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Abstract

Unravelings, which are transformations of a conditional term rewriting system (CTRS,
for short) into an unconditional term rewriting system (TRS, for short), are useful to prove
confluence and operational termination of some CTRSs. A simultaneous unraveling has
been proposed for normal 1-CTRSs and a sequential one has been proposed for determin-
istic 3-CTRSs, the class of which includes normal 1-CTRSs. In this paper, we first show
that for a normal 1-CTRS, the simultaneously unraveled TRS is orthogonal iff so is the
sequentially unraveled one. Then, we show that for a normal 1-CTRS, if the simultane-
ously unraveled TRS is terminating, then so is the sequentially unraveled one. Finally, we
show that for a normal 1-CTRS with termination of the unraveled TRS, the simultaneously
unraveled TRS is locally confluent iff so is the sequentially unraveled one.

1 Introduction

Conditional term rewriting [14, Chapter 7] is known to be much more complicated than uncon-
ditional term rewriting in the sense of analyzing properties (cf. [12]). A popular approach to the
analysis of conditional term rewriting systems (CTRSs, for short) is to transform a CTRS into
an unconditional term rewriting system (TRS, for short) that is in general an overapproxima-
tion of the CTRS w.r.t. reduction. This approach enables us to use techniques for the analysis
of TRSs, which are well investigated in the literature.

Unravelings [9, 10, 13] are useful to prove confluence and operational termination [8] of
CTRSs because of the following results: (a) a deterministic 3-CTRS (3-DCTRS, for short)
is confluent if the unraveled TRS is confluent and the CTRS is weakly left-linear (WLL, for
short) [6, 7], and (b) a 3-DCTRS is operationally terminating if the unraveled TRS is termi-
nating [3]. A simultaneous unraveling has been proposed for normal 1-CTRSs [9, 14], and a
sequential unraveling has been proposed for 3-DCTRSs [10, 13]. Normal 1-CTRSs are 3-DCTRS
and both the simultaneous and sequential unravelings are applicable to normal 1-CTRSs. For
this reason, to prove confluence and operational termination of normal 1-CTRSs, we can use
both the simultaneous and sequential unravelings. For example, CO3 [11], a confluence prover
for CTRSs, tries to prove confluence via the simultaneous unraveling, and, if it fails, then uses
the sequential one.

In this paper, we first show that for a normal 1-CTRS, the simultaneously unraveled TRS
is orthogonal iff so is the sequentially unraveled one (Section 4). Then, we show that for a
normal 1-CTRS, if the simultaneously unraveled TRS is terminating, then so is the sequentially
unraveled one (Section 5). Finally, we show that for a normal 1-CTRS with termination of the
unraveled TRS, the simultaneously unraveled TRS is locally confluent iff so is the sequentially
unraveled one (Section 6). The second and third results imply that for a normal 1-CTRS, the
simultaneously unraveled TRS is convergent iff so is the sequentially unraveled one.
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2 Preliminaries

We omit basic notions and notations for term rewriting [2, 14], and we assume that the reader
is familiar with them. In this section, we briefly recall the notions and notations of CTRSs.

An (oriented) conditional rewrite rule over a signature F is a triple (`, r, c), denoted by
`→ r ⇐ c, such that the left-hand side ` is a non-variable term in T (F ,V), the right-hand side
r is a term in T (F ,V), and the conditional part c is a sequence s1 � t1, . . . , sk � tk of term
pairs (k ≥ 0) where all of s1, t1, . . . , sk, tk are terms in T (F ,V). In particular, a conditional
rewrite rule ` → r ⇐ c is called unconditional if the conditional part c is the empty sequence
ε, and we may abbreviate it to `→ r. We sometimes attach a unique label ρ to the conditional
rewrite rule `→ r ⇐ c by denoting ρ : `→ r ⇐ c, and we use the label to refer to the rewrite
rule. An (oriented) conditional term rewriting system (CTRS, for short) over a signature F is
a set of conditional rules over F , and it is called a term rewriting system (TRS, for short) if
every rule `→ r ⇐ c in the system is unconditional and Var(`) ⊇ Var(r).

A CTRS R is called normal if for every rule ` → r ⇐ s1 � t1, . . . , sk � tk ∈ R, all of
t1, . . . , tk are ground normal forms of Ru where Ru = {` → r | ` → r ⇐ c ∈ R}. A CTRS R
is called a 1-CTRS (3-CTRS, resp.) if Var(r, c) ⊆ Var(`) (Var(r) ⊆ Var(`, c), resp.) for every
rule ` → r ⇐ c ∈ R. A CTRS R is called deterministic (DCTRS, for short) if for every rule
`→ r ⇐ s1 � t1, . . . , sk � tk ∈ R, Var(si) ⊆ Var(`, t1, . . . , ti−1) for all 1 ≤ i ≤ k.

3 Unravelings

An unraveling U is a transformation of CTRSs into TRSs such that for every CTRS R, we
have that →R ⊆ →∗U(R) and U(R ∪R′) = U(R) ∪ R′ for any TRS R′ [9, 12]. For a CTRS R
over a signature F , we denote the extended signature of F via U by FU(R). Given a finite set
X = {o1, . . . , on} of objects, a sequence o1, o2, . . . , on under some arbitrary order on the objects

is denoted by
−→
X .

A simultaneous unraveling for normal 1-CTRSs [9] has been refined as follows.

Definition 3.1 (Usim [14]). Let R be a normal 1-CTRS over a signature F . For each condi-
tional rule ρ : `→ r ⇐ s1 � t1, . . . , sk � tk in R, we introduce a new function symbol Uρ, and
transform ρ into a set of two unconditional rules as follows:

Usim(ρ) = { `→ Uρ(s1, . . . , sk,
−−−−→
Var(`)), Uρ(t1, . . . , tk,

−−−−→
Var(`))→ r }

Note that if k = 0, then Usim(`→ r) = {`→ r}. Usim is straightforwardly extended to normal
1-CTRSs: Usim(R) =

⋃
ρ∈R Usim(ρ). Note that Usim(R) is a TRS over FUsim(R).

A sequential unraveling for 3-DCTRSs [10] has been refined as follows.

Definition 3.2 (Useq [13, 14]). Let R be a 3-DCTRS over a signature F . For each conditional
rule ρ : ` → r ⇐ s1 � t1, . . . , sk � tk in R, we introduce k new function symbols Uρ1 , . . . , U

ρ
k ,

and transform ρ into a set of k + 1 unconditional rules as follows:

Useq(ρ) = { `→ Uρ1 (s1,
−→
X1), Uρ1 (t1,

−→
X1)→ Uρ2 (s2,

−→
X2), . . . , Uρk (tk,

−→
Xk)→ r }

where Xi = Var(l, t1, . . . , ti−1) for 1 ≤ i ≤ k. Note that if k = 0, then Useq(`→ r) = {`→ r}.
Useq is straightforwardly extended to DCTRSs: Useq(R) =

⋃
ρ∈R Useq(ρ). Note that Useq(R) is

a TRS over FUseq(R).
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Example 3.3. Consider the following normal 1-CTRS [4] (278.trs in Cops1):

R1 =


proc(y ,m)→ proc(app(map(self, nil), split2(m, y)),m)

⇐ leq(m, len(y)) � true, e(split1(m, y)) � false,
proc(y ,m)→ proc(split2(m, app(map(self, nil), y)),m)

⇐ leq(m, len(y)) � false, e(split1(m, app(map(self, nil), y))) � false

∪R2

where R2 is a TRS defining app, map, split2, leq, split1, and e as in [4, pp. 42–43]. R1 is
unraveled by Usim and Useq as follows:

Usim(R1)=


proc(y ,m)→ U1(leq(m, len(y)), e(split1(m, y)), y ,m),

U1(true, false, y ,m)→ proc(app(map(self, nil), split2(m, y)),m),
proc(y ,m)→ U2(leq(m, len(y)), e(split1(m, app(map(self, nil), y))), y ,m),

U2(false, false, y ,m)→ proc(split2(m, app(map(self, nil), y)),m)


∪R2

Useq(R1) =



proc(y ,m)→ U3(leq(m, len(y)), y ,m),
U3(true, y ,m)→ U4(e(split1(m, y)), y ,m),
U4(false, y ,m)→ proc(app(map(self, nil), split2(m, y)),m),

proc(y ,m)→ U5(leq(m, len(y)), y ,m),
U5(false, y ,m)→ U6(e(split1(m, app(map(self, nil), y))), y ,m),
U6(false, y ,m)→ proc(split2(m, app(map(self, nil), y)),m)


∪R2

4 Orthogonality of Unraveled TRSs

In this section, we show that for a normal 1-CTRS R, Usim(R) is orthogonal (i.e., left-linear
and non-overlapping) iff so is Useq(R).

Let R be a normal 1-CTRS over a signature F . By definition, for a rule `→ r ∈ Usim(R),
the left-hand side ` is either in T (F ,V) or of the form Uρ(t1, . . . , tk, x1, . . . , xn) where t1, . . . , tk
are ground normal forms of Ru. In the latter case, the rule `→ r is not overlapping with any
rule in Usim(R). For this reason, by definition, if we have two overlapping rules `1 → r1, `2 →
r2 ∈ Usim(R), then we have two overlapping rules `1 → r′1, `2 → r′2 ∈ Useq(R).

Lemma 4.1. For a normal 1-CTRS R, Usim(R) is non-overlapping iff so is Useq(R).

It follows from the definition of Usim and [12, Theorem 3.9 (1)] that Usim(R) is left-linear
iff so is Useq(R). Therefore, the following theorem is a direct consequence of Lemma 4.1.

Theorem 4.2. For a normal 1-CTRS R, Usim(R) is orthogonal iff so is Useq(R).

Since orthogonality is decidable, given a normal 1-CTRS R, if we prove confluence of an
unraveled TRS (Usim(R) or Useq(R)) via orthogonality, then we can also prove confluence of
the other unraveled TRS.

5 Termination of Unraveled TRSs

In this section, we show that for a normal 1-CTRS R, if Usim(R) is terminating, then so is
Useq(R).

It is shown in [12] that for a normal 1-CTRS R over a signature F , there exists a
tree homomorphism φR such that for all terms s, t ∈ T (FUseq(R),V), if s →∗Useq(R) t, then

1 http://cops.uibk.ac.at
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Table 1: the result of proving termination of the unraveled TRSs from Cops.
AProVE NaTT CO3

result Usim(·) Useq(·) Usim(·) Useq(·) Usim(·) Useq(·)
YES 39 39 35 35 24 25
NO 9 9 9 9 — —

MAYBE 0 0 7 7 27 26
timeout (300 seconds) 3 3 0 0 0 0

φR(s) →∗Usim(R) φR(t). The tree homomorphism can be extended for dependency pairs [1] so

that for all terms s, t ∈ T (FUseq(R),V), if s] →DP(Useq(R)) t
], then (φR(s))] (= ∪→DP(Usim(R)))

(φR(t))], where DP(R′) denotes the set of dependency pairs of a TRS R′ and u] denotes
the term obtained from u by replacing the root symbol by the corresponding marked sym-
bol. This implies that if s, t ∈ T (F ,V) and s] (→∗Useq(R) · →DP(Useq(R)) · →∗Useq(R))

+ t], then

(φR(s))] (→∗Usim(R) · →DP(Usim(R)) · →∗Usim(R))
+ (φR(t))]. Thus, an infinite dependency chain of

Useq(R) can be converted to an infinite dependency chain of Usim(R).

Theorem 5.1. For a normal 1-CTRS R, if Usim(R) is terminating, then so is Useq(R).

The converse of Theorem 5.1 does not hold in general. For example, for R2 = { a → b ⇐
c � d, a � e }, Useq(R2) is terminating but Usim(R2) is not.

Since termination is undecidable, unlike orthogonality, Theorem 5.1 does not imply that (a)
if we have proved termination of Usim(R) using some method, then we could directly prove
termination of Useq(R) using some method that does not rely on Theorem 5.1. It is not easy
to prove (a) for all existing methods to prove termination of TRSs. Instead of proving (a),
we examined (a) for 51 normal 1-CTRSs in Cops.1 Our experiments were performed on OS
X 10.11.6 equipped with an Intel Core i5 CPU at 2.9 GHz with 8 GB RAM, and we used
AProVE [5], NaTT [15], and CO3 [11] as termination provers. Table 1 illustrates the number
of benchmarks for each result, and indicates that the results for Usim and Useq are almost the
same—the methods implemented in CO3 are very simple, and thus, the number of YES for Usim

and Useq are slightly different.

6 Local Confluence of Unraveled TRSs

In this section, we show that for a normal 1-CTRS R with termination of the unraveled TRSs
Usim(R) and Useq(R), if Usim(R) is locally confluent (i.e., confluent), then so is Useq(R).

Let R be a normal 1-CTRS over a signature F . As described in Section 4, every overlap of
the unraveled TRS is caused by two rules `1 → r1, `2 → r2 such that `1, `2 ∈ T (F ,V). The tree
homomorphism φR in Section 5 can be used for joinability of critical pairs of Usim(R) from
joinability of Useq(R), and vice versa.

Theorem 6.1. Let R be a normal 1-CTRS such that Usim(R) is terminating. Usim(R) is
locally confluent iff so is Useq(R).

For terminating TRSs, (local) confluence is decidable (see [2, p. 140]). Therefore, given
a normal 1-CTRS R, if we prove termination of Usim(R) or Useq(R), and if we prove local
confluence of an unraveled TRS (Usim(R) or Useq(R)), then we can also prove local confluence
of the other unraveled TRS.

4



Convergence of Simultaneously and Sequentially Unraveled TRSs for Normal CTRSs Nishida et al

7 Conclusion

In this paper, we showed that for a normal 1-CTRS, (1) the simultaneously unraveled TRS is
orthogonal iff so is the sequentially unraveled one, (2) if the simultaneously unraveled TRS is
terminating, then so is the sequentially unraveled one, and (3) under termination of the un-
raveled TRS, the simultaneously unraveled TRS is locally confluent iff so is the sequentially
unraveled one. The second and third results imply that for a normal 1-CTRS, the simultane-
ously unraveled TRS is convergent iff so is the sequentially unraveled one. If R is WLL and
Usim(R) or Useq(R) is confluent, then R is confluent [6, 7]. Therefore, to prove confluence
of a WLL normal 1-CTRS by either orthogonality of the unraveled TRS or termination and
joinability of critical pairs of the unraveled TRS, there is no difference between the use of Usim

and Useq , except for the power of a termination prover we use (see Table 1).
The sequential unraveling has been improved to preserve confluence of CTRSs as much as

possible [7, Uconf ]. We will adapt the results in this paper to the improved sequential unraveling
and then we will consider the efficiency of proving confluence via CO3. In addition, we will
compare the simultaneous and sequential unravelings w.r.t. other confluence criteria for TRSs.
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