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Abstract
Proof-relevant resolution is a new variant of resolution in Horn-clause logic and its extensions.
We propose proof-relevant resolution as a systematic approach to elaboration in programming
languages that is close to formal specification and hence allows for analysis of semantics of the
language. We demonstrate the approach on two case studies; we describe a novel, proof-relevant
approach to type inference and term synthesis in dependently types languages and we show how
proof-relevant resolution allows for analysis of inductive and coinductive soundness of type class
resolution. We conclude by a discussion of overall contributions of our current work.
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1 Introduction

First order resolution is a widely utilised technique in type inference. Hindley and Milner [14]
were the first to notice that type inference in simply typed lambda calculus can be expressed
as a first-order unification problem. This general scheme allows a multitude of extensions. For
example, Hindley-Milner type system can be extended to constrained types system. For this
extension, a constraint logic programming [16], was suggested, in which constraint solving over
a certain domain was added to the existing first-order unification and resolution algorithms.
Haskell type classes are another example of the application of logic programming. It is widely
understood that type class resolution is in fact implemented as first-order resolution on Horn
clauses. However, there is a caveat with respect to the traditional logic programming —a
dictionary (that is, a proof term) needs to be constructed [15]. The research in the area
of type classes is on-going: various extensions to the syntax of type classes are still being
investigated [10].

Fu and Komendantskaya analysed type class resolution and proposed proof-relevant Horn
clause logic [5] as the appropriate formalism. In this logic, Horn clauses are seen as types
and proof witnesses as terms inhabiting the types. Given a proposition—a goal—and a set
of Horn clauses—a logic program—the resolution process is captured by an explicit proof
term construction. To briefly illustrate the proof-relevant approach, let us state the usual
(generalised) modus ponens inference rule in a proof-relevant way:

P ` δ1 : θB1 . . . P ` δn : θBnκ : A← B1, . . . , Bn ∈ P P ` κδ1 . . . δn : θA
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18:2 Proof-relevant resolution for elaboration

That is, for a substitution θ and an atom A, an instance θA can deduced in a program
P assuming that there is a Horn clause A ← B1, . . . , Bn in P and that each θ-instance of
the atom Bi in the body of the clause can deduced in P. Moreover, the clause is equipped
with an atomic symbol κ (which is unique for each clause in the program). Assuming that
deduction of the instance θBi is witnessed by a proof term δi the overall deduction of θA is
witnessed by a compound proof-term κδ1 . . . δn.

In our work, we investigate proof-relevant resolution and we propose it as a systematic
approach to elaboration of programming languages. In order to avoid an excessive technical
detail, in this short paper we focus on demonstrating assets of proof-relevant resolution by
means of an example. In particular, in Section 2 we show that proof-relevant resolution is a
convenient calculus to formulate type inference and term synthesis for dependently typed
languages, and in Section 3 we build on such treatment of type-class resolution and show
that such approach is convenient for working with the semantics of the language as well;
namely we show that proof-relevant treatment of type classes is sound both inductively and
coinductively. We refer the reader to our published work [3, 4] for technical details.

2 Type Inference and Term Synthesis

In the last decade, dependent types [18, 1] have gained popularity in the programming
language community. They allow reasoning about program values within the types, and
thus give more general, powerful and flexible mechanisms to enable verification of code.
However, such verification comes for a price. There are many proof obligations in form of
computationally irrelevant terms that manifest that the code has properties that are stated in
types, that themselves beige a specification become very complicated. Extensive automation
of type inference and term (proof obligation) synthesis is a necessity for any system that
aims to be usable in practice. We propose a novel approach for such automation. We use the
notion refinement to refer to the combined problem of type inference and term synthesis.

Using an abstract syntax that closely resembles existing functional programming language
we define maybeA, an option type over a fixed type A, indexed by a Boolean:

I Example 1.

data maybeA (a : A) : bool→ type where
nothing : maybeA ff

just : A→ maybeA tt

Here, nothing and just are the two constructors of the maybe type. The type is indexed
by ff when the nothing constructor is used, and by tt when the just constructor is used
(ff and tt are constructors of bool). A function fromJust extracts the value from the just
constructor:

fromJust : maybeA tt→ A

fromJust (just x) = x

Note that the value tt appears within the type maybeA tt → A of this function (the type
depends on the value), allowing for a more precise function definition that omits the redundant
case when the constructor of type maybeA is nothing. The challenge for the type checker is
to determine that the missing case fromJust nothing is contradictory (rather than being
omitted by mistake). Indeed, the type of nothing is maybeA ff. However, the function
specifies its argument to be of type maybeA tt.
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A : type
bool : type
ff tt : bool

(≡bool ) : bool → bool → type
refl : Π( b:bool ). b ≡bool b

elim≡bool : tt ≡bool ff → A

maybe A : bool → type
nothing : maybe A ff
just : A → maybe A tt
elim maybeA : Π( b:bool ). maybe A b

→ ( b ≡bool ff → A)
→ ( b ≡bool tt → A → A)
→ A

Figure 1 Signature of tfromJust

To type check such functions, the compiler translates them into terms in an internal,
type-theoretic calculus. We rely on the calculus LF [9], a standard and well-understood
first-order dependent type theory as a choice of such internal calculus. A signature that we
use to encode our example in LF is give in Figure 1. We employ A→ B as an abbreviation
for Π(a : A).B where a does not occur free in B. The final goal of type checking of the
function fromJust in the programming language is to obtain the following encoding in the
internal calculus:
I Example 2.

t fromJust := λ ( m:maybe A tt). elim maybeA tt m

(λ (w:tt≡bool ff). elim≡bool w)
(λ (w:tt≡bool tt).λ (x:A).x)

The missing case for nothing must be accounted for (cf. the line (λ (w:tt≡boolff).elim≡bool w)
above). In this example (as is generally the case), only partial information is given in the
programming language. To address this problem, we extend the internal language with term
level metavariables, denoted by ?a, and type level metavariables, denoted by ?A. These stand
for the parts of a term in the internal language that are not yet known. Using metavariables,
the term that directly corresponds to fromJust is:
I Example 3.

t fromJust := λ ( m:maybe A tt). elim maybeA ?a m
(λ ( w: ?A ). ?b )
(λ ( w: ?B ).λ ( x:A).x)

The missing information comprises the two types ?A and ?B and the term ?b for the constructor
nothing. Obtaining types ?A, ?B amounts to type inference whereas obtaining the term
?b amounts to term synthesis. We translate refinement problems into the syntax of logic
programs. The refinement algorithm that we propose takes a signature and a term with
metavariables in the extended internal calculus to a logic program and a goal in proof-relevant
Horn clause logic. The unifiers that are computed by resolution give an assignment of types
to type-level metavariables. At the same time, the computed proof terms are interpreted as
an assignment of terms to term-level metavariables. We illustrate the process in the following
paragraphs.

ICLP 2018



18:4 Proof-relevant resolution for elaboration

Consider the inference rule Π-t-Elim in LF for application of a dependent function to
an argument:

Γ `M : Πx : A.B Γ ` N : A Π-t-ElimΓ `MN : B[N/x]

When type checking the term tfromJust an application of elimmaybeA tt m to the term
λ(w :?A).?b in the context m : maybeA tt needs to be type checked. This amounts to
providing a derivation of the typing judgement that contains the following instance of the
rule Π-t-Elim:

m : maybeA tt ` elimmaybeA tt m

: (tt≡bool ff→ A)→ · · · → A m : maybeA tt ` λ(w :?A).?b :?A →?B
m : maybeA tt ` (elimmaybeA tt m) (λ(w :?A).?b) : (tt≡bool tt→ A→ A)→ A

For the above inference step to be a valid instance of the inference rule Π-t-Elim, it is
necessary that (tt≡bool ff) = ?A and A = ?B . This is reflected in the following goal:

((tt≡bool ff) = ?A) ∧ (A = ?B) ∧G(elimmaybeA tt m) ∧Gλ(w:?A).?b) (1)

The additional goals G(elimmaybeA tt m) and Gλ(w:?A).?b
are recursively generated by the al-

gorithm for the terms elimmaybeA tt m and λ(w :?A).?b, respectively. Similarly, assuming
the term λ(w :?A).?b is of type (tt≡bool ff)→ A, type checking places restrictions on the
term ?b:

m : maybeA tt ` tt≡bool ff : type m : maybeA tt, w : tt≡bool ff `?b : A
m : maybeA tt ` λ(w : tt≡bool ff).?b : tt≡bool ff→ A

That is, ?b needs to be a well-typed term of type A in a context consisting of m and w. Recall
that in the signature there is a constant elim≡bool of type tt ≡bool ff→ A. Our translation
will turn this constant into a clause in the generated logic program. There will be a clause
that corresponds to the inference rule for elimination of a Π type as well:

κelim≡bool
: term(elim≡bool ,Πx : tt≡bool ff . A, ?Γ)←

κelim : term(?M?N , ?B , ?Γ)← term(?M ,Πx :?A.?B′ , ?Γ) ∧ term(?N , ?A, ?Γ)∧?B′ [?N/x] ≡?B

The above clauses are written in the proof-relevant Horn clause logic, and thus κelim≡bool
and

κelim now play the role of proof-term symbols (“witnesses” for the clauses). In this clause,
?M , ?N , ?A, ?B, ?B′ and ?Γ are logic variables, i.e. variables of the first-order logic. By an
abuse of notation, we use the same symbols for metavariables of the internal calculus and
logic variables in the logic programs generated by the refinement algorithm. We also use the
same notation for objects of the internal language and terms of the logic programs. This is
possible since we represent variables using de Bruijn indices.

The presence of w : tt≡bool ff in the context allows us to use the clause elim≡bool to
resolve the goal term(?M?N , A, [m : maybeA tt, w : tt≡bool ff]):

term(?M?N , A, [m : maybeA, w : tt≡bool ff]) κelim

term(?M ,Πx :?A. A, [. . . ]) ∧ term(?N , ?A, [. . . , w : tt≡bool ff]) ∧ A[?N/x] ≡?B  κelim≡bool

term(?N , tt≡bool ff, [. . . , w : tt≡bool ff]) ∧ A[?N/x] ≡?B  κprojw

A[?N/x] ≡?B  κsubstA
⊥ (2)

The resolution steps are denoted by . Each step is indexed by the name of the clause that was
used. First, the goal is resolved in one step using the clause κelim. A clause κprojw

is used to
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project the variable w from the context. We omit a discussion of the exact shape of the clauses
since it depends on the representation we use. In this presentation, we are just interested in
composing the proof terms occurring in these resolution steps into one composite proof term:
κelim κelim≡bool

κprojw
κsubstA . Note that, by resolving the goal (1), we obtain a substitution θ

that assigns the type A to the logic variable ?B , i.e. θ(?B) = A. At the same time, the proof
term computed by the the derivation (2) is interpreted as a solution (elim≡bool w) for the
term-level metavariable ?b. However, the proof term can be used to reconstruct the derivation
of well-typedness of the judgement m : maybeA tt, w : tt≡bool ff ` elim≡bool w : A as well.
In general, a substitution is interpreted as a solution to a type-level metavariable and a proof
term as a solution to a term-level metavariable. The remaining solution for ?A is computed
using similar methodology, and we omit the details here. Thus, we have computed values for
all metavariables in Example 3, i.e. we inferred all types and synthesised all terms.

3 Type Class Resolution

Type classes are a versatile language construct for implementing ad-hoc polymorphism and
overloading in functional languages. The approach originated in Haskell [17, 8] and has
been further developed in dependently typed languages [7, 2]. For example, it is convenient
to define equality for all data structures in a uniform way. In Haskell, this is achieved by
introducing the equality class Eq:
I Example 4.
class Eq x where

eq :: Eq x ⇒ x → x → Bool

and then declaring any necessary instances of the class, e.g. for pairs and integers:
instance (Eq x, Eq y) ⇒ Eq (x, y) where

eq (x1 , y1) (x2 , y2) = eq x1 x2 && eq y1 y2
instance Eq Int where

eq x y = primtiveIntEq x y

Type class resolution is performed by the Haskell compiler and involves checking whether all
the instance declarations are valid. For example, the following function triggers a check that
Eq (Int, Int) is a valid instance of type class Eq:
test :: Eq (Int , Int) ⇒ Bool
test = eq (1 ,2) (1 ,2)

It is folklore that type class instance resolution resembles SLD-resolution from logic pro-
gramming. The type class instance declarations above could, for example, be viewed as the
following two Horn clauses:

I Example 5 (Logic program PPair).
κpair : eq(x), eq(y) ⇒ eq(pair(x, y))
κint : ⇒ eq(int)

Then, given the query eq(pair(int, int)), resolution terminates successfully with the follow-
ing sequence of inference steps:

eq(pair(int, int))→κpair eq(int), eq(int)→κint eq(int)→κint ∅

The proof witness κpairκintκint (called a “dictionary”) is constructed by the compiler. This
is treated internally as an executable function.

ICLP 2018
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Despite the apparent similarity of type class syntax and type class resolution to Horn
clause resolution they are not, however, identical. At a syntactic level, type class instance
declarations correspond to a restricted form of Horn clauses, namely ones that:
(i) do not overlap (i.e. whose heads do not unify); and that
(ii) do not contain existential variables (i.e. variables that occur in the bodies but not in

the heads of the clauses). At an algorithmic level,
(iii) type class resolution corresponds to Horn-clause resolution in which unification is

restricted to term-matching.
Assuming there is a clause B1, . . . Bn ⇒ A′, then a query ? A′ can be resolved with this
clause only if A can be matched against A′, i.e. if a substitution σ exists such that A = σA′.
In comparison, Horn-clause resolution incorporates unifiers, as well as matchers, i.e. it also
proceeds to resolve the above query and clause in all the cases where σA = σA′ holds.

These restrictions guarantee that type class inference computes the principal (most
general) type. Restrictions (i) and (ii) amount to deterministic inference by resolution,
in which only one derivation is possible for every query. Restriction (iii) means that no
substitution is applied to a query during inference, i.e. we prove the query in an implicitly
universally quantified form. It is common knowledge that (as with Horn-clause resolution)
type class resolution is inductively sound, i.e. that it is sound relative to the least Herbrand
models of logic programs [13]. Moreover we established [3], for the first time, that it is also
universally inductively sound, i.e. that if a formula A is proved by type class resolution,
every ground instance of A is in the least Herbrand model of the given program. In contrast
to Horn-clause resolution, however, type class resolution is inductively incomplete, i.e. it
is incomplete relative to least Herbrand models, even for the class of Horn clauses that is
restricted by conditions i and ii. For example, given a clause ⇒ q(f(x)) and a query ? q(x),
Horn-clause resolution is able to find a proof (by instantiating x with f(x)), but type class
resolution fails. Lämmel and Peyton Jones have suggested [12] an extension to type class
resolution that accounts for some non-terminating cases of type class resolution. Consider,
for example, the following mutually defined data structures:

I Example 6.
data OddList a = OCons a ( EvenList a)
data EvenList a = Nil | ECons a ( OddList a)

which give rise to the following instance declarations for the Eq class:

instance (Eq a, Eq ( EvenList a)) ⇒ Eq ( OddList a) where
eq (OCons x xs) (OCons y ys) = eq x y && eq xs ys

instance (Eq a, Eq ( OddList a)) ⇒ Eq ( EvenList a) where
eq Nil Nil = True
eq (ECons x xs) (ECons y ys) = eq x y && eq xs ys
eq _ _ = False

The test function below triggers type class resolution in the Haskell compiler:

test :: Eq ( EvenList Int) ⇒ Bool
test = eq Nil Nil

However, inference by resolution does not terminate in this case. Consider the Horn clause
representation of the type class instance declarations:
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I Example 7 (Logic program PEvenOdd).
κodd : eq(x), eq(evenList(x)) ⇒ eq(oddList(x))
κeven : eq(x), eq(oddList(x)) ⇒ eq(evenList(x))
κint : ⇒ eq(int)

The non-terminating resolution trace is given by:

eq(evenList(int))→κeven eq(int), eq(oddList(int))→κint eq(oddList(int))

→κint eq(int), eq(evenList(int))→κint eq(evenList(int))→κeven . . .

A goal eq(evenList(int)) is simplified using the clause κeven to two new goals eq(int) and
eq(oddList(int)). The first of these is discarded using the clause κint. Resolution continues
using κodd and κint, resulting in the original goal eq(evenList(int)). It is easy to see that
such a process could continue infinitely and that this goal constitutes a cycle (underlined
above). As suggested by Lämmel and Peyton Jones [12], the compiler can terminate the
infinite inference process as soon as it detects the underlined cycle. Moreover, it can also
construct the corresponding proof witness in a form of a recursive function. For the example
above, such a function is given by the fixed point term να.κevenκint(κoddκintα), where ν is a
fixed point operator. The intuitive reading of such a proof is that an infinite proof of the
query eq (evenList(int)) exists, and that its shape is fully specified by the recursive proof
witness function above. We say that the proof is given by corecursive type class resolution.

Corecursive type class resolution is not inductively sound. For example, the formula
eq(evenList(int)) is not in the least Herbrand model of the corresponding logic program.
However, we proved [3] that it is (universally) coinductively sound, i.e. it is sound relative to
the greatest Herbrand models. For example, eq(evenList(int)) is in the greatest Herbrand
model of the program PEvenOdd. Similarly to the inductive case, corecursive type class
resolution is coinductively incomplete. Consider the clause κinf : p(x) ⇒ p(f(x)). This
clause may be given an interpretation by the greatest (complete) Herbrand models. However,
corecursive type class resolution does not yield infinite proofs.

Unfortunately, this simple method of cycle detection does not work for all non-terminating
programs. Consider the following example, which defines a data type Bush (for bush trees),
and its corresponding instance for Eq:

data Bush a = Nil | Cons a (Bush (Bush a))
instance Eq a, Eq (Bush (Bush a)) ⇒ Eq (Bush a) where { ... }

Here, type class resolution does not terminate. However, it does not exhibit cycles either.
Consider the Horn clause translation of the problem:

I Example 8 (Logic program PBush).
κint : ⇒ eq(int)

κbush : eq(x), eq(bush(bush(x)))⇒ eq(bush(x))
The derivation below shows that no cycles arise when we resolve the query ? eq(bush(int))
against the program PBush:

eq(bush(int))→κbush eq(int), eq(bush(bush(int))→κint . . .→κbush

eq(bush(int)), eq(bush(bush(bush(int)))→κint . . .

Fu et al. [6] have introduced an extension to corecursive type class resolution that allows im-
plicative queries to be proved by corecursion and uses the recursive proof witness construction.
Implicative queries require the language of proof terms to be extended with λ-abstraction. For
example, in the above program the Horn formula eq(x)⇒ eq(bush(x)) can be (coinductively)

ICLP 2018



18:8 Proof-relevant resolution for elaboration

proven with the recursive proof witness κnew = να.λβ.κbushβ(α(αβ)). If we add this Horn
clause as a third clause to our program, we obtain a proof of eq(bush(int)) by applying κnew
to κint. In this case, it is even more challenging to understand whether the proof κnewκint
of eq(bush(int)) is indeed sound: whether inductively, coinductively or in any other sense.
We established [3], for the first time, coinductive soundness for proofs of such implicative
queries, relative to the greatest Herbrand models of logic programs. Namely, we determined
that proofs that are obtained by extending the proof context with coinductively proven Horn
clauses (such as κnew above) are coinductively sound but inductively unsound. This result
demonstrates feasibility of proof-relevant approach for study of the semantic properties of
elaboration of programming language constructs.

4 Contributions

In our work, we study proof-relevant resolution as a systematic approach to elaboration in
programming languages. We argue that proof-relevant resolution is an appropriate technique
for elaboration while it stays very close to formal specification and allows for analysis of
semantics. In this short paper, we demonstrate this claim on two examples. We discuss
refinement if dependently typed languages and soundness of type class resolution.

The main contributions of our work are:
1. We present a novel approach to refinement for a first-order type theory with dependent

types;
2. we prove that our approach (i.e. generation of goals and logic programs) is decidable and

hence can serve as a basis for a verified implementation;
3. we show that proof-relevant first-order Horn clause resolution gives an appropriate

inference mechanism for dependently typed languages: firstly, it is sound with respect to
type checking in LF; secondly, the proof term construction alongside the resolution trace
allows to reconstruct the derivation of well-typedness judgement.

4. We show that proof-relevant approach to type class resolution and its two recent corecursive
extensions [6, 12] are sound relative to the standard (Herbrand model) semantics of logic
programming; and

5. we show that these new extensions are indeed “corecursive”, i.e. that they are modelled
by the greatest Herbrand model semantics rather than by the least Herbrand model
semantics.
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