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Abstract18

Recently, biological data has been increasingly produced calling for the existence of computational19

models able to organize and computationally reproduce existing observations. In particular,20

biological regulatory networks have been modeled relying on the Sign Consistency Model or the21

logical formalism. However, their construction still completely relies on a domain expert to choose22

the best functions for every network component. Due to the number of possible functions for23

k arguments, this is typically a process prone to error. Here, we propose to assist the modeler24

using logic-based tools to verify the model, identifying crucial network components responsible25

for model inconsistency. We intend to obtain a model building procedure capable of providing26

the modeler with repaired models satisfying a set of pre-defined criteria, therefore minimizing27

possible modeling errors.28
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1 Introduction33

Modeling biological regulatory networks is particularly useful to test hypotheses and to34

identify predictions in silico. With this aim, different qualitative formalisms have been35

introduced to model, analyze and simulate regulatory networks and their behaviors. However,36

the simulation and analysis of such behaviors is hindered by the combinatorial explosion37
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of the qualitative state space. To tackle this problem, formal verification techniques have38

been introduced in Systems Biology. These techniques include model-checking techniques to39

automatically verify reachability properties [14], model reduction techniques to reduce the40

size of the generated dynamics [15], SAT-based approaches to identify attractors [4], among41

others [17].42

Given a complete model of a regulatory network, newly acquired experimental data may43

render it inconsistent, forcing the model to be revised and updated. The process of review44

and update a model is called model revision, which is still mainly a manual task performed45

by a modeler, typically an expert in the domain, and therefore prone to error.46

Approaches to model revision relying on the Sign Consistency Model (SCM) have been47

implemented using logic-based tools such as Answer Set Programming (ASP)[8] and Boolean48

Satisfiability (SAT)[10]. However, the SCM lacks in expressiveness for regulatory functions,49

as it is based in sign algebra. This work aims to extend current approaches for model50

revision to the Logical formalism, and to provide a semi-automatic tool to assist the modeler51

throughout the model definition process [21].52

An overview of some of the key concepts of regulatory networks is given in Section 2. In53

Section 3 it is mentioned some of the work done in System Biology, regarding regulatory54

networks. Section 4 describes the logic-based approach for Model Revision. Section 555

concludes the document with an overview of the directions of the future work.56

2 Regulatory Networks57

A biological regulatory network is a set of proteins and genes, that interact with each other58

or with other substances in the cell. Qualitative models have proven to be well adapted for59

the modeling of systems where quantitative information is generally incomplete or noisy.60

Typically, network components only affect other components above some concentration61

level. In this way, it is possible to consider discrete variables to model regulatory networks,62

corresponding to different levels of concentration, e.g. active/inactive.63

2.1 Logical Model64

Logical models where used to represent regulatory networks by Kauffman in 1969 [12], and65

Thomas in 1973 [20].66

In the Logical Model the components of the network are represented by Boolean variables.67

A Boolean variable can either be True (1, on, active) or False (0, off, inactive). If a68

component in a regulatory network is represented by a Boolean variable, then it has value69

True if it is present (or activated), and it has value False if it is absent (or inhibited).70

Moreover, the interactions between components are described as Boolean functions [20].71

This will allow to determine the state of a component based on the presence or absence of72

other components.73

A Logical Model can be represented with a logical circuit since nodes have a Boolean74

value and regulatory functions are Boolean functions, as shown in Figure 1.75

Figure 1 illustrates an example of a logical model with the correspondent regulatory76

functions. With this representation we can verify that, for example, component c is regulated77

by components d and a, and its regulatory function is a logical AND from these two inputs.78

The (Boolean) Logical Model can be generalized [21]. It is possible to consider more than79

two values for each variable. For example, considering Figure 2, we can have a variable a that80

affects b above a concentration level threshold t1, but only affects c above a concentration81

level threshold t2 > t1. In this case variable a can have three possible values:82
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a

c b

d

Figure 1 Example of a Logical Model represented as a logical circuit.

a

b c

t1 t2

Figure 2 Example of a Generalization of the Logical Model.

0: concentration level below t1 (not affecting any other variable);83

1: concentration level between t1 and t2 (only affecting variable b);84

2: concentration level above t2 (affecting variables b and c);85

Formally, we can define a Logical Model as a tuple (G,K) where:86

G = {g1, g2, ..., gn} is the set of components of the network. Each gi is associated with87

an integer value in {0, ...,maxi}, representing the concentration level of the component.88

The state of the network is thus defined as a vector s ∈ S =
∏

gi∈G{0, ...,maxi}.89

K = {K1,K2, ...,Kn} is the set of regulatory functions whereKi is the regulatory function90

of gi and Ki : S → {0, ...,maxi}.91

If all maxi = 1, then we have a Boolean Logical Model, since each gi ∈ {0, 1}.92

2.2 Probabilistic Boolean Networks93

In a logical model, each component regulated by k other components can have 22k possible94

regulatory Boolean functions. Additionally, in some cases experimental data is insufficient95

or there is incomplete knowledge to choose a single regulatory function, where several96

candidates are possible. In other words, possibly several regulatory functions could explain97

the experimental data. With this in mind, the logical model was extended in order to account98

for the uncertainty of the regulatory functions [18].99

In a Probabilistic Boolean Network (PBN), each component has several regulatory100

functions, each with a given probability associated. These probabilities are determined based101

on the data available, such that it is compatible with prior knowledge of the network. Then,102

ICLP 2018



23:4 Logic-based approach for Model Revision

at each time step, and for each component, a regulatory function is selected according to the103

correspondent probabilities, in order to determine its target value.104

2.3 Sign Consistency Model105

Siegel et al. proposed a Sign Consistency Model (SCM) [19]. In this approach, it is only106

considered the difference in the expression levels between two situations: a value increase, or107

decrease.108

The SCM is usually represented by a graph where each node represents a biological109

component, with a value + (increase of concentration) or − (decrease of concentration). The110

edges in the graph represent interactions between components and can be labeled “+” or111

“−”. An edge with label “+” (“−”) from a to b means that an increase of the concentration112

of a increases (decreases) the concentration of b.113

Also, a component can be considered an input, having a stimulation from the exterior114

world (outside the regulatory network). If a node is an input then its regulatory function115

can be ignored, as there is an exterior stimulation increasing its concentration. In some116

representations, an extra generic node ε is added to represent the exterior world. For each117

input node, an edge is added from ε to that node.118

The regulatory functions are then based on the sign algebra, where the value of each com-119

ponent is the sum of the products between the value of each regulator and the corresponding120

edge.121

a

[+]

b

[+]

c

dε

+

-

+
-

-

+

Figure 3 Example of a Sign Consistency Model. Observed components a and b are labeled with
the correspondent observation. Component ε represents an external stimulus.

Figure 3 illustrates an example of a Sign Consistency Model of a network, where node a122

is an input, and therefore have an input edge from the generic node ε that represents the123

exterior world. Nodes a and b are observed nodes, where an increase of concentration was124

observed. In this example, node c is expected to have a negative (−) sign because it only125

has one regulator b, which has a negative interaction with c (c = b× (b→ c) = (+)× (−) =126

−). However in this example, node d receives a positive and a negative interaction. in this127

case we say that we have a competition and d can assume either value.128

3 Related Work129

The analysis and verification of biological regulatory networks provide opportunities for130

the application of several methodologies. From network identification and parametrization,131

model verification, attractors determination or to model revision. In this section, some of132

the main methods from the last decade are described, as well as the corresponding problem133

and technology.134
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3.1 Network and Model Inference135

Building computational models to correctly represent regulatory networks is of great import-136

ance. In order to build such model, one first needs to infer the network topology from a137

given set of experimental data. Some of the difficulties of this task relies on the few samples138

of observational data and in the incompleteness and inaccuracy of the experimental data.139

Then, one also needs to infer, for each component, the associated regulatory functions (model140

inference).141

In regulatory networks inference, several statistical learning techniques are commonly142

used [2, 7]. Also, logic-based tools have been successfully used to learn biological models.143

Caspo[11] is a tool to identify the complete family of feasible models from a training Boolean144

logical model from prior knowledge and experimental data.145

3.2 Reachability Verification146

Given a model and a set of experimental data, it is interesting to verify if the model can147

explain the results obtained in the experiment. In particular, one may verify if the model is148

capable of generating behaviors from a set of initial states to a set of target states. These149

behaviors are typically represented by a State Transition Graph (STG), where nodes represent150

states of the network, and edges represent possible transitions between states. The generation151

of this STG can be made synchronously or asynchronously. In the synchronous approach, in152

a given state of the STG, all components can update their value simultaneously, i.e., each153

state as a single successor. In the asynchronous approach, in a given state of the STG, only154

one component can update their value to a successor state, i.e., each state has as many155

successors as components changing their values.156

Model checking consists in the verification if a model satisfies a given (set of) property [3],157

and has been successfully used for the verification of regulatory networks. Here, biological158

observations are encoded in temporal logic formulas, and a model checker is used to verify159

the existence of particular behaviors [14].160

Also of interest, is to know how can a system be influenced in order to avoid reaching unsafe161

or undesired states. Recently, the work in [6] introduces the notion of bifurcation, transitions162

after which a given goal is no longer reachable. This work presents a method using Answer163

Set Programming, to identify bifurcations given a model represented as a discrete finite-state164

of interacting components. However, since this method relies on under/over approximations,165

is not complete, i.e., does not guarantee the identification of all the bifurcations.166

3.3 Attractors Identification167

A key property of the dynamics of a regulatory network are attractors, which typically denote168

subsets of states of biological interest. There are two types of attractors: point attractors169

and cycle attractors. A point attractor, or a stable state, is a state from which there is no170

transition to any other state in the STG. A cycle attractor is a set of states, whose sequence171

repeats over time, from which no transition can leave, i.e., a terminal strongly connected172

component in the STG.173

An efficient approach to determine point attractors in (multivalued) logical models174

uses Multi-values Decision Diagrams (MDDs) [16]. Also, some approaches consider the175

identification of point and cycle attractors in synchronous dynamics. The work in [5] uses176

Answer Set Programming (ASP) and allows the determination of all attractors considering177

a Markovian program in order to overcome the challenge of determining the number of178

time-steps needed to achieve an attractor. The work in [4] uses a SAT based bounded model179

ICLP 2018
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checker to determine all the attractors of the network by incrementally determining the180

attractors of a given length.181

3.4 Reduction182

It is often the case where the generation of the network dynamics is intractable for large183

and complex regulatory networks, due to the state space combinatorial explosion. Reduction184

techniques can then be applied in order to reduce the model, and therefore the generated185

state space. It has been shown that reduction methods can be successfully applied preserving186

some dynamical properties of the network, such as attractors [15].187

4 Model Revision Approach188

During the iterative model construction procedure, as new data is acquired, the current model189

may not be able to explain the new data, and therefore need to be revised. Revision processes190

capable of suggesting addition/removal of networks interactions, and changes to variable191

values in order to make a model consistent with the available data have been proposed192

[13]. An approach was proposed considering the SCM and developed using the Answer Set193

Programming (ASP) paradigm [8]. Also, an approach was proposed using MaxSAT, a SAT194

extension used to solve optimization problems [10]. However, the SCM formalism relies on a195

simple rule regarding regulatory functions.196

The logical formalism [20] has been widely used to model biological networks, and have197

been successfully implemented using ASP [9] and SAT [1], allowing to model the regulatory198

functions with increased expressiveness w.r.t. the SCM. Model repair usually operates under199

a minimal assumption as there can be several ways to make a model consistent. Such200

optimization criteria can be regarding the number of atomic repair operations [8, 10] or201

considering some properties found in the literature [13]. Nevertheless, existing approaches202

typically rely on repair operations that potentially change the topology of the network,203

invalidating previous domain knowledge.204

As mentioned in Section 2, there can be several regulatory functions that can explain the205

experimental data. Avoiding changing the topology of the network and change regulatory206

functions leads to a minimal impact on the truth table of the variables of the model, and207

therefore a smaller impact on the associated dynamics.208

Our idea is to develop a model revision procedure capable of building a consistent209

model iteratively as new data is acquired, relying on the logical formalism. Moreover, it is210

desired to avoid changing the topology of the network, and try to explain possible causes of211

inconsistencies with regulatory functions.212

On a first phase of the work, one should be able to verify the consistency of a given model213

with a set of experimental data, i.e., if the model can explain the experimental data obtained.214

Model checking techniques should be used for this purpose. It is intended to implement215

this using different logic based tools, such as ASP, SAT and MaxSAT, in order to make a216

comparison with respect to the easiness of representation and computational efficiency.217

On a second phase, if a model is not consistent with the experimental data, the causes218

of such inconsistencies must be identified. This is closely related to the identification of219

Minimal Unsatisfiable Subsets (MUSes) in SAT formulas, and therefore SAT-based tools220

should be used in the process. As there can be multiple concurrent reasons to explain the221

existence of inconsistencies, a biological meaningful measure should be provided in order to222

rank the possible explanations to be presented to a modeler.223
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Listing 1 Example of input
edge(c1 ,c2 ,0). obs_vlabel (c1 ,1).
edge(c1 ,c3 ,1). obs_vlabel (c2 ,0).
edge(c2 ,c1 ,1). obs_vlabel (c3 ,0).
edge(c2 ,c3 ,1). obs_vlabel (c4 ,0).
edge(c4 ,c2 ,1).
edge(c4 ,c3 ,0).

functionOr (c1 ,1). functionOr (c3 ,1..2).
functionAnd (c1 ,1,c2). functionAnd (c3 ,1,c1).

functionAnd (c3 ,2,c2).
functionOr (c2 ,1). functionAnd (c3 ,2,c4).
functionAnd (c2 ,1,c1).
functionAnd (c2 ,1,c4).

On a final phase, considering the most plausible cause for inconsistency, a procedure for224

model revision should be defined. For this, SAT-based tools for the identification of Minimal225

Correction Subsets (MCSes) should be considered. This model revision process should be226

iterative, considering that multiple reasons for inconsistency may exist. We will first try227

to explain the causes of inconsistencies with regulatory functions. However, changing the228

regulatory functions may not be sufficient, and therefore one may need to consider changing229

the topology of the network. To achieve this, an iterative approach will be considered where230

different causes of inconsistency are taken into account.231

In the revision process, not only the model consistency must be taken into account, but232

also other known properties about the network must hold, such as the existence of known233

attractors and its reachability. As the number of possible states for a network increases234

exponentially with the number of components, guaranteeing the existence of the known235

attractors, for example, can be a difficult task. For this, model reduction techniques may be236

necessary.237

We start by considering only monotone non-degenerate functions. In a monotone function,238

each regulator has only one role, i.e., it is either strictly positive or negative. In a non-239

degenerate function, all regulators are functional, i.e., all regulators have an influence in the240

regulatory function.241

Currently, we have an Answer Set Programming approach implemented for the logical242

formalism, and we are able to verify the consistency of a model given some experimental243

data at steady state, i.e., without considering any dynamics. Moreover, we are able, in case244

of inconsistency, to identify the regulatory functions that can explain such inconsistencies.245

We are working on the process of repairing such functions in order to validate if the proposed246

model solutions become consistent.247

We represent the logical model as a directed graph and the regulatory functions in248

disjunctive normal form (DNF). As we only consider monotone functions and, therefore, each249

regulator only has one role (positive interaction or negative interaction), this role is defined250

by the edge. A positive (negative) edge represents a positive (negative) interaction. An251

example is presented in Listing 1 with the representation of the model and the observations.252

The predicate edge(A,B,S) represents an edge from A to B with sign S. Predicate253

functionOr(A,C) indicates the number of clauses (C) in the regulatory function of A in the254

DNF. Predicate functionAnd(A,C,B) indicates that the clause C of the regulatory function255

of A contains variable B. The observations are represented by the predicate obs_vlabel(A,S),256

ICLP 2018
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Listing 2 Consistency check in Answer Set Programming
sign (0;1). complement (T,S):- sign(S),sign(T),T!=S.

vertex (V):- edge(V,_,_). vertex (V):- edge(_,V,_).

% generate
1{ vlabel (V,S): sign(S)}1: - vertex (V).
{r_gen(V)} :- vertex (V). { r_part (V)} :- vertex (V).

:- vlabel (V,S), obs_vlabel (V,T), complement (S,T).

% functions
% one positive or negative contribution in a clause
onePositive (V,Id):- functionAnd (V,Id ,V2),edge(V2 ,V,S), vlabel (V2 ,S).
oneNegative (V,Id):- functionAnd (V,Id ,V2),edge(V2 ,V,S), vlabel (V2 ,T),

complement (S,T).

% none negative contribution in a clause
noneNegative (V,Id):- onePositive (V,Id),not oneNegative (V,Id).

vlabel (V ,1): -1{ noneNegative (V,Id): functionOr (V,Id)}, vertex (V),
not r_part (V).

vlabel (V ,0): -{ noneNegative (V,Id): functionOr (V,Id)}0, vertex (V),
not r_gen(V).

repair (f,V) :- r_gen(V). repair (f,V) :- r_part (V).
# minimize {1,V : repair (_,V)}.

which means that value S was observed in node A.257

The main idea behind the encoding presented in Listing 2 is that each node of the network258

(vertex) must have exactly one label that represents the expected value (vlabel), and it259

is not possible to have a label different from the observation. Each label is determined260

based on the contributions of each regulator in the associated regulatory function. To allow261

determining possible causes of inconsistencies, we defined the predicates r_gen and r_part262

indicating that a regulatory function should be generalized or particularized, respectively,263

justifying the inconsistency of the model. In order to achieve this, we allow a label of a vertex264

to be different than expected given the regulatory function, if that function is a possible265

cause of inconsistency.266

5 Conclusions and Future Work267

Qualitative formalisms have been used whenever information is scarce. In particular, the268

logical formalism has proved successful to model complex biological networks. Nevertheless,269

the construction of such models is still mainly a manual task, and therefore prone to errors270

and to interpretations of a specific modeler. Here, we focus on the problem of model revision,271

i.e., to assist the modeler in the process of revising the model associated functions in order272

to render the model consistent with the existing and new data.273

Here, we propose to consider the logical formalism limiting to the set of monotone non-274

degenerate functions. Also, we start by verifying the consistency of models at steady state,275

i.e., without considering any dynamics. We consider an Answer Set Programming approach276
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to identify which nodes are the causes for model inconsistency.277

We intend to follow the work plan described in the previous section, and be able to278

present a procedure and corresponding tool capable of building a consistent model iteratively279

as new data is acquired.280
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