been
shown that it is undecidable if we add the properties of associativity x+ (y+2z) = (z+y)+2z and
a one-sided unit element 2 x 1 = 2. However, some counterexamples [11] have been presented
showing that the complexity of the algorithm is exponential, although they thought it was
polynomial-time bounded.

For practical purposes, one-sided distributivity can be viewed as the homomorphism theory,
h(z 4+ y) = h(z) + h(y), where the unary operator h distributes over the binary operator +.
Homomorphisms are highly used in cryptographic protocol analysis. In fact, homomorphism is
a common property that many election voting protocols satisfy [9].

Our goal is to present a novel construction of an algorithm to solve unification modulo the
homomorphism theory over a binary symbol + that also has the properties of associativity

*Ajay K. Eeralla was partially supported by NSF CNS-1314338


Mauricio Ayala Rincon


Mauricio Ayala Rincon


Mauricio Ayala Rincon


Mauricio Ayala Rincon
32nd International Workshop on Unification (UNIF 2018), Informal Proceedings
Oxford, 7th July, 2018�


Bounded ACh Unification Ajay K. Eeralla et. al.

and commutativity (ACh), which is an undecidable unification problem [10]. Given that ACh
unification is undecidable but necessary to analyze cryptographic protocols, we developed an
approximation of ACh unification, which we show to be decidable.

In this paper, we present an algorithm to solve a modified general unification problem
modulo the ACh theory, which we call bounded ACh unification. We define the h-height of a
term to be basically the number of i symbols recursively applied to each other. We then only
search for ACh unifiers of a bounded h-height. The number of occurrences of the 4+ symbol
is not bounded. In order to accomplish this we define the h-depth of a variable, which is the
number of h symbols on top of a variable. We develop a set of inference rules for ACh unification
that keep track of the h-depth of variables. If the h-depth of any variable exceeds the bound &
then the algorithm terminates with no solution. Otherwise, it gives all the unifiers or solutions
to the problem.

2 Preliminaries

We assume the reader is familiar with basic notation of unification theory and term rewriting
systems (see for example [3, 4]).

Definition 1 (More General Substitution). A substitution o is more general than substitution
0 if there exists a substitution 7 such that 8 = o7, denoted as o < 6. Note that the relation <
is a quasi-ordering, i.e., reflexive and transitive.

Definition 2 (Unifier, Most General Unifier). A substitution o is a unifier or solution of two
terms s and t if so = to; it is a most general unifier if for every unifier 6 of s and ¢, o < 6.
Moreover, a substitution ¢ is a solution of set of equations if it is a solution of each of the
equations. If a substitution o is a solution of a set of equations I', then it is denoted by o =T

A set of identities E is a subset of T(F,V) x T(F, V) and are represented in the form s = ¢.
An equational theory =g is induced by a set of fixed identities E and it is the least congruence
relation that is closed under substitution and contains E.

Definition 3 (E-Unification Problem, E-Unifier, E-Unifiable). Let F be a signature and E

be an equational theory. An FE-unification problem over F is a finite set of equations I' =
{s1 ;E t1,...,8n ;E t,} between terms. An E-unifier or E-solution of two terms s and ¢ is a

substitution o such that soc =g to. An E-unifier of T" is a substitution o such that s;oc =g t;0
for i = 1,...,n. The set of all E-unifiers is denoted by Ug(I') and I is called E-unifiable if
UE(T) # (. If E =0 then T is a syntactic unification problem.

Let T' = {s4 ;E t1,...,5n ;E t,} be a set of equations, and let 6 be a substitution. We say
that 6 satisfies I' modulo equational theory FE if 6 is an E-solution of each equation in I', that
is, s;60 =g t;0 for i = 1,...,n. We write it as § Fp . Let 0 = {x1 — t1,..., 2, — t,} and 0

be substitutions, and let F be an equational theory. We say that 0 satisfies ¢ in the equational
theory E if 2,0 =g ¢;0 for i =1,...,n. We write it as 0 Fg 0.

Definition 4 (Complete Set of E-Unifiers). A complete set of E-unifiers of an E-unification
problem I" is a set S of idempotent E-unifiers of T" such that for each § € Ug(T') in T' there
exists 0 € S with 0 Sg 0|Var(T"), where Var(T') is the set of variables in I".

A complete set S of F-unifiers is minimal if for two distinct unifiers ¢ and 6 in S, one is
not more general than the other; i.e., if 0 <gp 0|Var(l') and 0,0 € S then ¢ = §. A minimal



Bounded ACh Unification Ajay K. Eeralla et. al.

complete set of unifiers for a syntactic unification problem I' has only one element if it is not
empty. It is denoted by mgu(I') and can be called most general unifier of unification problem
r.

2.1 ACh Theory

The equational theory we consider is the theory of a homomorphism over a binary function
symbol +. The symbol + has the properties associativity and commutativity. We abbreviate
this theory as ACh. The signature F includes a unary symbol h, and a binary symbol +, and
other uninterpreted function symbols with fixed-arity. The function symbols h and 4+ in the
signature F satisfy the identities: x + (y+ z) = (z +y) + 2z (Associativity, A for short); z+y =
y + = (Commutativity, C for short); h(z + y) = h(z) + h(y) (Homomorphism, h for short).

2.2 h-Depth Set

For convenience, we assume that our unification problem is in flattened form, i.e., that every
equation in the problem is in one of the following forms: z z Y, T = h(y), « ~ y1+--+yn, and

z = flz1,...,z,), where z, y, y;, and x; are variables, and f is a free symbol with n > 0. The
first kind of equations are called VarVar equations. The second kind are called h-equations.
The third kind are called +-equations. The fourth kind are called free equations.

Definition 5 (Graph G(I')). Let T" be a unification problem. We define a graph G(I') as a
graph where each node represents a variable in I and each edge represents a function symbol in

I'. To be exact, if an equation w = f(z1,...,2,), where f is a symbol with n > 1, is in T then
the graph G(I') contains n edges w EN Tyyeeo, W EN x,,. For a constant symbol ¢, if an equation
w = cis in T then the graph G(T") contains a vertex w. Finally, the graph G(T') contains two

. . . 7.
vertices if an equation w = y is in T'.

Definition 6 (h-Depth). Let I" be a unification problem and let « be a variable that occurs
in I Let h be a unary symbol and let f be a symbol (distinct from h) with arity greater
than or equal to 1 and occur in I'. We define h-depth of a variable x as the maximum number
of h-symbols along a path to z in G(T'), and it is denoted by h4(x,T'). That is, hg(z,T) :=

max{hqn(z,T), hgs(z,T),0}, where hgp(x,T') := max{1 + hq(y,T) | y 2 2 is an edge in G}
and hgr(z,T) := max{hq(y,T') | there exists f # h such that y Jy zisin G(IM)}.

Definition 7 (h-Height). We define h-height of a term ¢ as the following:

hp(t)+1 if t=h(t)
hp(t) := ¢ max{hp(t1),...,hpn(ty)} if t=f(tr,...,tn), f#h
0 if t==zore

where f is a function symbol with arity greater than or equal to 1.

Without loss of generality, we assume that h-depth and h-height is not defined for a variable
that occurs on both sides of the equation. This is because the occur check rule—concludes the
problem with no solution—presented in the next section has higher priority over the h-depth
updating rules.

Definition 8 (h-Depth Set). Let I" be a set of equations. The set h-depth of T', denoted hgs(T),
is defined as hgs(T) := {(x,hq(x,T)) | x is a variable appearing in T'}. In other words, the

3



Bounded ACh Unification Ajay K. Eeralla et. al.

elements in the h-depth set are of the form (z, ¢), where x is a variable that occur in I and ¢ is a
natural number representing the h-depth of . Maximum value of h-depth set A is the maximum
of all ¢ values and it is denoted by MaxVal(A), i.e., MaxVal(A) := max{c| (z, ¢) € A}.

Definition 9 (Bounded E-Unification Problem, Bounded E-Unifier). A k bounded E-unification

problem over F is a finite set of equations I' = {s; ;E t1,...,5n ;E tn}, Si,t; € T(F,V), where
FE is an equational theory, and x is a positive integer. A k bounded E-unifier or x bounded
E-solution of T" is a substitution o such that s;0 =g t;0, hp(s;0) < k, and hy(t;0) < k for all 4.

3 Inference System J;,

3.1 Problem Format

An inference system is a set of inference rules that transforms an equational unification problem
into other. In our inference procedure, we use a set triple I'||A||o, where T' is a unification
problem modulo the ACh theory, A is an h-depth set, and o is a substitution. Let x € N be
a bound on the h-depth of the variables. A substitution 6 satisfies the set triple I'||Al|o if €
satisfies every equation in I' and o, MazVal(A) < k, and we write that relation as 0 = I'||A||o.
We also use a special set triple L for no solution in the inference procedure. Generally, the
inference procedure is based on priority of rules and also uses don’t care determinism when
there is no priority. i.e., any one rule applied from a set of rules without priority. Initially, I" is
the non-empty set of equations to solve and the substitution o is the identity substitution. The
inference rules are applied until either the set of equations is empty with most general unifier
o or L for no solution. Of course, the substitution ¢ is a x bounded FE-unifier of T'.
rj|A
F’\l\lﬂ"lllff’ :
matches the top of this rule, then it is to be replaced with the bottom of the rule. In the proofs
we will write inference rules as follows: I'||Allo =5, {T'1||A1]|o1, -+, Tnl|An|on} meaning to
branch and replace the left hand side with one of the right hand sides in each branch. The
only inference rule that has more than one branch is AC Unification. So we often just write
inference rules as follows: T'||Allo =5, TV||A||o’. Let OV be the set of variables occurring
in the unification problem T' and let NV be a new set of variables such that NV = V \
OV. Unless otherwise stated we assume that z, z1,...,z,, andy, y1,...,yn, z are variables
in V, v, vq,...,v, are in NV, and terms t, t1,...,tn, S, 81,...,5, in T(F,V), and f and g
are uninterpreted function symbols. Recall that h is a unary, and the associativity and the
commutativity operator 4. A fresh variable is a variable that is generated by the current
inference rule and has never been used before.

For convenience, we assume that every equation in the problem is in one of the following

An inference rule is written in the following form This means that if something

flattened forms: z — Y, T Z h(y), and z Z Yy + x, where z, y, and z are variables. If not, we
apply flattening rules to put the equations into that form. These rules are performed before
any other inference rule. They put the problem into flattened form and all the other inference
rules leave the problem in flattened form, so there is no need to perform these rules again later.
It is necessary to update the h-depth set A with the h-depth values for each variable during
the inference procedure.

3.2 Inference Rules

Flattening. We present a set of inference rules for flattening. The variable v represents a fresh
variable in the following rules.

4



Bounded ACh Unification Ajay K. Eeralla et. al.

Flatten Both Sides

{t1 ~ t2} U T[|Allo
{v=t, v =t} UTIH(, 0}UAle

if tl and tg ¢ 1%

Flatten Left +

{t =t +t:} UT|A||o

> 7 ift; ¢V
{t=v+ts,v=t1}3 UT|{(v, 0)}UA|lo
Flatten Right +
”
t=1t1 +ta} UT||A|lo .
_(tZnsnurial ey
{t=t1+v,v=t2} UT||{(v, 0)}UA||o
Flatten Under h
?
= INVAN
{1 2 (0} U T2l s

{t1 = h(v), v =t} UT|[{(v, 0)} UAo

Update h-Depth Set. We also present a set of inference rules to update the h-depth set. We

apply these rules immediately after applying any other rule in the inference system.
Update h

{z £ h(y)} UT|[{(z, &1), (y, c2)} UAo
{z £ h(y)} UT|{(z, &1), (y, &1 + D)} U Ao

If ca < (1 +1)

Update +
1. )
{x1 =y1 +y2} UT|[{(21, 1), (41, c2), (32, c3)} UA||o If
2 coy < C1
{z1 =1 +y2} UT|{(21, 1), (41, 1) (Y2, e3)} UA||o
2. )
{xl f Y1 +y2} U FH{(xlﬂ 01)7 (ylv 62)7 (3/2» 03)}UA||U If e < ¢

y1+y2} U T|[{(21, 1), (41, c2), (y2, c1)} UA||o

Splitting Rule. This rule takes the homomorphism theory into account. In this theory, we
can not solve equation h(y) Z 1 + 2o unless y can be written as the sum of two new variables
Yy = v1 + v, where v; and vy are in NV. Without loss of generality we generalize it to n
variables x1,...,Ty.
? ?
{w=h(y),w=x1+ -+, UT||A||o
? ? ? ?
{w="nh(y),y=v1+ -+ vp, 21 = h(vy),...,2, = h(v,) } UT||A||o

where n > 1, y # w, A = {(v1, 0),...,(vn, 0)}UA}, and vy, ..., v, are fresh variables in N'V.
Trivial. The Trivial inference rule is to remove trivial equations in the given problem T'.

{t =t} UT|Alo
T[[Aflo




Bounded ACh Unification Ajay K. Eeralla et. al.

Variable Elimination (VE). The Variable Elimination rule is to convert the equations into
assignments. In other words, it is used to find the most general unifier. The rule VE-2 is
performed last after all other inference rules have been performed. The rule VE-1 is performed
eagerly.

1.
{z £y} UT|Allo
Tz — y}l[Allo{e — y} Uz — ¢}

{z £t} UT|Alo
L[| Allo{z — t} U {z — t}

if t ¢ V and = does not occur in ¢

Decomposition. The Decomposition rule decomposes an equation into several sub-equations
if both sides top symbol matches.

{x; f(slj-..7s’!l)7x ; f(tlyat’ﬂ)}UFHAHU
{l’; f(t1;-~-7tn)a S1 ;tlv"'“g" ;t"} U FHAHU

AC Unification. The AC Unification rule calls an AC unification algorithm to unify the AC
part of the problem. Notice that we apply AC unification only once when no other rule except
VE-2 can apply. In this inference rule ¥ represents the set of all equations with the + symbol
on the right hand side. T' represents the set of equations not containing a + symbol. Unify
is a function that returns one of the complete set of unifiers returned by the AC unification
algorithm. GetEgs is a function that takes a substitution and returns the equational form of

if f# +

that substitution. In other words, GetEqs([x1 — t1,..., 2, — t,]) = {x1 < tiyeeey X L tn}.

v UT||Alle
GetEqs(Unify U) UT||Al|o

Note that we have written the rule for one member of the complete set of AC unifiers of W.
This will branch on every member of the complete set of AC unifiers of .

Occur Check. It is to determine if a variable on the left hand side of an equation occurs on
the other side of the equation. If it does, then there is no solution to the unification problem.
This rule has the highest priority.

?
{z = f(t1,...,tn)}UT||Al|o
1
where Var(f(t1,...,t,)o0) represents set of all variables that occur in f(t1,...,t,)0.

Clash. This rule checks if the top symbol on both sides of an equation is the same. If not, then
there is no solution to the problem, unless one of them is h and the other +.

If x € Var(f(t1,...,tn)0)

{xiﬂﬁww%mzjghwquﬂumﬂw' £ f ¢ {h, +} or g ¢ {h, +}

Bound Check. The Bound Check is to determine if a solution exists within the bound x,
a given maximum h-depth of any variable in I'. If one of the h-depths in the h-depth set A
exceeds the bound k, then the problem has no solution.

Ll[Alle
L

If MaxVal(D) >k



Bounded ACh Unification Ajay K. Eeralla et. al.

Unification Problem Real Time Solution # Sol. Bound
{h(y) £y +«} 674ms 1 0 10
{h(y) =y +a} 15880ms n 0 20
{h(y) = 1 + w2} 5ms Yes 1 10
{h(h(z)) = h(h(y))} 2ms Yes 1 10
{z+wy1 Lo +y2} 3ms Yes 1 10
fviz+yvLw+tzs=ht)} 46ms Yes 10 10
{v < 1 + T2,V < T3 + T4, T1 < h(y),x2 Z h(y)} 100ms Yes 6 10
{h(h(x)) Zotw+ y+ z} 224ms Yes 1 10
{v < (h(z) +y),v=w+ 2} 55ms Yes 7 10
{f(x,9) = h(z1)} Oms i 0 10
{f(@1,y1) = flz2,92)} 1ms Yes 1 10
{v L 1+ x2,v L oxg+ x4} 17ms Yes 7 10
{f(z1,31) = g2, v2)} Oms 1 0 10
{h(y) = 2,y = h()} Oms 1 0 10

Table 1: Tested results with bounded ACh-unification algorithm
4 Proof of Correctness

The proposed inference process eventually halts.
Lemma 1. There is no infinite sequence of inference rules.
Our inference system is truth-preserving.

Lemma 2 (Soundness). Let T'||Al|lo =5, {T1]|A1]lo1,- ,Tnl|Anlon} be an inference rule.
Let 6 be a substitution such that 8 = T';||A;||o;. Then 6 = T'||Allo.

Of course, our inference system never loses any solution.

Lemma 3 (Completeness). Let I'||A||o be a set triple. Let T'||Allo =5, {T1]|A4]lo1, -,
Tn||Anlon} be an inference rule. If § = T'||Al|o, then there exists an ¢ and a 6, whose domain
is the variables in Var(T;) \ Var(T), such that 00" = T;||A;]|o;.

5 Implementation

We have implemented the algorithm in Maude [5]. We chose the Maude language because the
inference rules are very similar to the rules of Maude and an implementation will be integrated
into the Maude-NPA tool at some time. The Maude-NPA tool is written in Maude. The system
specifications are Ubuntu 14.04 LTS, Intel Core i5 3.20 GHz, and 8 GiB RAM with Maude 2.6.
We give a table to show some of our results. In the given table, we use five columns:
Unification problem, Real Time, time to terminate the program in ms (milli seconds), Solution
either L for no solution or Yes for solutions, # Sol. for number of solutions, and Bound . It
makes sense that the real time keeps increasing as the given h-depth k increases for the first
problem where the other problems give solutions, but in either case the program terminates.

6 Conclusion

We introduced a set of inference rules to solve the unification problem modulo the homomor-
phism theory h over an AC symbol +, by enforcing bound k on the h-depth of any variable.

7



Bounded ACh Unification Ajay K. Eeralla et. al.

Homomorphism is a property which is very common in cryptographic algorithms. So, it is
important to analyze cryptographic protocols in the homomorphism theory. Some of the al-
gorithms and details in this direction can be seen in [2, 6, 1]. However, none of those results
perform ACh unification because that is undecidable. One way around this is to assume that
an identity and an inverse exist, but because of the way the Maude-NPA works it would still be
necessary to unify modulo ACh. So an unification algorithm there becomes crucial. We believe
that our approximation is a good way to deal with it. We also tested some problems and the
results are shown in Table 1.

References

[1] S. Anantharaman, H. Lin, C. Lynch, P. Narendran, and M. Rusinowitch. Cap unification: ap-
plication to protocol security modulo homomorphic encryption. In Proceedings of the 5th ACM
Symposium on Information, Computer and Communications Security, pages 192-203. ACM, 2010.

[2] S. Anantharaman, H. Lin, C. Lynch, P. Narendran, and M. Rusinowitch. Unification Modulo
Homomorphic Encryption. In booktitle of Automated Reasoning, pages 135—158. Springer, 2012.

[3] F. Baader and T. Nipkow. Term Rewriting and All that. Cambridge University Press, 1998.

[4] F. Baader and W. Snyder. Unification Theory. In Handbook of Automated Reasoning, pages
447-533. Elsevier, 2001.

[5] M. Clavel, F. Durdn, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and Carolyn L. Talcott.
All About Maude - A High-Performance Logical Framework, How to Specify, Program and Verify
Systems in Rewriting Logic. Springer, 2007.

[6] S. Escobar, D. Kapur, C. Lynch, C. Meadows, J. Meseguer, P. Narendran, and R. Sasse. Protocol
Analysis in Maude-NPA Using Unification Modulo Homomorphic Encryption. In Proceedings of
the 13th International ACM SIGPLAN Symposium on Principles and Practices of Declarative
Programming, pages 65-76. ACM, 2011.

[7] S. Escobar, C. Meadows, and J. Meseguer. Maude-Npa: cryptographic protocol analysis modulo
equational properties. In Foundations of Security Analysis and Design V: FOSAD 2007/2008/2009
Tutorial Lectures, pages 1-50. Springer, 2007.

[8] D. Kapur, P. Narendran, and L. Wang. An E-unification Algorithm for Analyzing Protocols That
Use Modular Exponentiation. In Rewriting Techniques and Applications, pages 165—179. Springer,
2003.

[9] S. Kremer, M. Ryan, and B. Smyth. Election Verifiability in Electronic Voting Protocols. In
Computer Security — ESORICS, pages 389-404. Springer, 2010.

[10] P. Narendran. Solving Linear Equations over Polynomial Semirings. In Proceedings 11th Annual
IEEE Symposium on Logic in Computer Science, pages 466-472. IEEE Computer Society, 1996.

[11] P. Narendran, Andrew M. Marshall, and B. Mahapatra. On the Complexity of the Tiden-Arnborg
Algorithm for Unification modulo One-Sided Distributivity. In Proceedings 24th International
Workshop on Unification, pages 54—63. Open Publishing Association, 2010.

[12] M. Schmidt-Schau8. A Decision Algorithm for Distributive Unification. In Theoretical Computer
Science, pages 111-148. Elsevier, 1998.

[13] E. Tidén and Stefan Arnborg. Unification Problems with One-Sided Distributivity. In booktitle of
Symbolic Computation, pages 183-202. Springer, 1987.



	Introduction
	Preliminaries
	ACh Theory
	h-Depth Set

	Inference System Ih
	Problem Format
	Inference Rules

	Proof of Correctness
	Implementation
	Conclusion

