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Abstract

Confluence is a decidable property of ground rewrite systems. We present a formalization
effort in Isabelle/HOL of the decision procedure based on ground tree transducers.

1 Introduction

Confluence is an undecidable property of term rewrite systems. Oyamaguchi [7] was the first to
prove the decidability of confluence for ground rewrite systems. Dauchet, Heuillard, Lescanne,
and Tison [3] presented a simpler decidability proof based on ground tree transducers. Comon,
Godoy, and Nieuwenhuis [2] were the first to prove that confluence of ground rewrite systems is
decidable in polynomial time and Felgenhauer [6] presented a cubic time algorithm.

In [4] the decision procedure of [3] was extended to left-linear, right-ground rewrite systems.
Dauchet and Tison [5] showed that the first-order theory of rewriting is decidable for ground
rewrite systems. In this theory properties definable by a first-order formula over rewrite
predicates like → and →∗ are expressible. This includes confluence. The decision procedure
(extended to left-linear, right-ground rewrite systems) is implemented in FORT [8]. Ground tree
transducers and their closure properties play a key role in the decision procedure.

Our long-term aim is to formalize the decision procedure in the proof assistant Isabelle/HOL
such that the output of FORT can be certified. (To this end, FORT would emit a sequence
of operations on automata that correspond to a formula; the certifier would then compute
the corresponding automata using a verified implementation.) In this paper we present a
formalization of ground tree transducers and their closure properties. Furthermore, a number of
results on the interplay between rewriting and ground tree transducers are formalized, bringing
us close to the first formalized proof of the decidability of confluence of ground rewrite systems.

Our formalization is based on IsaFoR [9]1. Our own development can be found at http://

cl-informatik.uibk.ac.at/software/fortissimo/iwc2018/. Furthermore most definitions,
theorems, and lemmas directly correspond to the formalization. These are indicated by the 4
symbol, which links to a HTML presentation in the PDF version of the paper.

2 Preliminaries

We assume familiarity with term rewriting and (bottom-up) tree automata. Let R be a ground
term rewrite system (TRS for short) over a signature F , where F contains at least one constant
(which is assured if R 6= ∅.) A tree automaton A = (Q,Qf ,∆) consists of a set of states

∗This work is supported by the Austrian Science Fund (FWF): project P30301.
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Q, a set of final states Qf , and a set of transitions ∆. Ordinary transitions have the form
f(q1, . . . , qn)→ q where q1, . . . , qn and q are states, and f ∈ F has arity n, while ε-transitions
p→ q are between states. Noting that the transitions are ground rewrite rules, we write →A
for →∆. To decide confluence of R, first a ground tree transducer (GTT for short) G = (A,B)
is constructed that recognizes a relation in between2 →R and →∗R. A GTT G consists of two
tree automata A and B that operate on the same signature. A pair of ground terms s and t is
accepted by G if s→∗A · ∗B← t; we denote the relation consisting of all such pairs (s, t) by L(G).

Next the transitive closure G∗ of G is computed by an iterative procedure in which certain
ε-transitions are added to the involved tree automata. Since (→∗R)∗ = →∗R, the GTT G∗
recognizes reachability. The relation ∗

R← is recognized by the inverse G∗− of G∗ (which is simply
obtained by interchanging the two tree automata that make up G∗).

The GTTs G∗ and G∗− are composed to obtain GTTs G1 and G2 that recognize the relations
↑R = ∗

R← · →∗R and ↓R =→∗R · ∗R←. The final step of the decision procedure is the inclusion
check L(G1) ⊆ L(G2). In [4] this is done by applying an ad-hoc recognizability preserving
transformation from GTTs to tree automata over an extended signature, and subsequently using
a decision procedure for tree language inclusion. In our formalization we instead associate RR2

automata to G1 and G2, followed by an inclusion check for RRn automata, where RRn relations
are a way of capturing n-ary relations on terms as regular tree languages [1]. The reason for
this is that RRn automata play a key role in the decision procedure for the first-order theory of
rewriting. Therefore we can reuse our results when formalizing further aspects of the theory
implemented in FORT. On the other hand, the detour via GTTs is necessary because RR2

relations are not closed under transitive closure.
The most complicated part of the above procedure is the closure of GTT relations under

composition and transitive closure. Proofs of these results are presented in detail in [1, Section 3.2].
Below we present (simpler) paper proofs that correspond to our formalization.

3 Formalizing the Confluence Check

We rely on IsaFoR’s formalization of tree automata, where a tree automaton is a triple consisting
of the set of final states (which is irrelevant for GTTs), the set of ordinary transitions, and the
set of epsilon transitions. The set of states of the automaton is left implicit. For example,

ta.make {0} {a [] → 1 , f [1 ] → 0} {(0 , 1 )}

would be an automaton that accepts fk(a) for k > 1 (the transitions are a→ 1, f(1)→ 0, and
0→ 1). Note that ordinary transitions and ε-transitions have different types, hence different
notation. We can check whether an automaton A accepts a term t in state q using q ∈ ta res A
t. The language accepted by A is provided as ta lang A. GTTs are formalized as pairs of tree
automata with the same state and function symbol types. The relation accepted by a GTT is
formalized by the predicate gtt accept, which is equivalent 4 to gtt accept ′ given in Listing 1.

The first step of the construction is to obtain a GTT from the given ground TRS R. To this
end, we follow the construction of Dauchet et al. [4]. Let 〈s〉 be a state for each subterm s�R
(meaning there is a rule l→ r in R such that s� l or s� r). Let G = (A,B) where

∆A = {f(〈t1〉, . . . , 〈tn〉)→ 〈f(t1, . . . , tn)〉 | f(t1, . . . , tn) �R} ∪ {〈l〉 → 〈r〉 | l→ r ∈ R}

and ∆B is defined symmetrically (replacing 〈l〉 → 〈r〉 by 〈r〉 → 〈l〉 in the second subset). In the

2It is also true that →∥ R is recognizable by a GTT 4 4 but for confluence this weaker result suffices.
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inductive gtt accept ′ :: ( ′q , ′f ) gtt ⇒ ( ′f , ′q) term ⇒ ( ′f , ′q) term ⇒ bool
for G where
mctxt [intro]: length ss = length ts =⇒ num holes C = length ss =⇒
∀ i < length ts. ∃ q . q ∈ ta res (fst G) (ss ! i) ∧ q ∈ ta res (snd G) (ts ! i) =⇒
gtt accept ′ G (fill holes C ss) (fill holes C ts)

Listing 1: Definition of GTT acceptance.

definition cmn ta rules::( ′f , ′v) term set ⇒ (( ′f , ′v) term option, ′f ) ta rule set
where

cmn ta rules T =
{(f (map Some ts) → Some (Fun f ts)) |f ts t . Fun f ts � t ∧ t ∈ T}

definition trs to ta A::( ′f , ′v) trs ⇒ (( ′f , ′v) term option, ′f ) ta where
trs to ta A R = ta.make {} (cmn ta rules (TRS terms R))
{(Some l , Some r) |l r . (l ,r) ∈ R}

Listing 2: Associating a GTT to a TRS.

formalization, 〈s〉 is represented by Some s.3 This gives rise to the definitions in Listing 2. The
resulting GTT is suitable for simulating sequences of R steps, by the following theorem.

Theorem 1. →R ⊆ L(A,B) 4 and L(A,B) ⊆ →∗R. 4

Example 2. We illustrate the construction on the ground TRS R consisting of the rules a→ f(a),
a→ b, and f(b)→ c. We construct the GTT G = (A,B) with ∆ consisting of the rules

a→ 〈a〉 b→ 〈b〉 c→ 〈c〉 f(〈a〉)→ 〈f(a)〉 f(〈b〉)→ 〈f(b)〉

to recognize all subterms in the rules of R, ∆A = ∆ ∪ {〈a〉 → 〈f(a)〉, 〈a〉 → 〈b〉, 〈f(b)〉 → 〈c〉},
and ∆B = ∆ ∪ {〈f(a)〉 → 〈a〉, 〈b〉 → 〈a〉, 〈c〉 → 〈f(b)〉}. Note that L(G) accepts more than →∥ R.
For instance, (a, f(b)) ∈ L(G) as a→∗A 〈f(a)〉 ∗B← f(b) but a→∥ R f(b) does not hold.

To illustrate one of the minor (but tedious) issues that come up in the formalization, note
that the state type of the GTT seeps into terms accepted by the GTT: they are objects of type
( ′f , ( ′f , ′q) term option) term. On the other hand, R∗ is a relation between terms of type ( ′f ,
′v) term, with a completely different variable type. But actually, since we deal with ground
terms, the variable type does not matter. In order to express this property, we use the existent
adapt vars function that changes the variable type arbitrarily.

The next step in the decision procedure is the computation of the transitive closure. However,
that computation builds on the composition of GTT relations, so we present that first. The
composition combines the transitions of the constituent GTTs, and adds carefully chosen epsilon
transitions.

Definition 3. 4 Let G1 = (A1,B1) and G2 = (A2,B2) be GTTs. We let

GTT comp(G1,G2) = (∆A1
∪∆A2

∪∆ε(B1,A2),∆A1
∪∆A2

∪∆ε(A2,B1))

Here ∆ε(A,B) = {(p, q) | t→∗A p and t→∗B q for some t ∈ T (F)}.
3This use of the option type is not really necessary, but it was helpful to distinguish states and terms while

developing the proofs.

3

http://cl-informatik.uibk.ac.at/software/fortissimo/iwc2018/GCR/GTT_TRS.html#lem:gtt_accept_to_rstep_rtrancl
http://cl-informatik.uibk.ac.at/software/fortissimo/iwc2018/GCR/GTT_TRS.html#lem:rstep_to_gtt_accept
http://cl-informatik.uibk.ac.at/software/fortissimo/iwc2018/GCR/GTT_Compose.html#def:%CE%94_%CE%B5


Formalizing GTTs in Isabelle/HOL Felgenhauer, Middeldorp, Prathamesh, Rapp

This construction is simplified compared to [1, 3]. Compared to [3], only ε-transitions are
added, while [1] actually adds fewer ε-transitions than our definition, but at the cost of a less
symmetric definition.

Example 4. Continuing Example 2, we let Q be the set of states in ∆ and compute ∆ε(A,B) =
IdQ ∪ {〈b〉 → 〈a〉, 〈c〉 → 〈f(b)〉} ∪ {〈c〉, 〈f(a)〉, 〈f(b)〉} × {〈a〉, 〈f(a)〉} and ∆ε(B,A) = ∆ε(A,B)−.
For instance, the transition rule 〈c〉 → 〈a〉 ∈ ∆ε(A,B) is witnessed by the term f(b).

Theorem 5. 4 If R1 and R2 are recognizable relations then R1 ◦R2 is a recognizable relation.
More precisely, if R1 and R2 are recognized by G1 and G2, where the states of G1 and G2 are
disjoint, then R1 ◦R2 is recognized by GTT comp(G1,G2).

The transitive closure of a GTT G is computed by taking G0 = G and then iterating
Gn+1 = GTT comp(Gn,Gn) until a fixed point is reached. If G is finite, this process terminates.
4 We have proved that the GTT produced that way accepts the transitive closure of the
original GTT. 4 One interesting aspect is that transitivity of the resulting GTT relation follows
immediately from the first part of the proof of Theorem 5 (where the assumption that the states
of G1 and G2 are disjoint is not used). 4

Example 6. Returning to our example, let A1 = A ∪∆ε(B,A) and B1 = B ∪∆ε(A,B). The
GTT G1 = (A1,B1) recognizes →∗R while its inverse ∗R← is recognized by G−1 = (B1,A1). Next
we compose G−1 and G1 to obtain a GTT G↑ that recognizes ∗R← · →∗R. This requires a renaming
of states in one of the GTTs. Similarly, composing G1 and G−1 produces a GTT G↓ recognizing
the joinability relation →∗R · ∗R←.

Finally, we need to check whether one GTT language is a subset of another one. To this
end, we formalized the result 4 that any GTT relation is an RR2 relation.

Theorem 7. 4 Let R be a ground TRS and let G = (A,B) be the GTT simulating R-steps as
in Theorem 1. Then R is confluent on ground terms if and only if

ta lang(GTT to RR2(GTT comp(G∗−,G∗))) ⊆ ta lang(GTT to RR2(GTT comp(G∗,G∗−)))

Example 8. To finish our running example, we transform G↑ and G↓ into RR2 automata. A
subsequent language inclusion check returns a negative answer from which we infer that the
TRS R lacks confluence. Indeed there are non-joinable peaks, e.g., b← a→ f(a)→ f(b)→ c.

Note that the results presented so far are purely theoretical, and cannot be executed directly.
Here we sketch how to derive executable code for ∆ε, cf. Definition 3. Note that a direct
implementation of the definition would require iterating over all ground terms t, of which there
are infinitely many. The first step is to define an inductive set ∆′ε 4 that is equal to ∆ε: 4

f(~p)→ p ∈ A f(~q)→ q ∈ B len ~p = len ~q = n (pi, qi) ∈ ∆′ε (1 6 i 6 n)

(p, q) ∈ ∆′ε
cong

(p, q) ∈ ∆′ε p→ p′ ∈ A
(p′, q) ∈ ∆′ε

ε1
(p, q) ∈ ∆′ε q → q′ ∈ B

(p, q′) ∈ ∆′ε
ε2

We then plug this into a generic algorithm for Horn inference (which we regard as the foundation
of saturation algorithms), which works on inference rules of the shape a1 · · · an → a, where
ai, a are all of the same type. The idea here is that proving correctness and termination can be
done once and for all on this generic level, and then be reused for any saturation procedure.

In the case of ∆′ε, the inference rules work on pairs of states (p, q), i.e., the potential elements
of ∆′ε. We turn the inferences of ∆′ε into Horn clauses by keeping only the premises of the form

4
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(p, q) ∈ ∆′ε, evaluating the other premises immediately based on A and B. 4 Then we show
that the resulting Horn inferences characterize ∆′ε. 4 In order to use the generic procedure, we
have to provide a function that computes the inferences with no premises (∆ε

′ infer0), 4 and
a function that computes inferences that use a particular premise (p, q) and other premises from
a given set (∆ε

′ infer1). 4 With those functions we can instantiate the generic procedure.

∆ε
′ impl A B = saturate impl (∆ε

′ infer0 A B) (∆ε
′ infer1 A B)

Partial correctness follows from partial correctness of the generic procedure. 4

4 Conclusion

We have outlined an ongoing effort to formalize decidability of (ground) confluence of ground
TRSs, which is a useful test case for the decidability of the full first-order theory of rewriting for
ground TRSs. The main remaining challenge is to provide executable algorithms for all these
results and prove their termination. We have already made significant progress to this end; in
fact there are executable versions of all constructions needed for the confluence check, except for
the final tree language subset check.

Our immediate goal is to provide a verified confluence checker for ground TRSs. Many
tasks remain as future work. We want to adapt the basic TRS to GTT construction to cover
the larger class of linear, variable separated (extended) TRSs, which consist of rewrite rules
` → r such that ` and r are linear terms without common variables. For the full first-order
theory of rewriting, while we already have constructions for intersection, union, complement,
cylindrification and projection (the latter are used for dealing with quantifiers), these are not
yet executable.
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