
Submitted to:
DCM 2018

c© P. Giannini, M. Servetto & E. Zucca
This work is licensed under the
Creative Commons Attribution License.

A syntactic model of mutation and aliasing

Paola Giannini
Computer Science Institute, DiSIT, Università del Piemonte Orientale

Italy
paola.giannini@uniupo.it

Marco Servetto
School of Engineering and Computer Science,Victoria University of Wellington

New Zealand
servetto@ecs.vuw.ac.nz

Elena Zucca
DIBRIS, Università di Genova

Italy
elena.zucca@unige.it

Traditionally, semantic models of imperative languages use an auxiliary structure which mimics
memory. In this way, ownerships and other encapsulation properties need to be reconstructed from
the graph structure of such global memory. We present an alternative syntactic model where memory
is encoded as part of the program rather than as a separate resource. This means that execution can
be modelled by just rewriting source code terms, as in semantic models for functional programs.
Formally, this is achieved by the block construct, introducing local variable declarations, which play
the role of memory when their initializing expressions have been evaluated. In this way, we obtain a
language semantics which is more abstract, and directly represents at the syntactic level constraints
on aliasing, allowing simpler reasoning about related properties. We illustrate this advantage by ex-
pressing in the calculus the capsule property, characterizing an isolated portion of memory, which
cannot be reached through external references. Capsules can be safely moved to another location in
the memory, without introducing sharing. We state that the syntactic model can be encoded in the
conventional one, hence efficiently implemented, and outline the proof that the dynamic semantics
are equivalent.

1 Introduction
In an ongoing stream of work [8, 20, 11, 13, 14] on type systems to control sharing and mutation in

imperative languages, we have adopted a non-conventional operational model, where memory is encoded
as part of the program rather than as a separate resource. In this setting execution can be modelled by
just rewriting source code terms, as in semantic models for functional programs.

The advantage of this choice is that language semantics is more abstract, and directly represents at
the syntactic level constraints on aliasing, allowing simpler reasoning about related properties.

In this paper, we focus on the operational model itself, rather than on type systems, and formalize its
relation with the conventional model, where an auxiliary global structure mimics memory.

To informally introduce this syntactic calculus, we show examples of reduction sequences. The main
idea is to use variable declarations to directly represent the memory. That is, a declared variable is not
replaced by its value, as in standard let, but the association is kept and used when necessary, as it
happens, with different aims and technical problems, in cyclic lambda calculi [4, 17, 3]. Assuming a
program (class table) where class C has two fields f1 and f2 of type D, and class D has a field f of type D,
the term
D x=new D(y); D y=new D(x); C w={D z2= new D(z2); y.f=z1; new C(z2 ,z2)}; w.f1

starts with two declarations that can be seen as a memory consisting of two mutually referring objects.
Then there is a declarations whose right-hand-side needs to be evaluated and the final expression return
the value of a field of the object associated with this last variable. The reduction of the term is as follows

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2

D x=new D(y); D y=new D(x); C w={D z2= new D(z2); y.f=y; new C(z2 ,z2)}; w.f1 −→
D x=new D(y); D y=new D(y); C w={D z2=new D(z2); new C(z2 ,z2)}; w.f1 −→
D x=new D(y); D y=new D(y); D z2 = new D(z2); C w={new C(z2 ,z2)}; w.f1 −→
D x=new D(y); D y=new D(y); D z2 = new D(z2); C w = new C(z2 ,z2); w.f1 −→
D x=new D(y); D y=new D(y); D z2 = new D(z2); C w = new C(z2 ,z2); z2 −→
D z2 = new D(z2); z2

Evaluation proceeds left to right. We start evaluating the right-hand-side of the declaration for w, by
updating the field f of y. Then in order to evaluate the field access w.f1, two preliminary reductions are
needed: the first to move the declaration of z2 outside of the inner block, and the second to eliminate the
block. Now the field access w.f1 can be performed, getting z2, and the last step removes declarations
(memory) which are not reachable from z2, giving as final result a memory consisting of only one cyclic
object.

To illustrate how aliasing constraints are directly represented in this syntactic model, let us consider
the capsule property, characterizing an isolated portion of memory, which cannot be reached through
external references. The capsule property has been widely studied in the literature, under different names
and variants, such as isolated [15], unique [7] and externally unique [9], balloon [2, 19], island [10]. In
the syntactic calculus, capsules can be characterized in a very simple way, as block values with no free
variables. For instance, from the second line of the above example, we can see that the right-hand side of
the declaration of w is a closed block value, that is, a capsule. Moreover, differently from the conventional
model where values are only references, capsules are first-class values, which can be passed, e.g., as
arguments to methods. They can be also assigned to affine variables, that is, variables used at most once,
to be safely moved to another location in the memory, without introducing sharing. For instance, in the
above example, variable w could be declared affine. In this case starting from line 2, reduction would be
different:
D x=new D(y); D y=new D(y); Ca w={D z2 = new D(z2); new C(z2 ,z2)}; w.f1 −→
D x=new D(y); D y=new D(y); {D z2 = new D(z2); new C(z2 ,z2)}.f1 −→
D x=new D(y); D y=new D(y); {D z2 = new D(z2); new C(z2 ,z2).f1} −→
D x=new D(y); D y=new D(y); {D z2 = new D(z2); z2} −→
D z2 = new D(z2); z2

Note that if the initial term would be, instead:
D x=new D(y); D y=new D(x); C w={D z2= new D(z2); y.f=y; new C(z2 ,y)}; w.f1

then the inner block would not reduce to a capsule.
In Sect.2 and Sect.3 we define the conventional and the syntactic calculus, respectively. In Sect.4 we

show that the syntactic model can be encoded in the conventional one, hence efficiently implemented, and
outline the proof that the dynamic semantics are equivalent. Finally, in Sect.5 we draw some conclusion.

2 The conventional calculus
We illustrate our approach in the context of calculi with an object-oriented flavour, inspired by Feath-

erweight Java [16] (FJ for short). This is only a presentation choice: the ideas and results of the paper
could be rephrased in different imperative calculi, e.g., supporting data type constructors and reference
types. For the same reason, we omit features such as inheritance and late binding, which are orthogonal
to our focus.

The conventional calculus is given in Fig.1. It is similar to other imperative variants of FJ which can
be found in the literature [1, 6, 5]. We assume sets of variables x,y,z, class names C,D, field names f ,
and method names m. We adopt the convention that a metavariable which ends in s is implicitly defined
as a (possibly empty) sequence in which elements may or may not be separated by commas. In particular,
ds (and dvs in the next section) are sequences of d (and dv) and es, vs and xs are sequences of e, v and x
separated by commas.

P. Giannini, M. Servetto & E. Zucca 3

e ::= x | e.f | e.f=e′ | new C(es) | e.m(es) | {ds e} | ι expression
d ::= C x=e; declaration

v ::= ι value
E ::= [] | E .f | E .f=e′ | ι.f=E | new C(vs,E ,es) evaluation context

| E .m(es) | ι.m(vs,E ,es) | {C x=E ; ds e}

(CTX)
e|µ =⇒ e′|µ ′

E [e]|µ =⇒ E [e′]|µ ′
(FIELD-ACCESS) ι.fi|µ =⇒ vi|µ

µ(ι) = new C(v1, . . . ,vn)

fields(C) = C1 f1 . . .Cn fn ∧ 1≤ i≤ n

(FIELD-ASSIGN) ι.fi=v|µ =⇒ v|µ ι .i=v µ(ι) = new C(vs)
fields(C) = C1 f1 . . .Cn fn ∧ 1≤ i≤ n

(NEW) new C(vs)|µ =⇒ ι |µ[new C(vs)/ι] ι 6∈ dom(µ)

(INVK) ι.m(v1, . . . ,vn)|µ =⇒ e[ι/this][v1/x1 . . .vn/xn]|µ
µ(ι) = new C(vs)
meth(C,m) = 〈x1 . . .xn,e〉

(DEC) {C x=ι ; ds e}|µ =⇒{ds e}[ι/x]|µ (BLOCK-ELIM) { e}|µ =⇒ e|µ

Figure 1: Conventional calculus

An expression can be a variable (including the special variable this denoting the receiver in a
method body), a field access, a field assignment, a constructor invocation, a method invocation, or a
block consisting of a sequence of local variable declarations and a body. In addition, a (runtime) expres-
sion can be an object identifier ι . Blocks are included to have a more direct correspondence with the
syntactic calculus. In a block, a declaration specifies a type (class name), a variable and an initializa-
tion expression. We assume that in well-formed blocks there are no multiple declarations for the same
variable, that is, ds can be seen as a map from variables to expressions.

The class table is abstractly modelled by the following functions:

• fields(C) gives, for each declared class C, the sequence C1 f1 . . .Cn fn of its fields declarations.

• meth(C,m) gives, for each method m declared in class C, the pair consisting of its parameters and
body.

The reduction relation =⇒ is defined on pairs e|µ where a memory µ is a finite map from object
identifiers ι into object states of shape new C(vs). Values are object identifiers (we do not identify the
two sets since, extending the language, values would be extended to include, e.g., primitive values).

Evaluation contexts and reduction rules are straightforward. We denote by µ ι .i=v the memory where
the i-th field of the object state associated to ι has been replaced by v. Local variable declarations have
the standard substitution semantics, and are elaborated in the usual left-to-right order (no recursion is
allowed). Finally, a block with no declarations is reduced to its body.

3 The syntactic calculus
The syntax of the expressions, given in Fig.2, is the same of the conventional calculus, apart that run-

time expressions (object identifiers) are not needed. To lighten the notation, we use the same metavari-
ables.

In the examples, we generally omit the brackets of the outermost block, and abbreviate {T x=e; e′} by

4

e;e′ when x does not occur free in e′. We also assume to have integer constants, which are not included
in the formalization.

e ::= x | e.f | e.f=e′ | new C(es) | e.m(es) | {Xds e} expression
d ::= T x=e; declaration
T ::= Cµ declaration type
µ ::= ε | a optional modifier

v ::= x | {Xdvs x} value
dv ::= C x=new C(xs); evaluated declaration
E ::= [] | E .f | E .f=e′ | x.f=E | new C(xs,E ,es) | E .m(es) | x.m(vs,E ,es) | Eb evaluation context
Eb ::= {Xdvs C y=E ; ds e} | {Xdvs E } block context
Ev ::= [].f | [].f=e′ | x.f=[] | new C(xs, [],es′) | [].m(es) value context

Figure 2: Syntactic calculus: syntax, values, and evaluation contexts

Moreover, some annotations are inserted in terms. Namely:

• Local variable declarations (and method parameters) are possibly annotated with a modifier a,
which, if present, indicates that the variable is affine. An affine variable can occur at most once
in its scope, and should be initialized with a capsule, that is, an isolated portion of store. In this
way, it can be used as a temporary reference, to “move” a capsule to another location in the store,
without introducing sharing.

• Blocks are annotated with a set X of variables, assumed to be a subset of the locally declared
variables. During reduction, if a block {Xds e} should reduce to a capsule, only declarations of
variables which are not in X can be safely moved outside of the block, see rule (MOVE-DEC). In this
paper, since our focus is on the operational model, we do not care about how block annotations
are generated. Of course, a trivial overapproximation consists in taking as X the set of all declared
variables; a better approximation is taking only those which are used (that is, have some free
occurrence in initialization expressions/body), or, even better, are transitively used by the body, in
the sense formally defined below. We have shown in previous work [13, 12, 14] that through a
type and effect system it is possible to obtain the set of only the declared variables which will be
possibly connected with the final result of the block.

A sequence dvs of evaluated declarations plays the role of the memory in the conventional calculus,
that is, each dv can be seen as an association of an object state new C(xs) to a reference.

A value is either a variable (a reference to an object), or a block where the declarations are evaluated
(hence, correspond to a local memory).
We assume that, in a block value {Xdvs x}, dvs 6= ε and dvs|x = dvs, where, given a sequence of declara-
tions ds ≡ T1 x1=e1; . . .Tn xn=en; and an expression e, ds|e are the declarations of variables (transitively)
used by e, that is, free either in e or in some ei such that xi is transitively used by e.

In the syntactic calculus, capsules can be characterized in a very simple way: indeed, a value is a
capsule, written caps(v), if it is a closed block value, that is, of shape {dvs x} with no free variables.
The above requirement that all local variables must be transitively used by x is needed, indeed, since
otherwise a block value containing “useless” free variables, e.g., {C x=new C(); Dy=new D(z); x}
would be not recognized to be a capsule. Useless evaluated declarations are removed by rule (GARBAGE).

Evaluation contexts E are mostly standard. Note that values are assumed to be references, apart
from arguments of method calls, which are allowed to be block values. This models the fact that block
values (hence, capsules) are first-class values which can be passed to methods. However, they need to

P. Giannini, M. Servetto & E. Zucca 5

be “opened” when we perform an actual operation on them. We distinguish two subsets of evaluation
contexts which will play a special role in the reduction rules. A block context Eb is an evaluation context
with the shape of a block. We denote by get(Eb,x) the object state associated to x in dvs, if any, and by
inner(Eb) the variables declared in inner blocks, that is, the hole binders of the direct subcontext E (the
standard formal definition is omitted).

A value context Ev is an evaluation context with the shape of either a field access, or a field assign-
ment, or a constructor invocation, or a method invocation, where the hole (expected to be filled with a
block value) is a direct subterm (the receiver in the last case).

We write FV(ds) and FV(e) for the free variables of a sequence of declarations and of an expression,
respectively, and X[y/x], ds[y/x], and e[y/x] for the capture-avoiding variable substitution on a set of
variables, a sequence of declarations, and an expression, respectively, all defined in the standard way.

Expressions are identified modulo congruence, denoted by ∼= , defined as the smallest congruence
satisfying the axioms in Fig.3. Rule (ALPHA) is the usual α-conversion. The condition x,y 6∈ dom(dsds′)
is implicit by well-formedness of blocks. Rule (REORDER) states that we can move evaluated declarations
in an arbitrary order. Note that, instead, ds and ds′ cannot be swapped, because this could change the
order of side effects. In rule (NEW), a constructor invocation can be seen as an elementary block where a
new object is allocated.

(ALPHA) {Xds C x=e; ds′ e′} ∼= {X[y/x]ds[y/x] C y=e[y/x]; ds′[y/x] e′[y/x]}

(REORDER) {Xds dv ds′ e} ∼= {Xdv ds ds′ e} (NEW) new C(es)∼= {{x}C x=new C(es); x}

Figure 3: Syntactic calculus: congruence rules

Reduction rules are given in Fig.4.
Rule (CTX) is the usual contextual closure.

In rule (FIELD-ACCESS), a field access of shape x.f is evaluated in the block context containing the first
enclosing (evaluated) declaration for x, as expressed by the first side condition and the definition of
get(Eb,x). The fields of the class C of x are retrieved from the class table. If f is the name of a field
of C, say, the i-th, then the field access is reduced to the reference xi stored in this field. The condition
xi 6∈ inner(Eb) ensures that there are no inner declarations for xi (otherwise xi would be erroneously
bound). This can always be obtained by rule (ALPHA) of Fig.3. For instance, assuming a class table where
class A has an int field, and class B has an A field f, without this side condition, the term:
A a= new A(0); B b= new B(a); {A a= new A(1); b.f}

would reduce to
A a= new A(0); B b= new B(a); {A a= new A(1); a}

whereas this reduction is forbidden, and by rule (ALPHA) the term is instead reduced to
A a= new A(0); B b= new B(a); {A a1= new A(1); a}

In rule (FIELD-ASSIGN), a field assignment of shape x.f=y is evaluated in the block context containing the
first enclosing (evaluated) declaration for x, as expressed by the first side condition. The fields of the
class C of x are retrieved from the class table. If f is the name of a field of C, say, the i-th, then this first
enclosing declaration is updated, by replacing the i-th constructor argument by y obtaining the declaration
C x=new C(x1,xi−1,y,xi+1, . . . ,xn); as expressed by the notation E x.i=y

b (whose obvious formal definition
is omitted). Analogously to rule (FIELD-ACCESS), we have the side condition that y 6∈ inner(Eb). This
side condition, requiring that there are no inner declarations for y, prevents scope extrusion, since if

6

(CTX)
e−→ e′

E [e]−→ E [e′]
(FIELD-ACCESS) Eb[x.fi]−→ Eb[xi]

get(Eb,x) = new C(x1, . . . ,xn)∧ x 6∈ inner(Eb)
fields(C) = C1 f1 . . .Cn fn ∧ 1≤ i≤ n
xi 6∈ inner(Eb)

(FIELD-ASSIGN) Eb[x.fi=y]−→ E x.i=y
b [y]

get(Eb,x) = new C(xs)∧ x 6∈ inner(Eb)
fields(C) = C1 f1 . . .Cn fn ∧ 1≤ i≤ n
y 6∈ inner(Eb)

(INVK) Eb[x.m(v1, ..,vn)]−→ E [{Cthis=x; Cµ1
1 x1=v1; . . .Cµn

n xn=vn; e}] get(Eb,x) = new C(xs)∧ x 6∈ inner(Eb)
meth(C,m)=〈Cµ1

1 x1..C
µn
n xn,e〉

(ALIAS-ELIM) {Xdvs C x=y; ds e} −→ {X\{x}dvs ds[y/x] e[y/x]}

(AFFINE-ELIM) {X dvs Ca x=v; ds e} −→ {X\{x}dvs ds[v/x] e[v/x]} caps(v)

(BLOCK-ELIM) { /0 e} −→ e (GARBAGE) {Xdvs ds e} −→ {X\dom(dvs)ds e} (FV(ds)∪FV(e))∩dom(dvs) = /0

(MOVE-DEC) {Ydvs Cµ x={Xdvs′ ds e}; ds′ e′} −→ {Ydvs dvs′ Cµ x={Xds e}; ds′ e′}
FV(dvs′)∩dom(ds) = /0
FV(dvs ds′ e′)∩dom(dvs′)= /0
µ = a⇒ dom(dvs′)∩X= /0

(MOVE-BODY) {Ydvs {Xdvs′ ds e}} −→ {Ydvs dvs′ {Xds2 e}} FV(dvs′)∩dom(ds) = /0
FV(dvs)∩dom(dvs′) = /0

(MOVE-SUBTERM) Ev[{Xdvs dvs′ v}]−→ {X∩dom(dvs)dvs Ev[{X\dom(dvs)dvs′ v}]}
FV(dvs)∩dom(dvs′) = /0
FV(Ev)∩dom(dvs) = /0

Figure 4: Syntactic calculus: reduction rules

y ∈ inner(Eb), E x.i=y
b would take y outside the scope of its definition. For example, without this side

condition, the term

A a= new A(0); B b= new B(a); {A a1= new A(1); b.f=a1}

would reduce to

A a= new A(0); B b= new B(a1); {A a1= new A(1); a1}

which is not correct since a1 is a free variable. The rules (MOVE-DEC) and (MOVE-BODY) (see below) can be
used to move the declaration of y outside its declaration block. So the term reduces, instead, to

A a= new A(0); B b= new B(a); A a1= new A(1); b.f=a1

by applying first rule (MOVE-BODY), and then (BLOCK-ELIM). Now the term correctly reduces to

A a= new A(0); B b= new B(a1); A a1= new A(1); a1

In rule (INVK), a method call of shape x.m(v1, ..,vn) is evaluated in the block context containing the first
enclosing (evaluated) declaration for x, as expressed by the first side condition. Method m of C, if any,
is retrieved from the class table. The call is reduced to a block where declarations of the appropriate
type for this and the parameters are initialized with the receiver and the arguments, respectively, and
the body is the method body. If a parameter is affine, then the corresponding argument will be checked
to be a capsule when the formal parameter will be substituted with the associated value.
The following two rules eliminate declarations from a block.

P. Giannini, M. Servetto & E. Zucca 7

In rule (ALIAS-ELIM), a reference (non affine variable) x which is initialized as an alias of another reference
y is eliminated by replacing all its occurrences. In rule (AFFINE-ELIM), an affine variable is eliminated by
replacing its unique occurrence with the value (required to be a capsule) associated to its declaration.
By rule (BLOCK-ELIM), a block with no declarations is reduced to its body. Rule (GARBAGE) states that we can
remove a useless sequence of evaluated declarations from a block. Note that it is only possible to safely
remove declarations which are evaluated, since they do not have side effects.
With the remaining rules we can move a sequence of evaluated declarations from a block to the directly
enclosing block, as it happens with rules for scope extension in the π-calculus [18].
In rules (MOVE-DEC) and (MOVE-BODY), the inner block is the right-hand side of a declaration, or the body,
respectively, of the enclosing block. The first two side conditions ensure that moving the declarations
dvs′ does cause neither scope extrusion nor capture of free variables. More precisely: the first prevents
moving outside a declaration dvs′ which depends on local variables of the inner block. The second
prevents capturing with dvs′ free variables of the enclosing block. Note that the second condition can
be obtained by α-conversion of the inner block, but the first cannot. Finally, when the block initializes
an affine variable, the third side condition of rule (DEC) forbids to move outside the block declarations
of variables that will be possibly connected to the result of the block. This is because the block should
ultimately reduce to a closed expression.

In case of a non affine declaration, instead, this is not a problem.
Rule (MOVE-SUBTERM) handles the cases when the inner block is a subterm of a field access, field assignment,
constructor invocation, or method invocation. Note that in this case the inner block is necessarily a
(block) value. We use value contexts to express all such cases in a compact way.

4 Preservation of semantics
In this section, for clarity, we use ê and d̂s to range over expressions and sequences of declarations

of the conventional calculus, which could include object identifiers.
We show that, if an expression has a reduction sequence in the syntactic calculus, then it has an

“equivalent” reduction sequence in the conventional calculus. Note that the converse does not hold,
since an expression which is stuck in the syntactic calculus (since a capsule runtime check fails) could
reduce in the conventional calculus.

In order to state the preservation theorem, we define a relation
ρ

↪→ between expressions e of the
syntactic calculus and pairs ê|µ of the conventional calculus. The relation is labelled by an environment

ρ which maps variables1 into object identifiers. Intuitively, e
ρ

↪→ ê|µ holds if the evaluated declarations
in e have been encoded in the memory µ through ρ . More precisely, for all declarations of the shape
C x=new C(xs); occurring in e, the environment ρ is defined on x and on all elements xs. Moreover,
µ(ρ(x))= new C(ρ(xs)), and ê is obtained from e by removing such evaluated declarations and applying
the substitution ρ . Formally:

x
ρ

↪→ ι |µ if ρ(x) = ι

e.f
ρ

↪→ ê.f |µ if e
ρ

↪→ ê|µ
(other analogous propagation rules are omitted)

{Xdvs ds e}
ρ

↪→{d̂s ê} if:
dvs=C1 x1=newC1(xs1); . . .Cn xn=newCn(xsn); ds=D1 y1=e1; . . .Dm ym=em; d̂s=D1 y1=ê1; . . .Dm ym=êm;

ei
ρ

↪→ êi|µ , for i ∈ 1..m, e
ρ

↪→ ê|µ , and µ(ρ(xi)) = new Ci(ρ(xsi)), for i ∈ 1..n.

Theorem 1. If e−→? v, and e
ρ

↪→ ê|µ , then ê|µ =⇒? ι |µ ′ with v
ρ ′

↪→ ι |µ ′ for some ρ ′,µ ′ such that ρ ⊆ ρ ′,

1Assuming to obtain no shadowing by α-renaming.

8

dom(µ)⊆ dom(µ ′).

Proof. By arithmetic induction on the number of steps.

Base If e−→0 v, then e≡ v≡ {XC1 x1=new C1(xs1); . . .Cn xn=new Cn(xsn); x}. From the definition of
ρ

↪→ we have that ê = { ι}, ρ(x) = ι , and µ(ρ(xi)) = new Ci(ρ(xsi)), for i ∈ 1..n. Hence, { ι}|µ
reduces in one step, by rule (BLOCK-ELIM), to ι |µ , and v

ρ

↪→ ι |µ .

Inductive step If e−→n+1 v, then e−→ e′ and e′ −→n v. By inductive hypothesis we have that, if e′
ρ ′

↪→

ê′|µ ′, then ê′|µ ′ =⇒? ι |µ ′′ and v
ρ ′′

↪→ ι |µ ′′, for some ρ ′′,µ ′′ such that ρ ′ ⊆ ρ ′′, dom(µ ′)⊆ dom(µ ′′).
Then, it is enough to show that:

if e
ρ

↪→ ê|µ , and e−→ e′, then

ê|µ =⇒? ê′|µ ′ such that e′
ρ ′

↪→ ê′|µ ′, for some ê′, ρ ′, µ ′ such that ρ ⊆ ρ ′, dom(µ) ⊆
dom(µ ′).

This can be proved by induction on the reduction rules of the syntactic calculus.

One crucial point for the preservation theorem is that the substitution semantics, modeling “moving”
capsules from a location to another in the memory, see rule (AFFINE-ELIM), is indeed equivalent to the
conventional semantics. Note that this only holds for variables which are affine, that is, used at most
once. As a counterexample consider, for instance, the term

Ca c= {C b=new C(0) b}; c.f=3; c.f

which would reduce to

{C b=new C(0) b}.f=3; {C b=new C(0) b}.f

and then in some steps to 0. Instead with the conventional semantics the term would reduce to 3.

5 Conclusion
In this paper we presented a calculus for an imperative object oriented language whose distinguished

feature are the following

• Local variable declarations are used to directly represent the memory. That is, a declared (non
affine) variable is not replaced by its value, as in standard let, but the association is kept and used
when necessary.

• In this way, there are language values (block values) which represent (a portion of) memory, and
the fact that such portion of memory is a capsule can be modularly checked by inspecting only
the value itself, without any need to explore the whole graph structure of the global memory as it
would be in the conventional model.

• To safely handle capsules, the syntactic calculus supports affine variables with a special semantics
and block annotations. Runtime checks ensure that their initializing value is a capsule (side condi-
tion in rules (AFFINE-ELIM)), and their (unique by definition) occurrence is replaced by their capsule
value (rule (AFFINE-ELIM)).

In previous work [8, 20, 11, 13, 14], we have designed type systems which statically ensure that such
runtime checks succeed, hence execution is not stuck. In this paper we outlined a proof that the dynamic
semantics of the calculus coincides with the standard semantics of imperative calculi relying on a global
memory. In such calculi reasoning about program properties such as sharing requires the formalization

P. Giannini, M. Servetto & E. Zucca 9

of invariants on the memory and the proof of their preservation under reduction, whereas in ours this can
be done by structural induction on terms. In future work we plan to complete the proof of preservation
and add the modelling of immutable references. We will also investigate (a form of) Hoare logic on top
of our model.

References
[1] Alexander Joseph Ahern & Nobuko Yoshida (2005): Formalising Java RMI with explicit code mobility.

OOPSLA 2005, ACM Press, pp. 403–422,
[2] Paulo Sérgio Almeida (1997): Balloon Types: Controlling Sharing of State in Data Types. In: ECOOP,

LNCS 1241, Springer, pp. 32–59.
[3] Zena M. Ariola & Stefan Blom (2002): Skew confluence and the lambda calculus with letrec. Ann. Pure

Appl. Logic 117(1-3), pp. 95–168.
[4] Zena M. Ariola & Matthias Felleisen (1997): The Call-by-Need Lambda Calculus. Journ. of Functional

Programming 7(3), pp. 265–301.
[5] Lorenzo Bettini, Ferruccio Damiani & Ina Schäfer (2010): IFJ: a minimal imperative variant of FJ. TTR

133/2010, Dipartimento di Informatica, Università di Torino.
[6] Gavin M. Bierman & Matthew J. Parkinson (2003): Effects and effect inference for a core Java calculus.

ENTCS 82(7), pp. 82–107.
[7] John Boyland (2010): Semantics of Fractional Permissions with Nesting. ACM TOPLAS 32(6).
[8] Andrea Capriccioli, Marco Servetto & Elena Zucca (2016): An imperative pure calculus. ENTCS 322, pp.

87–102.
[9] David Clarke & Tobias Wrigstad (2003): External Uniqueness is Unique Enough. ECOOP , LNCS 2473,

Springer, pp. 176–200.
[10] Werner Dietl, Sophia Drossopoulou & Peter Müller (2007): Generic Universe Types. ECOOP, LNCS 4609,

Springer, pp. 28–53.
[11] Paola Giannini, Marco Servetto & Elena Zucca (2016): Types for Immutability and Aliasing Control. ICTCS

, CEUR Workshop Proceedings 1720, CEUR-WS.org, pp. 62–74.
[12] Paola Giannini, Marco Servetto & Elena Zucca (2017): Tracing sharing in an imperative pure calculus:

extended abstract. FTfJP, ACM Press, pp. 6:1–6:6.
[13] Paola Giannini, Marco Servetto & Elena Zucca (2017): A type and effect system for sharing. OOPS, ACM

Press, pp. 1513–1515.
[14] Paola Giannini, Marco Servetto & Elena Zucca (2018): A type and effect system for uniqueness and im-

mutability. OOPS, ACM Press. To appear.
[15] Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Bromfield & Joe Duffy (2012): Uniqueness

and reference immutability for safe parallelism. OOPSLA , ACM Press, pp. 21–40.
[16] Atsushi Igarashi, Benjamin C. Pierce & Philip Wadler (2001): Featherweight Java: a minimal core calculus

for Java and GJ. ACM TOPLAS 23(3), pp. 396–450.
[17] John Maraist, Martin Odersky & Philip Wadler (1998): The Call-by-Need Lambda Calculus. Journ. of

Functional Programming 8(3), pp. 275–317.
[18] Robin Milner (1999): Communicating and mobile systems - the Pi-calculus. Cambridge University Press.
[19] Marco Servetto, David J. Pearce, Lindsay Groves & Alex Potanin (2014): Balloon Types for Safe Paralleli-

sation over Arbitrary Object Graphs. WODET.
[20] Marco Servetto & Elena Zucca (2015): Aliasing Control in an Imperative Pure Calculus. APLAS, LNCS

9458, Springer, pp. 208–228.

	Introduction
	The conventional calculus
	The syntactic calculus
	Preservation of semantics
	Conclusion

