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Abstract8

In causality, an actual cause is often defined as an event responsible for bringing about a given9

outcome in a scenario. In practice, however, identifying this event alone is not always sufficient10

to provide a satisfactory explanation of how the outcome came to be. In this paper, we motivate11

this claim using well-known examples and present a novel framework for reasoning more deeply12

about actual causation. The framework reasons over a scenario and domain knowledge to identify13

additional events that helped to “set the stage” for the outcome. By leveraging techniques from14

Reasoning about Actions and Change, the approach supports reasoning over domains in which15

the evolution of the state of the world over time plays a critical role and enables one to identify16

and explain the circumstances that led to an outcome of interest. We utilize action language17

AL for defining the constructs of the framework. This language lends itself quite naturally to an18

automated translation to Answer Set Programming, using which, reasoning tasks of considerable19

complexity can be specified and executed. We speculate that a similar approach can also lead to20

the development of algorithms for our framework.21
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1 Introduction and Problem Description27

The comprehensive goal of this research has been to design, evaluate, and implement a novel28

causal reasoning framework to discover causal explanations that are in closer agreement29

with what common sense might lead one to conclude. Identifying actual causation concerns30

determining how a specified consequence came to be in a given scenario and has long been31

studied in a diversity of fields, including law, philosophy, and, more recently, computer science.32

Also referred to as causation in fact, actual causation is a broad term that encompasses all33

possible antecedents that have played a meaningful role in producing the consequence [5].34

Consider the well-known Yale Shooting problem [16]:35

Shooting a turkey with a loaded gun will kill it. Suzy loads the gun and then shoots36

the turkey. Why is the turkey dead?37

Intuition tells us that Suzy’s shooting of the turkey is the actual cause of its death. However,38

if we know for certain that the gun was not loaded at the start of the story, then it is also39

important to recognize that Suzy’s loading the gun played a key role in producing this40

consequence. On the other hand, if the gun was loaded from the start, then this point may41

not be as significant. Moreover, if we build upon this example to say that Tommy handed42
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16:2 Explaining Actual Causation

Suzy the gun at the start of the scenario, then surely we want to identify Tommy’s action as43

a contributory cause of the turkey’s death. Hall [11] gives another classic example of actual44

causation in which two actors have each thrown a rock at a bottle and we wish to determine45

which actor’s throw caused the bottle to break. It is easy to imagine similar extensions to the46

example that require deeper reasoning about causation to properly explain how the bottle47

broke – for example, did a third actor instruct the original two to throw their rocks in the first48

place? Literature examples aside, sophisticated actual causal reasoning has been prevalent in49

human society and continues to have an undeniable impact on the advancement of science,50

technology, medicine, and other important fields. From the development of ancient tools to51

modern root cause analysis in business and industry, reasoning about causal influence in a52

historical sequence of events enables us to diagnose the cause of an outcome of interest and53

gives us insight into how to bring about, or even prevent, similar outcomes in future scenarios.54

Consider problems such as explaining the occurrence of a set of suspicious observations in a55

monitoring system, reasoning about the efficiency actions taken in an emergency evacuation56

scenario, or verifying how an automatically generated workflow produces the expected results.57

It is easy to imagine that in cases such as these, determining surface-level causation (e.g.,58

Suzy shot the turkey) may not be sufficient to provide a satisfactory explanation of how an59

outcome of interest to be.60

In this dissertation work, we claim that reasoning about actual causation in complex61

scenarios requires the ability to identify more than the existence of a causal relationship.62

We may want a deeper understanding of the causal mechanism – was the outcome caused63

directly or indirectly? Did previously occurring events somehow support the causing event or64

the outcome’s ability to be caused? To this end, the overall goal of the dissertation work is to65

investigate and demonstrate the suitability of action language and answer set programming66

to design and realize a novel approach to automated reasoning about actual causation as67

described above. The framework leverages techniques from Reasoning about Actions and68

Change (RAC) to support reasoning over domains that change over time in response to a69

sequence of events, as well as to answer queries for detailed causal explanations of an outcome70

of interest in a specific scenario. The language of choice for the formalization of knowledge71

is action language AL [2] which enables us to represent our knowledge of the direct and72

indirect effects of actions in a domain.73

In the remainder of this summary, we present background on the action language AL74

and its semantics, provide an overview of the framework and its behavior on a novel actual75

causation scenario, survey existing literature, and finally discuss open issues and expected76

achievements for the dissertation.77

2 Preliminaries78

As we have already described, this work leverages techniques from Reasoning about Actions79

and Change [20] to support reasoning over domains that change over time. We assume that80

knowledge of a domain exists as a set of causal laws called an action description describing81

direct and indirect effects of actions using the action language AL [2]. These causal laws82

embody a transition diagram describing all possible world states of the domain and the83

events that trigger transitions between them. In the thesis investigation, we assume the84

existence of knowledge in this form, and while the work describes the formalization of the85

domain descriptions, the matter of the origin of knowledge is beyond the scope of the thesis.86

The syntax of AL builds upon an alphabet consisting of a set F of symbols for fluents and87
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a set E of symbols for events1. The AL is centered around a discrete-state-based representation88

of the evolution of the domain.89

Fluents are boolean properties of the domain whose truth value may change over time. A90

(fluent) literal is a fluent f or its negation ¬f . Additionally, we define f = ¬f and ¬f = f .91

A statement of the form92

e causes l0 if l1, l2, . . . , ln (1)93

is called dynamic causal law, and intuitively states that, if event e in E occurs in a state94

in which literals l1, . . . , ln hold, then l0, the consequence of the law, will hold in the next95

state. A statement96

l0 if l1, . . . , ln (2)97

is called state constraint and says that, in any state in which l1, . . . , ln hold, l0 also holds.98

This second kind of statement allows for an elegant and concise representation of indirect99

effects, which increases the flexibility of the language. Finally, an executability condition is a100

statement of the form:101

e impossible_if l1, . . . , ln (3)102

where e and l1, . . . , ln are as above. (3) states that e cannot occur if l1, . . . , ln hold. A set103

of statements of AL is called an action description. The semantics of an action description104

AD is defined by its transition diagram τ(AD), a directed graph 〈N,E〉 such that:105

1. N is the collection of all states of AD;106

2. E is the set of all triples 〈σ, e, σ′〉 where σ, σ′ are states, e is an event executable in σ,107

and σ, e, σ′ satisfy the successor state equation [17]:108

σ′ = CnZ(E(e, σ) ∪ (σ ∩ σ′)) (4)109

where Z is the set of all state constraints of AD.110

The argument of CnZ in (4) is the union of the set of direct effects E(e, σ) of e, with the111

set σ∩σ′ of the facts “preserved by inertia”. The application of CnZ adds the “indirect effects”112

to this union. A triple 〈σ, e, σ′〉 ∈ E is called a transition of τ(AD) and σ′ is a successor113

state of σ (under e). A sequence 〈σ1, α1, σ2, . . . , αk, σk+1〉 is a path of τ(D) of length k if114

every 〈σi, αi, σi+1〉 is a transition in τ(D). We refer to state σ1 of a path p as the initial115

state of p. A path of length 0 contains only an initial state. In the next section, we build116

upon this formalization to define a query to our framework for representing and reasoning117

about actual cause.118

3 Framework Overview and Foundational Example119

In this section, we provide an overview of the causal reasoning framework alongside a novel120

foundational example that showcases the reasoning capabilities and explanatory power of121

the framework. It is a straightforward scenario in which an outcome of interest, say θE , is122

not satisfied at the start of the scenario. After the occurrence of three events, say e1, e2,123

and e3, the outcome has been caused. Given the outcome of interest, the sequence of events,124

and knowledge of the domain in which they have occurred, our framework identifies causal125

explanations for how θE may have come to be. In order to explain actual causation, we will126

aim to characterize transition events which tell us the primary cause of an outcome and127

whether or not it was caused directly or indirectly, as well as outcome and supporting events128

which tell us which prior occurring events have contributed to causing the outcome.129

1 For convenience and compatibility with the terminology from RAC, in this paper we use action and
event as synonyms.
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16:4 Explaining Actual Causation

Query130

A query consists of an action description, a sequence of events, and the outcome of interest.131

The sequence of three scenario events and the outcome of interest for our example are132

represented by vE = 〈e1, e2, e3〉, and θE = {A,B,C,D,E, F}, respectively. The following133

action description ADE characterizes events in the scenario’s domain:134 

e1 impossible_if A
e1 causes E if ¬ E
e2 causes D if ¬D
e3 causes A if ¬A
e3 causes C if ¬ C
e3 impossible_if ¬ E
e3 impossible_if ¬ F
B if C

(5)
(6)
(7)
(8)
(9)

(10)
(11)
(12)

135

Laws (5) and (6) describe event e1, telling us that e1 can only occur when A does not136

hold and e1 will cause E if it does not already hold. Law (7) states that e2 will cause D to137

hold if it does not already hold. Similar to causal laws (6) and (7), laws (8) and (9) tell us138

that e3 will cause A and C to hold if they do not hold. The executability conditions (10) and139

(11) state that e3 can only occur when both E and F hold. Finally, the state constraint (12)140

tells us that B holds whenever C holds. Given the action description ADE , the sequence of141

events vE , and the outcome of interest θE , the triple QE = 〈ADE , vE , θE〉 is the query for142

our example. Next, we introduce the concept of a scenario path, a unique mapping of the143

scenario described by a query to a representation of how the state of the world has changed144

in response to the events.145

Scenario Path146

Scenario paths represent a unique unfolding of a scenario and provide a convenient represent-147

ation of how the domain changes over time in response to the events of the scenario. We148

reason over these paths to explain actual causation.149

IDefinition 1. Given a queryQ = 〈AD, v, θ〉, a scenario path is a path ρ = 〈σ1, α1, σ2, ..., αk,150

σk+1〉 of τ(AD) satisfying the following conditions:151

1. ∀i, 1 ≤ i ≤ k, αi = ei152

2. θ 6⊆ σ1153

3. ∃i, 1 < i ≤ k + 1, θ ⊆ σi154

Condition 1 requires that the events in ρ correspond to the events of v, capturing the155

idea that each event of v represents a transition between states in ρ. Condition 2 requires156

that the set of fluent literals θ is not satisfied by the initial state of ρ, ensuring that the157

outcome has not already been caused prior to the known events of the story. Condition 3158

requires that θ is satisfied in at least one state after the initial state in ρ. Conditions 2 and 3159

together ensure that at least one event is responsible for causing θ to hold in ρ. The successor160

state equation (4) tells us some event in the scenario path must have directly or indirectly161

caused θ to be satisfied at some point after the initial state. The set of all scenario paths162

with respect to the query Q is denoted by P (Q) = {ρ1, ρ2, . . . , ρm}.163

It is clear that there are multiple valid scenario paths in the set P (QE), each representing164

a valid evolution of state in response to the scenario’s events in the domain given by ADE .165
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Table 1 Tabular representation of the scenario path ρE ∈ P (QE).

State Event State Affecting Law(s)
σ1 = {¬A,¬B,¬C,¬D,¬ E, F} α1 = e1 e1 causes E if ¬E
σ2 = {¬A,¬B,¬C,¬D, E, F} α2 = e2 e2 causes D if ¬D
σ3 = {¬A,¬B,¬C, D, E, F} α3 = e3 e3 causes A if ¬A, e3 causes C if ¬C, B if C
σ4 = {A, B, C, D, E, F} – –

For the purposes of this discussion, we choose a path with a complex causal mechanism that166

will exercise the causal reasoning framework. We will refer to this path as ρE . Table 1 shows167

the evolution of state in ρE in response to the events of vE . The first column lists each state168

σi of ρE , and the second column gives the event αi that caused a transition to the state169

σi+1. It is easy to see that ρE satisfies the conditions of Definition 1 with respect to ADE ,170

vE , and θE .171

Transition Event172

A transition event is an event in a scenario path that causes a transition from a state of the173

world where the outcome θ is not satisfied to a state of the world where θ is satisfied. In this174

section, we identify transition events and their direct and indirect effects on the outcome.175

I Definition 2. Given a scenario path ρ = 〈σ1, α1, σ2, . . . , αk, σk+1〉 and an outcome θ, event176

αj , where 1 ≤ j ≤ k, is a transition event of θ in ρ if the following conditions are satisfied by177

the transition 〈σj , αj , σj+1〉 of ρ:178

1. θ 6⊆ σj179

2. θ ⊆ σj+1180

Intuitively, event αj is a transition event of outcome θ if the outcome was not satisfied181

when αj occurred but was satisfied after its occurrence. Note that we have defined transition182

events in such a way that there can be multiple transition events for θ in ρ. Using Table 1, it183

is straightforward to verify that event e3 is the only transition event of θE in the example184

scenario path ρE , clearly satisfying Conditions 1 and 2 of Definition 2.185

Given a query Q = 〈AD, v, θ〉, a scenario path ρ = 〈σ1, α1, σ1, . . . , αk, αk+1〉 in P (Q),186

and a transition event αj for θ, the set of direct effects of αj in θ is dθ(αj , ρ) = θ∩E(αj , σj).187

Recall that E(αj , σj) is the set of all direct effects of event αj given that it occurs in state188

σj . The set of all direct effects of e3 with respect to σ3, then, is E(e3, σ3) = {A,C}, in189

accordance with laws (8) and (9) in ADE . The direct effects of e3 in θE , then, is given by190

dθE
(e3, ρE) = θE ∩ E(e3, σ3) = {A,B,C,D,E, F} ∩ {A,C} = {A,C}.191

To determine the indirect effects of an event with respect to the outcome, first let192

S = E(αj , σj) ∪ (σj ∩ σj+1) represent the set of all literals directly caused by the transition193

event αj and those preserved by inertia. Given a query Q = 〈AD, v, θ〉, a scenario path194

ρ = 〈σ1, α1, σ1, . . . , αk, αk+1〉 in P (Q), and a transition event αj for θ, the set of indirect195

effects of αj in θ is iθ(αj , ρ) = θ ∩ (σj+1 \ S). Given the set SE = E(e3, σ3) ∪ (σ3 ∩ σ4) =196

{A,C} ∪ {D,E, F} = {A,C,D,E, F} representing the direct effects of e3 and the literals197

preserved by inertia, the indirect effects of e3 in θE is198

iθE
(e3, ρE) =θE ∩ (σ4 \ SE)199

={A,B,C,D,E, F} ∩ ({A,B,C,D,E, F} \ {A,C,D,E, F})200

={A,B,C,D,E, F} ∩ {B}201

={B}202
203

ICLP 2018



16:6 Explaining Actual Causation

This result is intuitive because e3 directly caused C to hold by law (9) and we know from204

law (12) that whenever C holds in a certain state, then B holds. We claim that under these205

conditions, it must be the case the e3 caused B indirectly.206

First Causal Explanation207

Both the knowledge of the transition event and its effects on the outcome are represented208

by the first causal explanation. Given the query QE = 〈ADE , vE , θE〉, the scenario path209

ρE ∈ P (QE), the transition event e3 in ρE , and e3’s direct and indirect effects, dθE
(ρE , θE)210

and iθE
(ρE , θE), respectively, the first causal explanation for θE in ρE is the tuple211

C1
E = 〈ρE , e3, dθE

(ρE , θE), iθE
(ρE , θE)〉212

= 〈ρE , e3, {A,C}, {B}〉213
214

Explanation C1
E summarizes our initial findings – the event e3 caused a transition from a215

state where the outcome {A,B,C,D,E, F} did not hold to a state where it did hold in the216

scenario path ρE . Specifically, literals A and C were direct effects of e3’s occurrence while e3217

caused B indirectly.218

While C1
E tells us how the set of literals {A,B,C} of θE were made to hold in scenario219

path ρE , we are still missing information about which, if any, events prior to e3 caused the220

remaining literals {D,E, F} to hold in state σ4. We also do not know if any prior occurring221

events influenced e3’s ability to be a transition event of θE . In this work, supporting events222

are events that have occurred prior to a transition event αj that enable αj to be a transition223

event for the outcome θ. We identify two types of supporting events, outcome supporting224

event (OSEs) and transition supporting events (TSEs), both which are presented in the225

following sections. In order to identify both OSEs and TSEs in a scenario path ρ, we must226

first introduce the notion that an event αi ensures that a literal l will hold in a specified227

state σj if it is the most recent transition event for l.228

I Definition 3. Given a scenario path ρ = 〈σ1, α1, σ2, . . . , αk, αk+1〉, event αi is an ensuring229

event of l ∈ σj in ρ if:230

1. αi is a transition event of {l} in ρ231

2. i < j232

3. j − i is minimal233

Condition 1 leverages Definition 2 to require that event αi responsible for l holding in234

some state of ρ. Condition 2 requires that αi occurs before αj in ρ. Condition 3 requires235

that αi is the most recent transition event of l in ρ. We claim that if no event ensures l ∈ σj236

for a path ρ, this implies that l holds in every state of ρ because there exists no transition237

〈σi, αi, σi+1〉 in the path such that l 6∈ σi. Therefore, l must have held in the initial state and238

was never changed by a subsequent event prior to αj ’s occurrence. Note that because ensuring239

events are also transition events, it is straightforward to leverage the characterizations of240

direct and indirect effects of transition events from Section 3 to learn if events ensured l in241

some state σ due to its direct or indirect effects.242

Outcome Supporting Events243

In the case where αj does not set all of the literals of θ, OSEs can be responsible for ensuring244

that these remaining literals hold by the time αj occurs in ρ. Finding OSEs requires first245

identifying if any literals in θ were not set as an effect of the transition event αj . The set of246

remaining literals of an outcome θ is given by Rθ = θ \ ( dθ(αj , ρ) ∪ iθ(αj , ρ)). If |Rθ| > 0,247

then a previously occurring event may have supported the outcome θ by ensuring that the248

remaining literals held in state σj+1.249
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I Definition 4. Given a query Q, a factual path ρ ∈ P (Q), a transition event αj of θ, and a250

literal l ∈ Rθ, αi is an outcome supporting event (OSE) via l if αi ensures l ∈ σj+1.251

We denote by Osupp the set of OSEs and the literals they ensure. Formally, the tuple252

〈αi, l〉 ∈ Osupp if αi is a OSE via l. We denote by Oinit the set of literals in Rθ that were253

not ensured by an event in ρ. Given a literal l ∈ Rθ, l ∈ Oinit if:254

¬∃〈α, l′〉 ∈ Osupp s.t. l′ = l255

Intuitively, a literal l is in Oinit when l has is no outcome supporting event in Osupp. In256

our example, we already know that we require additional causal information about the set of257

remaining outcome literals D, E, and F . Formally, the following literals in the outcome θE258

have not been explained by C1
E :259

RθE
=θE \ (dθE

(e3, ρE) ∪ iθE
(e3, ρE))260

={A,B,C,D,E, F} \ ({A,C} ∪ {B})261

={A,B,C,D,E, F} \ {A,C,B}262

={D,E, F}263
264

Because |RθE
| > 0, there is more causal information to uncover. As covered in the earlier265

discussion on ensuring events, each literal in RθE
must either be ensured to hold in state266

σ4 by an outcome supporting event or the literal has held consistently from the start of the267

scenario. Event e2 is an outcome supporting event because it ensures that literal D held in268

σ4. This event meets the three conditions of ensuring D ∈ σ4. First, it is a transition event of269

{D} because the literal D did not hold in state σ2 but it did hold in σ3 after e2’s occurrence.270

It clearly satisfies Conditions 2 because here i = 2 and j = 4, and so i < j. Finally, it271

satisfies Condition 3 because event ei is the most recent transition event of {D}, and so272

j − i is minimal. Similarly, it is straightforward to verify that e1 is an outcome supporting273

event by ensuring that E holds in state σ4. The set of outcome supporting events is given274

by OsuppE = {〈e2, D〉, 〈e1, E〉}. Finally, the set OsuppE = {F} because there exists no tuple275

〈α, F 〉 ∈ OsuppE , and so F must have held in the initial state of ρE and never changed value.276

Second Causal Explanation277

Knowledge of outcome supporting events and remaining outcome literals that held from the278

start is represented by the second causal explanation. Given the query QE = 〈ADE , vE , θE〉,279

the scenario path ρE ∈ P (QE), and the transition event e3 for θE , the second causal280

explanation for θE in ρE is281

C2
E =〈OsuppE , OinitE 〉282

=〈{〈e2, D〉, 〈e1, E〉}, {F}〉283
284

Explanation C2
E provides us with information about how the remaining outcome literals285

{D,E, F} ∈ θE came to hold in the state σ4. Of these remaining literals, D and E were286

ensured by events e2 and e1, respectively. The remaining literal F held in the initial state287

and was not ensured in σ4 by any event prior to e1.288

C2
E tells us how the remaining outcome literals came to hold in σ4, but there is even289

more causal information to be revealed in this example. Next, we discuss an approach to290

determining if any other events in scenario path ρE contributed to e3’s ability to be a291

transition event of θE .292

ICLP 2018



16:8 Explaining Actual Causation

Transition Supporting Events293

TSEs ensure that the preconditions of αj are satisfied in state σj so that αj could occur and294

cause θ to be satisfied in σj+1. The approach to identifying TSEs is conveniently similar to295

identifying outcome supporting events, and so we will omit the majority of technical details296

in favor of working out the example in the interest of space. To determine whether or not297

any prior events supported the transition event e3, we begin by identifying all preconditions298

for e3’s occurrence and its ability to produce its effects in ρE . We obtain αj ’s preconditions299

in ρ by reasoning over the of laws in AD. In the dissertation work, we introduce notation to300

allow reasoning over the components of laws in an action description AD. For example, given301

a dynamic causal law λ in AD of form (1), let e(λ) = e, c(λ) = l0, and p(λ) = {l1, l2, . . . , ln}.302

We denote by D(AD) the set of all dynamic causal laws in AD. We use a similar representation303

for executability conditions, and we introduce a set of conditions under which preconditions304

can be extracted from these laws. In our example, the literals ¬A and ¬C are in prec(e3, ρE)305

because of laws (8) and (9) in the action description ADE . By our definition of precondition,306

the literals E and F are also in prec(e3, ρE) because of laws (10) and (11) in ADE . Therefore,307

the set of preconditions of e3 in ρE is prec(e3, ρE) = {¬A,¬C,E, F}.308

Similar to our definition of outcome supporting events, a transition supporting event is the309

most recent transition event for a precondition of the transition event. It is straightforward310

to verify that the set of transition supporting events is given by T suppE = 〈e1, E〉 and the set311

of initially set literals is T initE = {¬A,¬C,F}.312

Third Causal Explanation313

Knowledge of transition supporting events and precondition literals that held from the start314

is represented by the third causal explanation. Given the scenario path ρE ∈ P (QE), the315

transition event e3, the set of transition supporting events T suppE , and the set of uncaused316

literals T initE the third causal explanation for θE in ρE is317

C3
E =〈T suppE , T initE 〉318

=〈{〈e1, E〉}, {¬A,¬C,F}〉319
320

Explanation C3
E tells us about the transition event e3’s preconditions and how they were321

met by state σ3. The preconditions literals of event e3 were ¬A, ¬C, E, and F . Of these322

precondition literals, E was ensured in σ3 by the occurrence of event e1. The remaining323

literals ¬A, ¬C, and F were not ensured in σ3 by any scenario event. For relative brevity,324

we will not query further for details about the outcome and transition supporting events. It325

is easy to see, however, that the framework could tell us that the precondition literal E for326

e3 was made to hold as a direct effect of e1’s occurrence.327

Actual Causal Explanation328

As the research intends to prove, there exists a space of possible structures for causal329

explanation. Recall that when there are remaining outcome literals to explain, there is330

a second causal explanation. However, if a transition event has no preconditions in the331

scenario path, then there is no third causal explanation. This implies that the structure of332

the explanation depends on the information encoded by the corresponding scenario path.333

We intend to characterize this space of structures in the dissertation. The framework can334

identify all three causal explanations in our example (i.e., C1
E , C2

E , and C3
E). To summarize,335

the framework has explained that e3 was a transition event for θE through both direct and336

indirect effects, e1 and e2 were outcome supporting events, and e1 was a transition supporting337

event in the scenario path ρE .338
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4 Overview of Existing Literature339

While actual causation has been treated in numerous ways in the Artificial Intelligence340

literature, the most relevant of which we will cover briefly in this section, existing approaches341

do not possess the fine-granularity of reasoning and explanation required to meet the reasoning342

needs of the examples discussed here. Many approaches to reasoning about actual cause have343

been inspired by the human intuition that cause can be determined by hypothesizing about344

whether or not a removing X from a scenario would prevent Y from being true [19]. Attempts345

to mathematically characterize actual causation have largely pursued counterfactual analysis346

of structural equations [22, 13, 15], neuron diagrams [12], and other logical formalisms347

[18, 23, 4]. It has been widely documented, however, that the counterfactual criteria alone348

is problematic and fails to recognize causation in some common cases such as preemption,349

overdetermination, and contributory cause [21, 10]. More recent approaches such as [14] have350

addressed some of these shortcomings by modifying the existing definitions of actual cause or351

by modeling change over time with some improved results. However, there is still no widely352

agreed upon counterfactual definition of actual cause in spite of a considerably large body of353

work aiming to find one.354

The work of [3] departs from the counterfactual approach, using a similar insight to our355

own that actual causation can be determined by inspecting a specific scenario. Leveraging the356

Situation Calculus (SC) to formalize knowledge, the approach uses a single step regression357

approach to identify events deemed relevant to a logical statement becoming true. Although358

the conceptual approach is similar to our own, the technical approaches differ significantly.359

For example, [3] identifies a single sequence of causal events without explanation. There360

are also ramifications due to the choices for the formalization of the domain. Compared to361

AL formalizations, SC formalizations incur limitations when it comes to the representations362

of indirect effects of actions, which play an essential role in our work, and the elaboration363

tolerance of the formalization. Additionally, SC relies on First-Order Logic, while AL features364

an independent and arguably simpler semantics.365

5 Open Issues and Expected Achievements366

While the core of this framework is fairly well-developed at this stage, there remain some367

open issues that will be addressed in the dissertation. Evaluation of the framework is368

a crucial next step, and meaningful progress has been made towards demonstrating the369

framework’s reasoning process when solving examples from causality literature in addition370

to novel scenarios. We expect to demonstrate that the framework can solve numerous371

classic examples with finer-grained causal explanations than the current state of the art.372

Moreover, the dissertation will present a number of empirical studies to compare and evaluate373

the ability of related approaches to solve the novel example presented in this paper. We374

expect that related approaches will not be able to explain the causal mechanism of our375

example in comparable detail. The dissertation will also present a novel set of identified open376

problems whose investigation can advance the capabilities of the causal reasoning framework.377

Regarding implementation, the choice of AL as the underlying formalism has useful practical378

implications. As demonstrated by a substantial body of literature (see, e.g., [1]), AL lends379

itself quite naturally to an automated translation to Answer Set Programming [8, 9], using380

which, complex reasoning tasks can be specified and executed (see, e.g., [6, 7]). We speculate381

that a similar approach can also lead to the development of algorithms for our framework,382

and have begun translating AL queries, scenario paths, and transition events to ASP.383
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