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Extended Abstract

The ongoing interest in the problem of Quantified Boolean Formulas (QBF) has
resulted in numerous solving techniques, e.g. [22, 19, 12, 23, 13], as well as various
resolution-based, clausal calculi [21, 29, 3, 20, 7] which advance our understanding
of the techniques and formalise the involved reasoning.

While a substantial progress in terms of understanding these calculi has al-
ready been made on the front of proof complexity [3, 20, 7–9, 5, 10, 15, 26, 18, 17],
the question of semantics of the involved intermediate clauses has until now re-
ceived comparatively less attention. In many cases, the semantics is left only
implicit, determined by the way in which the clauses are allowed to interact via
inferences. This is in stark contrast with propositional or first-order logic, in
which a clause can always be identified with the set of its models.

In my talk, I would like to expand on why I find this situation unsatisfying,
give examples of what I thought a uniform underlying semantics of QBF clauses
could be, and, as a teaser for our talk at SAT, briefly explain what I and Bernhard
Gleiss finally identified as a viable candidate [28].

The Mystery of QBF Tautologies. One hint that something is not quite right in
the way we understand QBF clauses can be demonstrated on the treatment of
tautologies. A tautology is a clause which contains both a literal and its comple-
ment. While in the setting of propositional and first-order logic tautologies are
harmless (in the sense that they are always vacuously satisfied and thus can be
safely added or discarded), in the study of resolution-based calculi for QBF we
encounter tautologies which can be harmful (generation of tautologies is explic-
itly prohibited in Q-Res [21], because they would make the calculus unsound),
but also useful (the long-distance resolution calculus LD-Q-Res [30, 1] gains ex-
ponential power over Q-Res by allowing generation of certain tautologies). How
does one resolve this discrepancy? Shouldn’t we give up on treating a QBF clause
as a disjunction of its literals?

Semantics and Soundness. One of most important properties of a calculus is
its soundness and one of the most common methods for showing soundness is
relating the inferences of the calculus and the semantics of the manipulated
clauses by a notion of logical entailment. We know how to show soundness of
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Fig. 1. QBF resolution calculi [8] and their simulation order.

Q-Res using semantical methods [24, 27] and I will argue that this technique is
getting implicitly extended to LD-Q-Res via the notion of a shadow clause [4]
introduced for the purpose of strategy extraction [2].

A different notion of semantics can be provided to the expansion-derived
calculi ∀Exp+Res [20] and IR-calc [6] via a translation from QBF to first-order
logic [25], and so soundness of these calculi can be established with the help
of first-order model theory [16, 11]. Extending this approach to accommodate
IRM-calc [6], a calculus which unifies the instantiation flavour inherent to the
expansion-derived calculi with the essence of long-distance steps coming from
LD-Q-Res (see Fig. 1), was one of the focal points behind this work. I will report
on the challenges and lessons the most direct route in this direction provides.

But why should we actually be so interested in semantic methods for show-
ing soundness? The main reasons is that the corresponding argument can be
structured modularly, treating each inferences rule in separation and concluding
by trivial induction along the refutation: “Since every conclusion of a rule is en-
tailed by its premises and since the empty clause cannot have a model, the input
axioms cannot have a model either.” In this sense, a semantic method enables
the notion of a sound inference, an inference that can be added to a calculus
without affecting its soundness. In contrast, the currently known proof of sound-
ness of IRM-calc [6] is global, manipulating the whole refutation monolithically
under an arguably complex inductive invariant. Should one want to add another
rule to IRM-calc, the whole proof might need to be redone from scratch.

Semantics via Strategies. In our paper [28], we propose to use strategies, more
specifically, the partial strategies for the universal player, as the central objects
manipulated within a refutation. We show how strategies arise from the formula
matrix and identify operations for obtaining new strategies by combining old
ones. We then provide the missing meaning to the intermediate clauses of the
existing calculi by seeing them as abstractions of these strategies. This way, we
obtain soundness of all the calculi from Fig. 1 in a purely local, modular way.



Although primarily viewed as a model-theoretical concept in this context,
the strategies also carry the obvious computational aspect. One can see the
above mentioned abstraction as providing a specification for a strategy when
understood as a program. This relates our approach to the Curry-Howard cor-
respondence: We can treat the specification clause as a type and the derivation
which lead to it and for which a strategy is the semantical denotation as the
implementing program. The specification of the empty clause can then be read
as “my strategy is total and, therefore, winning.”
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