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Abstract

We study rewriting systems over free modules, that is linear combinations of free gen-
erators with noninvertible coe�cients. We provide a su�cient condition in terms of local
con�uence restricted to generators for the global rewrite relation to be con�uent: this con-
dition is formulated in terms of syzygies. When the coe�cients belong to a domain, we
equip the set of syzygies with a module structure, which provides a �ner criterion: the
local con�uence has to be checked over a subset of syzygies, namely a generating set for
the module structure.

1 Introduction

The diamond lemma for noncommutative polynomials was introduced by Bergman [4] for com-
puting normal forms in noncommutative algebras using rewriting theory. The diamond lemma
together with the works of Bokut [5] gave birth the theory of noncommutative Gröbner bases [7].
The latter provides applications in various areas of noncommutative algebra: study of embed-
ding problems, this was the motivation of Bokut and Bergman, homological algebra [1, 6] or
Koszul duality [2, 3], for instance.

The diamond lemma is based on the observation that the set of noncommutative polyno-
mials admitting a unique normal form is a vector space. Hence, the set of noncommutative
monomials being a linear basis of noncommutative polynomials, it is su�cient to check the
local con�uence property over these monomials. The diamond lemma asserts that when the so
called overlapping/inclusion ambiguities (which correspond to critical pairs for term rewriting)
are joinable, then every monomial admits a unique normal form, so that the global rewrite
relation is con�uent.

In this work, we are interested in the study of linear combinations of monomials where
the coe�cients in these combinations do not form a �eld. In this framework, elements with
a unique normal form do not form a subspace anymore: consider for instance a rewrite rule
2y −→ x, where the coe�cients belong to the ring of integers Z. Since 2 is not inverible in Z,
the monomial y is a normal form but y + y = 2y is not a normal form! This observation has
the following consequence: a rewrite relation such that every monomial admits a unique normal
form has no reason to be con�uent. For instance, consider the two rewrite rules 2y −→ −x
and 2x −→ −y. Then, one can show that for every n ∈ Z, nx and ny admit a unique normal
form, but 2x+ 2y rewrites both in x and y which are not joinable!

In Theorem 4.5, we present an analogous version of the diamond lemma for rewriting sys-
tems over linear combinations with noninveritble coe�cients. This work does not concern
noncommutative polynomials but the more general case of free left module (formal de�nitions
are given at the beginning of the next section): we do not take into account the structure of
monomials. The adaptation of the criterion of Theorem 4.5 to noncommutative polynomials
with noninvertible coe�cients is a further work. Two other further works should be mentionned
there: when the coe�cients are Z, the underlying module structure is the one of abelian groups,
so that we wish to develop rewriting theory in this context. Another perspective is the study
of the case where monomials are terms of the λ-calculus, which is the framework of algebraic
λ-calculus [8].



2 Rewrite systems over free left modules

Throughout the paper, we �x a not necessarily commutative ring R and a set X. We denote by
RX the free left module over X, that is the set of �nite formal linear combinations of elements
of X with coe�cients in R. Given such two elements f =

∑
rxx and g =

∑
sxx, the sum

f + g is equal to
∑

(rx + sx)x and the left product of r ∈ R with f is equal to
∑

(rrx)x,
where rrx is the product of r and rx in R.

A set R of rewrite rules over RX is said to be left-monomial if its elements are of the form
rx −→ f , where r, x and f belong to R, X and RX, respectively. Our �rst objective is to
extend R into a rewrite relation on RX, still written −→, in such a way that the congruence
relation induced by −→ is the left ideal generated by R. In other words, we want to have the
following equivalence:

f
∗←→ g ⇐⇒ f − g =

∑
s (rx− f) , (1)

with the sum over a �nite set of indexes (s, rx −→ f) ∈ R×R. For that, we choose repre-
sentatives for every left class modulo r, so that every element s ∈ R admits a decomposition
r1r+r2 where r2 is the chosen representative of the left class of s. The rewrite relation induced
by R is de�ned by

(r1r + r2)x + g −→ r1f + r2x + g, (2)

where x belongs with a zero coe�cient in the decomposition of g. The rewrite relation (2)
satis�es the equivalence (1).

Example 2.1. When the ring R is left euclidean, we choose the representatives of left classes as
the set of remainders for the euclidean division. Here, we present the explicit description of the
rewrite relation for two examples of euclidean rings: the ring of integers Z and a commutative
�eld K. Consider a rewrite rule nx −→ f over ZX and an integer m. By euclidean division,
m is equal to qn+ r. Then, mx + g rewrites into qf + rx + g. A commutative �eld K is an
euclidean ring where the euclidean division of µ by λ is µ = (µ/λ)λ. Then, the rewrite rule
λx −→ f induces the rewrite step µx + g −→ (µ/λ) f + g.

3 Compatible termination order

In the next section, we formulate the diamond lemma for rewrite relations over RX induced by
a left-monomial set of rewrite rules R. For that, we assume that the rewrite relation induced
by R satis�es the following hypothesis:

∀ (rx −→ f, h) ∈ R ×RX, rx+ h ↓ f + h, (3)

where f ↓ g means that f and g are joinable. Moreover, we also need that the rewrite relation
is equipped with a compatible termination order de�ned in De�nition 3.1. In this de�nition we
use the following notation: given f ∈ RX, we denote by supp (f) the set of elements of X
which belong to the decomposition of f with nonzero coe�cient.

De�nition 3.1. A termination order compatible with R is a is a well-founded order � over
RX such that for every f, g, h ∈ RX and every a, b ∈ R the following conditions are
satis�ed:

i. if f −→ g, then g � f ,



ii. if g � f and supp (h) ∩ supp (f) = ∅, then g + h � f + h,

iii. if f � ax, g � by and ax+ by 6= 0, then f + g � ax+ by,

iv. if f � ax and ab 6= 0, then bf � (ba)x.

Example 3.2. Assume that that for every rx −→ f ∈ R, x does not belong to supp (f).
Then, one can show that R satis�es (3). Moreover, assume that X is equipped with a well-
founded order �. Then, we de�ne the order on RX, still written �, as the restriction of the
multi-set order to �nite subsets of X: we have g ≺ h if supp (g)∩ supp (h) 6= ∅ and for every
x ∈ supp (g) such that x /∈ supp (h), there exists y ∈ supp (h) such that y /∈ supp (g) and
x ≺ y. Then, we can show that � is compatible with R.

The diamond lemma presented in the next section concerns rewrite systems satisfying the
hypothesis (3) and equipped with a compatible termination order. In the sketch of proof of the
diamond lemma, we we use Lemma 3.3. We need the following de�nition: given f ∈ RX, we
say that the rewrite relation −→ is locally con�uent at f if for every g, h, k ∈ RX such that
g ≺ f , h ≺ f , k ≺ f , g −→ h and g −→ k, we have h ↓ k.

Lemma 3.3. Assume that R is equipped with a compatible termination order and satis�es the
hypothesis (3) and that −→ is locally con�uent at f. For every f1, f2, g1, g2 � f such that
f1 ↓ g1 and f2 ↓ g2, and for every r ∈ R, we have f1 + f2 ↓ g1 + g2 and rf1 ↓ rg1.

4 The diamond lemma

The diamond lemma [4] gives a criterion for testing local con�uence over so called critical pairs.
In Corollary 4.5, we formulate the diamond lemma for rewriting systems over free modules,
which consists in testing local con�uence for generating sets of syzygies. These generating sets
are analogous to critical pairs in our framework.

De�nition 4.1. Let p = (rx −→ f, sx −→ g) be a pair rewrite rules whose left-hand side
are multiple of a common element x. A syzygy of p is a tuple (r1, r2, s1, s2) of elements
of R such that r2 and s2 are the chosen representatives of their left classes modulo r ans s,
respectively, and r1r + r2 = s1s+ s2. The set of syzygies of p is written syz (p). Moreover, a
syzygy (r1, r2, s1, s2) is said to be con�uent if we have r1f + r2x ↓ s1g + s2x.

Theorem 4.2. Let R be a left-monomial set of rewrite rules satisfying hypothesis (3) and let
� be a termination order compatible with −→. The rewrite relation −→ is con�uent if and only
if for every pair of rewrite rules p = (rx −→ f, sx −→ g), every syzygy of p is con�uent.

Sketch of proof. Let (r1, r2, s1, s2) ∈ syz (p). Letting h = (r1r + r2)x = (s1s+ s2)x, we
observe that h rewrites into r1f + r2x and s1g + s2x, which shows the direct implication.

Assume that for every p = (rx −→ f, sx −→ g) and for every (r1, r2, s1, s2) ∈ syz (p),
we have r1f + r2x ↓ s1g+ s2x and let us show that −→ is con�uent. The rewrite relation −→
is terminating by de�nition of compatibility with a termination order, so that it is su�cient to
show that it is locally con�uent, or equivalently that is locally con�uent at u for every u. We
show the latter by induction on u: assume that −→ is con�uent at every v � u and that two
rewrite rules rx −→ f and sy −→ g apply to u. Two cases have to be investigated according
to x 6= y or x = y for proving that these two rewrite rules provide joinable terms.



First, if x 6= y, we let u = (r1r + r2)x + (s1s+ s2) y + h and we have the following
con�uence diagram:

r1f + r2x+ (s1s+ s2) y + h ∗

))
f ′ ∗

!!
(r1r + r2)x+ (s1s+ s2) y + h

22

,,

r1f + r2x+ s1g + s2x+ h

∗ //

∗ 00

h′

g′ ∗

==

(r1r + r2)x+ s1g + s2y + h ∗

55

The term f ′ (respectively g′) and the two arrows coming to f ′ (respectively g′) exist by hy-
pothesis (3). By de�nition of a compatible rewrite order, we have r1f + r2x+ s1g+ s2x+ h �
(r1r + r2)x+(s1s+ s2) y+h, so that −→ is con�uent at r1f +r2x+s1g+s2x+h by induction
hypothesis, which gives h′ and the two arrows coming to h′.

If x = y, we let u = (r1r + r2)x + h = (s1s+ s2)x + h and we have the following
con�uence diagram:

r1f + r2x+ h ∗

&&
f ′ ∗

""
(r1r + r2)x+ h = (s1s+ s2)x+ h

11

--

h′ + h

∗ //

∗ //

h′′

g′ ∗

==

s1g + s2y + h ∗

88

The tuple (r1, r2, s1, s2) is a syzygy, so that there exists h′ such that r1f + r2x
∗−→ h′

∗←−
s1g+ s2x. By de�nition of a compatible termination order, h′+h′, r1f + r2x and s1g+ s2x are
smaller than u. The existence of f ′ and g′ together with their coming arrows are consequences
of Lemma 3.3. The existence of h′′ and its coming arrows are due to the induction hypothesis.

Our diamond lemma asserts that the con�uence property has to be checked over subsets of
syzygies instead of all the syzygies in the case where the ring R is a domain, that is rs = 0 if
and only if r = 0 or s = 0. These subsets are generating set for an R-module structure over
syzygies given by the following operations:

i. let syz1 = (r1, r2, s1, s2) and syz2 = (r′1, r
′
2, s

′
1, s

′
2) be two syzygies of p. We

write r2 + r′2 = r3r + r4 and s2 + s′2 = s3s + s4. Then, we get a new syzygy
syz1+syz2 = (r1 + r′1 + r3, r4, s1 + s′1 + s3, s4) since we have (r1 + r′1 + r3) r + r4 =
(r1 + r′1) r + (r2 + r′2) = (s1 + s′1) s + (s2 + s′2) = (s1 + s′1 + s3) s + s4.

ii. Let syz = (r1, r2, s1, s2) be a syzygy of p and let t ∈ R. We write tr2 = r3r + r4
and ts2 = s3s + s4. Then, we get a new syzygy tsyz = (tr1 + r3, r4, ts1 + s3, s4)
since we have (tr1 + r3) r + r4 = t (r1r + r2) = t (s1s+ s2) = (ts1 + s3) s+ s4.



Remark 4.3. If R is not a domain, then the element r3 in i. and ii. is not unique, so that
the sum of two syzygies and the product of a syzygy by an element of R is not well-de�ned.

Lemma 4.4. Assume that R is a domain. Let p = (rx −→ f, sx −→ g), let syz1 =
(r1, r2, s1, s2) and syz2 = (r′1, r

′
2, s

′
1, s

′
2) be two con�uent syzygies of p and let t ∈ R. If

−→ is con�uent at (r1 + r′1 + r3) r+r4 = (s1 + s′1 + s3) s+s4 (respectively (tr1 + r3) r+r4) =
(ts1 + s3) s+ s4), then syz1 + syz2 (respectively tsyz1) is con�uent.

Sketch of proof. We only show that the sum of two con�uent syzygies syz1 + syz2 is con�uent.

Let h, h′ ∈ RX such that r1f+r2x
∗−→ h

∗←− s1g+s2x and r
′
1f+r

′
2x

∗−→ h′
∗←− s′1g+s

′
2x.

Letting t = (r1 + r′1 + r3) r + r4 = (s1 + s′1 + s3) s+ s4, we have the following diagram:

(r1 + r′1 + r3) f + r4x ∗

** h1

(r1 + r′1) f + (r3r + r4)x
∗

44

∗
** h3

tx

55

))

h+ h′ ∗

44

∗
** h4

(s1 + s′1) g + (s3s+ s4)x ∗

**

∗

44

h2

(s1 + s′1 + s3) g + s4x
∗

44

The elements h1, h2 and their coming arrows are constructed using hypothesis (3). The
elements h3 and h4 and their coming arrows are constructed using that −→ is con�uent at tx
and Lemma 3.3. Finally, using again an inductive argument of con�uence, we close the diagram
and deduce that syz1 + syz2 is con�uent.

Using similar arguments, we show that tsyz1 is con�uent, which concludes the proof.

An adaptation of the proof of Theorem 4.2 using Lemma 4.4 provides our diamond lemma,
formulated as follows:

Theorem 4.5. Assume that R is a domain and that for every p = (rx −→ f, sx −→ g),
every element of a generating set of syz(p) is con�uent. The rewrite relation −→ is con�uent.

Example 4.6. Assume thatR is a commutative �eldK. For every p = (λx −→ f, µx −→ g),
syz (p) is the vector space spanned by (1/λ, 0, 1/µ, 0). From Corollary 4.5, −→ is con�uent if
and only if for every pair of rewrite rules (λx −→ f, µx −→ g), we have f/λ ↓ g/µ, which
is equivalent to each x ∈ X admits a unique normal form.
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