
Probabilistic Action Language pBC+1

Yi Wang2

Arizona State University3

School of Computing, Informatics, and Decision Systems Engineering Fulton Schools of Engineering,4

Arizona State University, P.O. Box 878809, Tempe, AZ 85287-8809, United States5

ywang485@asu.edu6

Abstract7

We present an ongoing research on a probabilistic extension of action language BC+. Just like BC+ is8

defined as a high-level notation of answer set programs for describing transition systems, the proposed9

language, which we call pBC+, is defined as a high-level notation of LPMLN programs—a probabilistic10

extension of answer set programs.11

As preliminary results accomplished, we illustrate how probabilistic reasoning about transition sys-12

tems, such as prediction, postdiction, and planning problems, as well as probabilistic diagnosis for dy-13

namic domains, can be modeled in pBC+ and computed using an implementation of LPMLN.14

For future work, we plan to develop a compiler that automatically translates pBC+ description into15

LPMLN programs, as well as parameter learning in probabilistic action domains through LPMLN weight16

learning. We will work on defining useful extensions of pBC+ to facilitate hypothetical/counterfactual17

reasoning. We will also find real-world applications, possibly in robotic domains, to empirically study the18

performance of this approach to probabilistic reasoning in action domains.19

2012 ACM Subject Classification Knowledge representation and reasoning20

Keywords and phrases action language, probabilistic reasoning, LPMLN
21

Digital Object Identifier 10.4230/OASIcs.ICLP.2018.1522

1 Introduction and Problem Description23

Action languages, such as A [9], B [10], C [12], C+ [11], and BC [15], are formalisms for describing24

actions and their effects. Many of these languages can be viewed as high-level notations of answer set25

programs structured to represent transition systems. The expressive possibility of action languages,26

such as indirect effects, triggered actions, and additive fluents, has been one of the main research27

topics. Most of the extensions accounting for that are logic-oriented, and less attention has been paid28

to probabilistic reasoning, with a few exceptions such as [6, 8], let alone automating such probabilistic29

reasoning and learning parameters of an action description.30

Action language BC+ [2], one of the most recent additions to the family of action languages, is31

no exception. While the language is highly expressive to embed other action languages, such as C+32

[11] and BC [14], it does not have a natural way to express the likelihood of histories (i.e., a sequence33

of transitions).34

I Example 1. Consider an extension of the robot example from [13]: A robot and a book that can35

be picked up are located in a building with 2 rooms r1 and r2. The robot can move to rooms, pick36

up the book and put down the book. There is 0.1 chance that it fails when it tries to enter a room,37

a 0.2 chance that the robot drops the book when it has the book, and 0.3 chance that the robot fails38

when it tries to pick up the book. The robot, as well as the book, was initially at r1. It executed the39

following actions to deliver the book from r1 to r2: pick up the book; go to r2; put down the book.40

However, after the execution, it observes that the book is not at r2. What was the problem?41

To answer the above query, an action language needs the capabilities of not only probabilistic42

reasoning, but also abductive reasoning in a probabilistic setting. In my research, we are working on43

a probabilistic extension of BC+, which we call pBC+, with the expressivity to answer queries such44

as the one in Example 1. Just like BC+ is defined as a high-level notation of answer set programs45

for describing transition systems, pBC+ is defined as a high-level notation of LPMLN programs—a46

probabilistic extension of answer set programs. Language pBC+ inherits expressive logical modeling47

© Yi Wang;
licensed under Creative Commons License CC-BY

Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor; Article No. 15; pp. 15:1–15:10

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ywang485@asu.edu
http://dx.doi.org/10.4230/OASIcs.ICLP.2018.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

15:2 Probabilistic Action Language pBC+

capabilities of BC+ but also allows us to assign a probability to a sequence of transitions so that we48

may distinguish more probable histories.49

In this paper, as preliminary results accomplished, we will show how probabilistic reasoning50

about transition systems, such as prediction, postdiction, and planning problems, can be modeled51

in pBC+ and computed using an implementation of LPMLN[16]. Further, we will show that it can52

be used for probabilistic abductive reasoning about dynamic domains, where the likelihood of the53

abductive explanation is derived from the parameters manually specified or automatically learned54

from the data.55

For future work, we plan to develop a compiler that automatically translates pBC+ description56

into LPMLN programs, as well as parameter learning in probabilistic action domains through LPMLN
57

weight learning. We will work on defining useful extensions of pBC+ to facilitate hypothetical/-58

counterfactual reasoning. We will also find real-world applications, possibly in robotic domains, to59

empirically study the performance of this approach to probabilistic reasoning in action domains.60

This paper will give a summary of my research on pBC+, including the background and some61

review of existing literature (Section 2), goal of the research (Section 3), the current status of the62

research (Section 4), preliminary results accomplished (Section 5) as well as issues and expected63

achievements (Section 6).64

2 Background and Overview of Existing Literature65

2.1 Probabilistic Reasoning and Diagnosis in the Context of Action66

Languages67

There are various formalisms for reasoning in probabilistic action domains. PC+ [8] is a generalization68

of the action language C+ that allows for expressing probabilistic information. PC+ expresses69

probabilistic transition of states through so-called context variables, which are exogenous variables70

associated with predefined probability distributions. PC+ allows for expressing qualitative and71

quantitative uncertainty about actions by referring to the sequence of "belief" states—possible sets of72

states together with probabilistic information. On the other hand, the semantics is highly complex73

and there is no implementation of PC+ as far as we know.74

[20] defined a probabilistic action language calledNB, which is an extension of the (deterministic)75

action language B. NB can be translated into P-log [4] and since there exists a system for computing76

P-log, reasoning inNB action descriptions can be automated. Like PC+, probabilistic transitions are77

expressed through dynamic causal laws with random variables associated with predefined probability78

distribution. In NB, however, these random variables are hidden from the action description and are79

only visible in the translated P-log representation. In order to translate NB into executable low-level80

logic programming languages, some semantical assumptions have to be made in NB, such as all81

actions have to be always executable and nondeterminism can only be caused by random variables.82

Probabilistic action domains, especially in terms of probabilistic effects of actions, can be83

formalized as Markov Decision Process (MDP). The language proposed in [6] aims at facilitating84

elaboration tolerant representations of MDPs. The syntax is similar to NB and PC+. The semantics85

is more complex as it allows preconditions of actions and imposes less semantical assumption. The86

concept of unknown variables associated with probability distributions is similar to random variables87

in NB. There is, as far as we know, no implementation of the language. There is no discussion about88

probabilistic diagnosis in the context of the language. PPDDL [19] is a probabilistic extension of the89

planning definition language PDDL. LikeNB, the nondeterminism that PPDDL considers is only the90

probabilistic effect of actions. The semantics of PDDL is defined in terms of MDP. There are also91

probabilistic extensions of the Event Calculus such as [7] and [18].92

In the above formalisms, the problem of probabilistic diagnosis is only discussed in [20]. [3] and93

[5] studied the problem of diagnosis. However, they are focused on diagnosis in deterministic and94

static domains. [13] has proposed a method for diagnosis in action domains with situation calculus.95

Again, the diagnosis considered there does not involve any probabilistic measure.96

Yi Wang 15:3

2.2 Review: Language LPMLN
97

We review the definition of LPMLN from [17]. An LPMLN program is a finite set of weighted rules98

w : R where R is a rule and w is a real number (in which case, the weighted rule is called soft) or α99

for denoting the infinite weight (in which case, the weighted rule is called hard). An LPMLN program100

is called ground if its rules contain no variables. We assume a finite Herbrand Universe so that the101

ground program is finite. Each ground instance of a non-ground rule receives the same weight as the102

original non-ground formula.103

For any ground LPMLN program Π and any interpretation I , Π denotes the usual (unweighted)104

ASP program obtained from Π by dropping the weights, ΠI denotes the set of w : R in Π such that105

I |= R, and SM[Π] denotes the set {I | I is a stable model of ΠI}. The unnormalized weight of an106

interpretation I under Π is defined as107

WΠ(I) =

exp
(∑
w:R ∈ ΠI

w

)
if I ∈ SM[Π];

0 otherwise.

108

The normalized weight (a.k.a. probability) of an interpretation I under Π is defined as109

PΠ(I) = lim
α→∞

WΠ(I)∑
J∈SM[Π]

WΠ(J) .110

Interpretation I is called a (probabilistic) stable model of Π if PΠ(I) 6= 0. The most probable stable111

models of Π are the stable models with the highest probability.112

2.3 Review: Multi-Valued Probabilistic Programs113

Multi-valued probabilistic programs [17] are a simple fragment of LPMLN that allows us to represent114

probability more naturally.115

We assume that the propositional signature σ is constructed from “constants” and their “values.”116

A constant c is a symbol that is associated with a finite set Dom(c), called the domain. The signature117

σ is constructed from a finite set of constants, consisting of atoms c=v 1 for every constant c and118

every element v in Dom(c). If the domain of c is {f, t} then we say that c is Boolean, and abbreviate119

c= t as c and c= f as ∼c.120

We assume that constants are divided into probabilistic constants and non-probabilistic constants.121

A multi-valued probabilistic program Π is a tuple 〈PF,Π〉, where122

PF contains probabilistic constant declarations of the following form:123

p1 :: c=v1 | · · · | pn :: c=vn (1)124

one for each probabilistic constant c, where {v1, . . . , vn} = Dom(c), vi 6= vj , 0 ≤ p1, . . . , pn ≤125

1 and
∑n
i=1 pi = 1. We use MΠ(c = vi) to denote pi. In other words, PF describes the126

probability distribution over each “random variable” c.127

Π is a set of rules such that the head contains no probabilistic constants.128

The semantics of such a program Π is defined as a shorthand for LPMLN program T (Π) of the129

same signature as follows.130

For each probabilistic constant declaration (1), T (Π) contains, for each i = 1, . . . , n, (i) ln(pi) :131

c=vi if 0 < pi < 1; (ii) α : c=vi if pi = 1; (iii) α : ⊥ ← c=vi if pi = 0.132

For each rule Head ← Body in Π, T (Π) contains α : Head ← Body.133

1 Note that here “=” is just a part of the symbol for propositional atoms, and is not equality in first-order logic.

ICLP 2018

15:4 Probabilistic Action Language pBC+

For each constant c, T (Π) contains the uniqueness of value constraints134

α : ⊥ ← c=v1 ∧ c = v2 (2)135

for all v1, v2 ∈ Dom(c) such that v1 6= v2, and the existence of value constraint136

α : ⊥ ← ¬
∨

v∈Dom(c)
c=v . (3)137

In the presence of the constraints (2) and (3), assuming T (Π) has at least one (probabilistic)138

stable model that satisfies all the hard rules, a (probabilistic) stable model I satisfies c = v for exactly139

one value v, so we may identify I with the value assignment that assigns v to c.140

3 Goal of the Research141

The following are our research objectives.142

Designing Probabilistic Action Language on the Foundation of LPMLN We design the syntax143

and semantics of the language pBC+ to allow for commonsense reasoning, probabilistic inference144

and statistical learning. Furthermore, we study the theoretical properties of the action language to145

establish its relation with probabilistic transition systems.146

Defining the Extension of the Action Language to Explain the Reason of Failure in Dynamic147

Domains We extend the probabilistic action language to account for diagnostic reasoning when148

the observation conflicts with the way the system is supposed to behave. This will be in contrast149

with diagnostic reasoning in other action languages, which is logical and does not distinguish150

which diagnosis is more probable.151

Extending the Action Language For Hypothetical/Counterfactual Reasoning We extend the152

probabilistic action language to answer queries involving hypothetical/counterfactual reasoning,153

where the diagnosis or observation is given, we are interested in how the outcome would have154

been affected if some action happened instead.155

Implementing a Compiler that Automatically Translates pBC+ Descriptions to LPMLN Pro-156

grams Since pBC+ can be executable through translation to LPMLN, it is desirable to have a157

compiler that automates this translation. We plan to develop such a compiler.158

Empirically Studying the Performance of pBC+ with Real-World Applications After we159

have the implementation for inference and learning on pBC+ action descriptions, we will apply160

pBC+ on reasoning and learning tasks in real-world applications, possibly robotic domains.161

4 Current Status of the Research162

This research is at its starting phase. In our recent paper accepted by ICLP 2018, we have defined the163

syntax and semantics of pBC+, and experimented with several examples through manual translation164

to LPMLN. We have also defined the extension that allows diagnostic reasoning in probabilistic action165

domains.166

Currently we are investigating on parameter learning of pBC+ through LPMLN weight learning.167

We are developing a prototype system for LPMLN weight learning, and several examples of parameter168

learning of pBC+ descriptions are part of the benchmarks we use for the prototype system.169

5 Preliminary Results Accomplished170

In this section, we will present the syntax and semantics of pBC+, and illustrate how various reasoning171

tasks involving probabilistic inference can be automated in this language, through translation to172

LPMLN.173

Yi Wang 15:5

5.1 Syntax of pBC+174

We assume a propositional signature σ as defined in Section 2.3. We further assume that the signature175

of an action description is divided into four groups: fluent constants, action constants, pf (probability176

fact) constants and initpf (initial probability fact) constants. Fluent constants are further divided into177

regular and statically determined. The domain of every action constant is Boolean. A fluent formula178

is a formula such that all constants occurring in it are fluent constants.179

The following definition of pBC+ is based on the definition of BC+ language.180

A static law is an expression of the form181

caused F if G (4)182

where F and G are fluent formulas.183

A fluent dynamic law is an expression of the form184

caused F if G after H (5)185

where F and G are fluent formulas and H is a formula, provided that F does not contain statically186

determined constants and H does not contain initpf constants.187

A pf constant declaration is an expression of the form188

caused pf = {v1 : p1, . . . , vn : pn} (6)189

where pf is a pf constant with domain {v1, . . . , vn}, 0 < pi < 1 for each i ∈ {1, . . . , n}2, and190

p1 + · · ·+ pn = 1. In other words, (6) describes the probability distribution of pf .191

An initpf constant declaration is an expression of the form (6) where pf is an initpf constant.192

An initial static law is an expression of the form193

initially F if G (7)194

where F is a fluent formula and G is a formula that contains neither action constant nor pf constant.195

A causal law is a static law, a fluent dynamic law, a pf constant declaration, an initpf constant196

declaration, or an initial static law. An action description is a finite set of causal laws.197

We use σfl to denote the set of fluent constants, σact to denote the set of action constants, σpf to198

denote the set of pf constants, and σinitpf to denote the set of initpf constants in D. For any signature199

σ′ and any i ∈ {0, . . . ,m}, we use i : σ′ to denote the set {i : a | a ∈ σ′}.200

By i : F we denote the result of inserting i : in front of every occurrence of every constant in201

formula F . This notation is straightforwardly extended when F is a set of formulas.202

I Example 2. The following is an action description in pBC+ for the transition system shown in203

Figure 1, P is a Boolean regular fluent constant, and A is an action constant. Action A toggles the204

value of P with probability 0.8. Initially, P is true with probability 0.6 and false with probability 0.4.205

We call this action description PSD. (x is a schematic variable that ranges over {t, f}.)206

caused P if > after ∼P ∧A ∧ Pf ,
caused ∼P if > after P ∧A ∧ Pf ,
caused {P}ch if > after P,
caused {∼P}ch if > after ∼P,

caused Pf = {t : 0.8, f : 0.2},
caused Init_P = {t : 0.6, f : 0.4},
initially P = x if Init_P = x.

207

({P}ch is a choice formula standing for P ∨ ¬P .)208

2 We require 0 < pi < 1 for each i ∈ {1, . . . , n} for the sake of simplicity. On the other hand, if pi = 0 or pi = 1
for some i, that means either vi can be removed from the domain of pf or there is not really a need to introduce pf
as a pf constant. So this assumption does not really sacrifice expressivity.

ICLP 2018

15:6 Probabilistic Action Language pBC+

P = t P = f

A: 0.8

A: 0.8

~A: 1; A: 0.2 ~A: 1; A: 0.2

Figure 1 A transition system with probabilistic transitions

5.2 Semantics of pBC+209

Given a non-negative integer m denoting the maximum length of histories, the semantics of an action210

description D in pBC+ is defined by a reduction to multi-valued probabilistic program Tr(D,m),211

which is the union of two subprograms Dm and Dinit as defined below.212

For an action description D of a signature σ, we define a sequence of multi-valued probabilistic213

program D0, D1, . . . , Dm so that the stable models of Dm can be identified with the paths in the214

transition system described by D. The signature σm of Dm consists of atoms of the form i : c = v215

such that216

for each fluent constant c of D, i ∈ {0, . . . ,m} and v ∈ Dom(c),217

for each action constant or pf constant c of D, i ∈ {0, . . . ,m− 1} and v ∈ Dom(c).218

We use σxm, where x ∈ {act, fl, pf}, to denote the subset of σm219

{i : c = v | i : c = v ∈ σm and c ∈ σx}.220

We define Dm to be the multi-valued probabilistic program 〈PF,Π〉, where Π is the conjunction221

of222

i : F ← i : G (8)223

for every static law (4) in D and every i ∈ {0, . . . ,m};224

i+1 : F ← (i+1 : G) ∧ (i : H) (9)225

for every fluent dynamic law (5) in D and every i ∈ {0, . . . ,m− 1};226

{0:c = v}ch (10)227

for every regular fluent constant c and every v ∈ Dom(c);228

{i : c = t}ch, {i : c = f}ch (11)229

for every action constant c; and PF consists of230

p1 :: i : pf = v1 | · · · | pn :: i : pf = vn (12)231

(i = 0, . . . ,m− 1) for each pf constant declaration (6) in D that describes the probability distribution232

of pf .233

In addition, we define the program Dinit, whose signature is 0 : σinitpf ∪ 0 : σfl. Dinit is the234

multi-valued probabilistic program235

Dinit = 〈PF init,Πinit〉236

where Πinit consists of the rule237

⊥ ← ¬(0 :F) ∧ 0:G238

Yi Wang 15:7

for each initial static law (7), and PF init consists of239

p1 :: 0 :c = v1 | · · · | pn :: 0 :c = vn240

for each initpf constant declaration (6).241

We define Tr(D,m) to be the union of the two multi-valued probabilistic program242

〈PF ∪ PF init,Π ∪Πinit〉.243

I Example 3. For the action description PSD in Example 2, PSDinit is the following multi-valued244

probabilistic program (x ∈ {t, f}):245

0.6 :: 0 : Init_P | 0.4 :: 0 :∼Init_P
⊥ ← ¬(0 :P =x) ∧ 0 : Init_P=x.

246

and PSDm is the following multi-valued probabilistic program (i is a schematic variable that ranges247

over {1, . . . ,m− 1}):248

0.8 :: i : Pf | 0.2 :: i :∼Pf
i+1 : P ← i :∼P ∧ i : A ∧ i : Pf
i+1 :∼P ← i : P ∧ i : A ∧ i : Pf

{i+1 : P}ch ← i : P
{i+1 :∼P}ch ← i :∼P
{i : A}ch {i :∼A}ch
{0:P}ch {0:∼P}ch

249

5.3 pBC+ Action Descriptions and Probabilistic Reasoning250

In this section, we illustrate how the probabilistic extension of the reasoning tasks discussed in [11],251

i.e., prediction, postdiction and planning, can be represented in pBC+ and automatically computed252

using LPMLN2ASP [16]. Consider the following probabilistic variation of the well-known Yale253

Shooting Problem: There are two (deaf) turkeys: a fat turkey and a slim turkey. Shooting at a turkey254

may fail to kill the turkey. Normally, shooting at the slim turkey has 0.6 chance to kill it, and shooting255

at the fat turkey has 0.9 chance. However, when a turkey is dead, the other turkey becomes alert,256

which decreases the success probability of shooting. For the slim turkey, the probability drops to 0.3,257

whereas for the fat turkey, the probability drops to 0.7.258

The example can be modeled in pBC+ as follows:259

Notation: t range over {SlimTurkey,FatTurkey}.
Regular fluent constants: Domains:

Alive(t), Loaded Boolean
Statically determined fluent constants: Domains:

Alert(t) Boolean
Action constants: Domains:

Load , Fire(t) Boolean
Pf constants: Domains:

Pf_Killed(t), Pf_Killed_Allert(t) Boolean
InitPf constants:

Init_Alive(t), Init_Loaded Boolean

caused Loaded if > after Load
caused Pf_Killed(SlimTurkey) = {t : 0.6, f : 0.4}
caused Pf_Killed_Alert(SlimTurkey) = {t : 0.3, f : 0.7}
caused Pf_Killed(FatTurkey) = {t : 0.9, f : 0.1}
caused Pf_Killed_Alert(FatTurkey) = {t : 0.7, f : 0.3}
caused ∼Alive(t) if > after Loaded ∧ Fire(t)∧ ∼Alert(t) ∧ Pf_Killed(t)
caused ∼Alive(t) if > after Loaded ∧ Fire(t) ∧ Alert(t) ∧ Pf_Killed_Alert(t)
caused ∼Loaded if > after Fire(t)
default ∼Alert(t)

ICLP 2018

15:8 Probabilistic Action Language pBC+

caused Alert(t1) if ∼Alive(t2) ∧ Alive(t1) ∧ t1 6= t2
caused {Alive(t)}ch if > after Alive(t),
caused {Loaded}ch if > after Loaded
caused {∼Alive(t)}ch if > after ∼Alive(t)
caused {∼Loaded}ch if > after ∼Loaded
caused ⊥ after a1 ∧ a2
caused Init_Alive(t) = {t : 0.5, f : 0.5} initially Alive(t) = b if Init_Alive(t) = b
caused Init_Loaded = {t : 0.5, f : 0.5} initially Loaded = b if Init_Loaded = b

We translate the action description into an LPMLN program and use LPMLN2ASP to answer260

various queries about transition systems, such as prediction, postdiction and planning queries.261

Prediction For a prediction query, we are given a sequence of actions and observations that occurred262

in the past, and we are interested in the probability of a certain proposition describing the result of263

the history, or the most probable result of the history. Formally, we are interested in the conditional264

probability PrTr(D,m)(Result | Act,Obs) or the MAP inference argmax
Result

PrTr(D,m)(Result |265

Act,Obs), where Result is a proposition describing a possible outcome, Act is a set of facts of the266

form i : a or i :∼a for a ∈ σact, and Obs is a set of facts of the form i : c = v for c ∈ σfl and267

v ∈ Dom(c).268

For example, in the Yale shooting example, such a query could be “Given that only the fat turkey269

is alive and the gun is loaded at the beginning, what is the probability that the fat turkey died after270

shooting is executed?”. To answer this query, we manually translate the action description above into271

the input language of LPMLN2ASP and add the following action and observation as constraints:272

273
:- not alive("slimTurkey", "f", 0). :- not alive("fatTurkey", "t", 0).274

:- not loaded("t", 0). :- not fire("fatTurkey", "t", 0).275276

Executing the command277

278
lpmln2asp -i yale-shooting.lpmln -q alive279280

yields281

282
alive(’fatTurkey’, ’f’, 1) 0.700000449318283284

Postdiction In the case of postdiction, we infer a condition about the initial state given the history.285

Formally, we are interested in the conditional probability PrTr(D,m)(Initial_State | Act,Obs) or286

the MAP inference argmax
Initial_State

PrTr(D,m)(Initial_State | Act,Obs), where Initial_State is a287

proposition about the initial state; Act and Obs are defined as above.288

For example, in the Yale shooting example, such a query could be “Given that the slim turkey was289

alive and the gun was loaded at the beginning, the person shot at the slim turkey and it died, what is290

the probability that the fat turkey was alive at the beginning?”291

Formalizing the query and executing the command292

293
lpmln2asp -i yale-shooting.lpmln -q alive294295

yields296

297
alive(’fatTurkey’, ’t’, 1) 0.666661211973298299

Planning In this case, we are interested in a sequence of actions that would result in the highest300

probability of a certain goal. Formally, we are interested in301

argmax
Act

PrTr(D,m)(Goal | Initial_State,Act)302

where Goal is a condition for a goal state, and Act is a sequence of actions a ∈ σact specifying303

actions executed at each timestep.304

Yi Wang 15:9

For example, in the Yale shooting example, such query can be “given that both the turkeys are305

alive and the gun is not loaded at the beginning, generate a plan that gives best chance to kill both the306

turkeys with 4 actions”.307

Formalizing the query and executing the command308

309
lpmln2asp -i yale-shooting.lpmln310311

finds the most probable stable model, which yields312

313
load("t",0) fire("slimTurkey","t",1) load("t",2) fire("fatTurkey","t",3)314315

which suggests to first kill the slim turkey and then the fat turkey.316

5.4 Extending pBC+ to Allow Diagnosis317

We define the following new constructs to allow probabilistic diagnosis in action domains. Note318

that these constructs are simply syntactic sugar that does not change the actual expressivity of the319

language.320

We introduce a subclass of regular fluent constants called abnormal fluents.321

When the action domain contains at least one abnormal fluent, we introduce a special statically322

determined fluent constant ab with Boolean domain, and we add323

default ∼ab.324

We introduce the expression325

caused_ab F if G after H326

where F and G are fluent formulas and H is a formula, provided that F does not contain statically327

determined constants and H does not contain initpf constants. This expression is treated as an328

abbreviation of329

caused F if ab ∧G after H.330

Once we have defined abnormalities and how they affect the system, we can use331

caused ab332

to enable taking abnormalities into account in reasoning.333

We can answer the query in Example 1 by modeling the action domain with this extension. Due334

to lack of space, we skip the details.335

6 Open Issues and Expected Achievements336

The main open issue is that we do not have a compiler that automates the translation from pBC+ to337

LPMLN. As illustrated in Section 5.3, the action language pBC+ can be executable through translation338

to LPMLN. It is desirable to have a compiler that automates this translation, so that the user can339

directly write pBC+ descriptions and does not need to worry about the translation detail. We plan to340

develop a compiler that translates action descriptions in pBC+ into LPMLN programs automatically.341

The interface and usage of the compiler will be similar to the system CPLUS2ASP [1], which342

translates the action language C+ to ASP.343

Other future works include extending pBC+ for hypothetical/counterfactual reasoning, exploring344

parameter learning in the setting of probabilistic action language, and empirically studying the345

performance of pBC+ with weal-world applications.346

Acknowledgements: We are grateful to the anonymous referees for their useful comments. This347

work was partially supported by the National Science Foundation under Grant IIS-1526301.348

ICLP 2018

15:10 Probabilistic Action Language pBC+

References349

1 Joseph Babb and Joohyung Lee. Cplus 2asp: Computing action language C+ in answer set pro-350

gramming. In LPNMR, 2013.351

2 Joseph Babb and Joohyung Lee. Action language BC+. Journal of Logic and Computa-352

tion, page exv062, 2015. URL: +http://dx.doi.org/10.1093/logcom/exv062,353

arXiv:/oup/backfile/content_public/journal/logcom/pap/10.1093_354

logcom_exv062/2/exv062.pdf, doi:10.1093/logcom/exv062.355

3 Marcello Balduccini and Michael Gelfond. Diagnostic reasoning with A-Prolog. Theory and Prac-356

tice of Logic Programming, 3:425–461, 2003.357

4 Chitta Baral, Michael Gelfond, and Nelson Rushton. Probabilistic reasoning with answer sets.358

In Logic Programming and Nonmonotonic Reasoning, pages 21–33, Berlin, Heidelberg, 2004.359

Springer Berlin Heidelberg.360

5 Chitta Baral, Sheila Mcilraith, and Tran Son. Formulating diagnostic problem solving using an361

action language with narratives and sensing. 04 2000.362

6 Chitta Baral, Nam Tran, and Le-Chi Tuan. Reasoning about actions in a probabilistic setting. In363

Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pages 507–512, 2002.364

7 Fabio Aurelio D’Asaro, Antonis Bikakis, Luke Dickens, and Rob Miller. Foundations for a probab-365

ilistic event calculus. CoRR, abs/1703.06815, 2017. URL: http://arxiv.org/abs/1703.366

06815, arXiv:1703.06815.367

8 Thomas Eiter and Thomas Lukasiewicz. Probabilistic reasoning about actions in nonmonotonic368

causal theories. In Proceedings Nineteenth Conference on Uncertainty in Artificial Intelligence369

(UAI-2003), pages 192–199. Morgan Kaufmann Publishers, 2003.370

9 Michael Gelfond and Vladimir Lifschitz. Representing action and change by logic programs.371

Journal of Logic Programming, 17:301–322, 1993.372

10 Michael Gelfond and Vladimir Lifschitz. Action languages. Electronic Transactions on Artificial373

Intelligence, 3:195–210, 1998. URL: http://www.ep.liu.se/ea/cis/1998/016/.374

11 Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz, Norman McCain, and Hudson Turner. Non-375

monotonic causal theories. Artificial Intelligence, 153(1–2):49–104, 2004.376

12 Enrico Giunchiglia and Vladimir Lifschitz. An action language based on causal explanation: Pre-377

liminary report. In Proceedings of National Conference on Artificial Intelligence (AAAI), pages378

623–630. AAAI Press, 1998.379

13 Gero Iwan. History-based diagnosis templates in the framework of the situation calculus. AI380

Communications, 15(1):31–45, 2002.381

14 Joohyung Lee, Vladimir Lifschitz, and Fangkai Yang. Action language BC: Preliminary report. In382

Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), 2013.383

15 Joohyung Lee and Yunsong Meng. Answer set programming modulo theories and reasoning about384

continuous changes. In Proceedings of International Joint Conference on Artificial Intelligence385

(IJCAI), 2013.386

16 Joohyung Lee, Samidh Talsania, and Yi Wang. Computing LPMLN using ASP and MLN solvers.387

Theory and Practice of Logic Programming, 2017. doi:10.1017/S1471068417000400.388

17 Joohyung Lee and Yi Wang. Weighted rules under the stable model semantics. In Proceedings of389

International Conference on Principles of Knowledge Representation and Reasoning (KR), pages390

145–154, 2016.391

18 Anastasios Skarlatidis, Georgios Paliouras, George A Vouros, and Alexander Artikis. Probabilistic392

event calculus based on markov logic networks. In Rule-Based Modeling and Computing on the393

Semantic Web, pages 155–170. Springer, 2011.394

19 Håkan LS Younes and Michael L Littman. Ppddl1. 0: An extension to pddl for expressing planning395

domains with probabilistic effects. 2004.396

20 Weijun Zhu. PLOG: Its Algorithms and Applications. PhD thesis, Texas Tech University, 2012.397

+ http://dx.doi.org/10.1093/logcom/exv062
http://arxiv.org/abs//oup/backfile/content_public/journal/logcom/pap/10.1093_logcom_exv062/2/exv062.pdf
http://arxiv.org/abs//oup/backfile/content_public/journal/logcom/pap/10.1093_logcom_exv062/2/exv062.pdf
http://arxiv.org/abs//oup/backfile/content_public/journal/logcom/pap/10.1093_logcom_exv062/2/exv062.pdf
http://dx.doi.org/10.1093/logcom/exv062
http://arxiv.org/abs/1703.06815
http://arxiv.org/abs/1703.06815
http://arxiv.org/abs/1703.06815
http://arxiv.org/abs/1703.06815
http://www.ep.liu.se/ea/cis/1998/016/
http://dx.doi.org/10.1017/S1471068417000400

	Introduction and Problem Description
	Background and Overview of Existing Literature
	Probabilistic Reasoning and Diagnosis in the Context of Action Languages
	Review: Language LPMLN
	Review: Multi-Valued Probabilistic Programs

	Goal of the Research
	Current Status of the Research
	Preliminary Results Accomplished
	Syntax of pBC+
	Semantics of pBC+
	pBC+ Action Descriptions and Probabilistic Reasoning
	Extending pBC+ to Allow Diagnosis

	Open Issues and Expected Achievements

