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Abstract

Higher categories are a generalization of standard categories where there are not only
1-cells between 0-cells but more generally n+1-cells between n-cells. Semi-strict categories,
such as Gray categories in dimension 3, is a flavour of higher categories suited for rewriting
and used in this work. Here, we are interested in proving coherence of certain algebraic
structures in dimension 3 using rewriting, where “coherence” is the property that there
is at most one 3-cell between two 2-cells. Checking coherence then amounts to compute
critical pairs of a rewriting system and use a variant of Newmann’s lemma. In this setting,
an algorithm exists to compute these critical pairs.

Introduction

It is well-known that rewriting can be used to manipulate algebraic theories. In this setting,
the terms are the algebraic terms that arise from the signature of the theory and rewrite rules
come from an orientation of the equations of the theory. In the context of higher categories,
these techniques need to be adapted. Take monoids as an example. A monoid is given by a
set M , an operation m : M × M → M and an element e ∈ M such that m(m(x, y), z) =
m(x,m(y, z)), m(x, e) = x = m(e, x). More generally, there is a notion of monoid in 2-
category where the elements m and e are 2-generators in a 2-category: m : M ∗0 M ⇒ M
and e : 1 ⇒ M and such that equalities of 2-cells similar to the previous ones hold. The term
rewriting system (or TRS ) associated to the theory of monoids is then given by the signature
S = {m : M×M → M, e : 1 → M} and the following rewrite rules on formal compositions
obtained by orienting the equations: m ◦ (m× 1M )→ m ◦ (1M ×m), m ◦ (e× 1M )→ 1M and
m ◦ (1M × e)→ 1M . The standard tools of rewriting i.e., termination, critical pair lemma and
Newman’s lemma entails uniqueness of normal forms. In order to go from interpretations in
n-categories to interpretations in n+1-categories, the usual recipe is to replace equations on
n-cells by n+1-isomorphisms and by adding equations on the new n+1-cells, called coherence
cells, in order to entail the property of coherence, which states that, modulo the equations,
there is at most one 3-cell between two 2-cells. For monoids, by going from dimension 2 to 3,
we obtain the theory of pseudomonoids, which is important in category theory since the notion
of monoidal category can be seen as a pseudomonoid in the category of categories.

Several variants of 3-categories exist with different levels of expressivity and ease to ma-
nipulate. On the one end of the spectrum, weak 3-categories are the most general but are
complex since they have a lot of coherence cells. On the other end, strict 3-categories have
no coherence cells, only simple equations. But they are less expressive. Gray categories [4, 5]
are a middle ground between the two. In this work, we will study interpretations of algebraic
structures inside Gray categories. As a previous work[3] has shown, in order to have coherence,
it is sufficient to enforce equations on coherence cells that come from the critical branchings (or
critical pairs) of an adequate rewriting system. So there is a strong need for a tool that can
automate the computation of these critical branchings.
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1 Signatures and rewriting system

A graph (S0,S1, s0, t0) is given by a set S0 of points and a set S1 of arrows and source and target
functions s0, t0 : S1 → S0. We denote S∗1 the set of paths in the graph and s∗0, t

∗
0 : S∗1 → S0

the source and the target functions on paths, and ∗0 the composition operation on paths. A
signature S is given by a graph (S0,S1, s0, t0), by a set of 2-generators S2 with source and target
functions s1, t1 : S2 → S∗1 such that s∗0 ◦ s1 = s∗0 ◦ t1 and t∗0 ◦ s1 = t∗0 ◦ t1. An example of signature
is the monoid signature P, where:

P0 = {?} P1 = {1 : ?→ ?} P2 = {µ : 2⇒ 1, η : 0⇒ 1}

Note that we write n for the path ?
1−→ ?...?

1−→ ?︸ ︷︷ ︸
n

. A whisker w is then given by two paths

u, v ∈ S∗1 and a 2-generator α ∈ S2 and is denoted u ∗ α ∗ v. The 1-source and the 1-target are
defined as u ∗0 s1α ∗0 v and v ∗0 t1α ∗0 v and are respectively denoted s1w and t1w. A 2-cell
α is given by a sequence of whiskers w1, ..., wp that are 1-composable, i.e., t1wi = s1wi+1. We
denote α as w1 ∗ ... ∗ wp. The 1-source and the 1-target of α are defined as s1w1 and t1wp and
are denoted s1α and t1α respectively. We denote S∗2 the set of 2-cells. For two 1-composable
cells α = w1 ∗ ... ∗ wp and β = w′1 ∗ ... ∗ w′q, we define the 1-composition α ∗1 β as the 2-cell
w1 ∗ ... ∗ wp ∗ w′1 ∗ ... ∗ w′q. Note that 2-cells can easily be represented as string diagrams. For
example, in the case of monoids, if we picture η with and µ with , the following two 2-cells
can be defined:

(0 ∗ η ∗ 3) ∗ (0 ∗ µ ∗ 2) ∗ (1 ∗ µ ∗ 0) ∗ µ = (0 ∗ η ∗ 3) ∗ (2 ∗ µ ∗ 0) ∗ (0 ∗ µ ∗ 1) ∗ µ =

Note that in these pictures, there can be only one generator at a given height, and the relative
heights matter, so that the two 2-cells are not considered to be equal (contrarily to 2-categories).
A rewriting system consists of a signature S together with a set S3 of 3-generators, or rewriting
rules, equipped with source and target functions s2, t2 : S3 → S∗2. For example, the rewriting
system of monoids, which extends the associated signature, has the following rewrite rules:

A : (µ ∗ 1) ∗ µV (1 ∗ µ) ∗ µ L : (η ∗ 1) ∗ µV µ R : (1 ∗ η) ∗ µV µ

V V V

A context E = φ ∗ (u ∗ ∗ v) ∗ ψ is given by u, v ∈ S∗1 and φ, ψ ∈ S∗2. For A a rewrite rule, E is
compatible with θ when E[A] = φ ∗1 (u ∗0 A ∗0 v) ∗1 ψ exists. A rewriting step R is then given
by a rewrite rule A ∈ S3 and a compatible context E. It can be seen as an elementary 3-cell of
type φ ∗1 (u ∗0 s2A ∗0 v) ∗1 ψ V φ ∗1 (u ∗0 t2A ∗0 v) ∗1 ψ. A rewriting path is a finite sequence of
composable rewriting steps R1, ..., Rn with Ri : θi V θi+1. We denote such a rewriting path as
R1∗...∗Rn or 1θ for the empty path starting from the 2-cell θ. We write S∗3 for the set of rewriting
paths, and s∗2, t

∗
2 : S∗3 → S∗2 for the associated source and target functions. If R : θ1 V θ2 is a

rewrite step, we define the reverted rewrite step R−1 : θ2 V θ1 as a formal inverse of R. Then,
a rewriting zigzag is a sequence Z1, ..., Zn where Zi is either a rewrite step or a reverted rewrite
step and such that t2Zi = s2Zi+1. We denote such a rewriting zigzag as Z1 ∗ ...∗Zn. We denote
S>3 the set of rewriting zigzags. If Z = Z1 ∗ ...∗Zn, we define Z−1 as the zigzag Z ′ = Z ′n ∗ ...∗Z ′1
with Z ′i = R−1 if Zi = R and Z ′i = R if Zi = R−1. There is also a composition operation of
zigzags given by the concatenation of sequences. A coherated rewriting system is given by a
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rewrite system S and a congruence == on the rewriting zigzags S>3 . By “congruence”, we mean
that == is an equivalence relation compatible with the difference compositions and the inverse
operations. For example, if Z1

== Z2 then U ∗ Z1 ∗ V == U ∗ Z2 ∗ V and Z1
−1 == Z2

−1. The
standard congruence ==S on a rewriting system S is the smallest congruence such that:

1. if E1[A1] and E2[A2] are two rewrite steps of same source θ and “acting on independent
zones of θ” (notion that will be precised later) then E1[A1] ∗ E′2[A2] ==S E2[A2] ∗ E′1[A1]
where E′1 is the “residual context” of E1 after the rewrite step E2[A2] and similarly for
E′2.

2. if R is a rewrite step, then R ∗R−1 ==S 1s2R and R−1 ∗R ==S 1t2R

For instance, in the rewriting system of monoids, there is the following instance of 1:

V V ==S V V

We say that a congruence == is standard when ==S ⊂ ==. Note that signatures and rewriting
systems are simplified definitions of prepolygraphs, or polygraphs on precategories [6, 3].

In what follows, we supposed a fixed rewriting system S.

2 Rewriting

Branchings. A branching B is a pair of rewriting steps (R1, R2) = (E1[A1], E2[A2]) with
s2R1 = s2R2. We call the source of the branching B, denoted s2B to be s2R1. Recall that a
2-cell θ is of the form w1 ∗ ... ∗ wn. We then define the size of θ, denoted |θ|, as n and the
interval of θ, denoted Iθ, as the set {1, ..., n}. If A is a rewrite rule and E = φ ∗ (u ∗ ∗ v) ∗ψ is
a compatible context, we define the action interval of E[A] : θ V θ′ on θ, denoted IE[A] to be
the subsegment {|φ|+ 1, ...|φ|+ |s2A|} of Iθ and the action index to be |φ|. Note that the size
of IE[A] is given by |s2A|. In what follows, we will suppose that for all rewrite rules A ∈ S3, we
have |s2A| ≥ 1. For a branching B = (E1[A1], E2[A2]) with Ei = φi ∗ (ui ∗ ∗ vi) ∗ψi, define the
relative offset of B to be |φ2| − |φ1|. Also, we say that that the actions of E1[A1] and E2[A2]
are overlapping if IE1[A1] ∩ IE2[A2] 6= ∅. For example, in the theory of monoids, there is the
following branching:

E1[R]

W
E2[A]

V

whose action indexes are respectively 1 and 2 and whose action intervals are respectively {2, 3}
and {3, 4}, are overlapping and can be depicted as follows:

Let B = (E1[A1], E2[A2]) a branching with Ei = φi ∗ (ui ∗ ∗ vi) ∗ ψi. We say that B is trivial
when E1[A1] = E2[A2], non-minimal when there is another branching (F1[A1], F2[A2]) with
Fi = αi ∗ (ri ∗ ∗ si) ∗ βi such that there exists r, s, α, β not all identities such that φi = α ∗ αi,
ψi = βi ∗β, ui = r ∗ ri and vi = si ∗ s, independent when the actions E1[A1] and E2[A2] are not
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overlapping and critical when it is of none of the above. We adapt the notion of confluence in
the setting of a coherated rewriting system (S,==): a branching B = (R1, R2) with Ri : αV βi
is said to be confluent when there exists a pair of rewriting paths (S1, S2) with Si : βi V γ such
that R1 ∗ S1

== R2 ∗ S2. We also define a straight-forward notion of termination: we say that a
rewriting system S is terminating if there is no infinite sequence (Ri)i∈N of rewriting steps with
Ri : φi V φi+1. In another work, we have the following result that motivates the computing of
critical branchings:

Theorem 1 (FSCD18, Newman’s lemma). Let (S,==) be a coherated rewriting system such that
the rewriting system S is terminating, == is standard and all critical branchings are confluent.
Then (S,==) is coherent.

Computation of critical branchings. Let B = (E1[A1], E2[A2]) be a critical branching.
Because B is in particular non-independent, it holds that IE1[A1] ∩ IE2[A2] 6= ∅. But since
IEi[Ai] = {|φi| + 1, ..., |φi| + |s2Ai|}, the relative offset is bounded: 0 ≤ |φ2| − |φ1| < |s2A1|.
Moreover, for a given offset, we have a uniqueness property:

Proposition 1. Let A1 and A2 be two rewrite rules and p such that 0 ≤ p < |s2A1|. Then
there is at most one critical branching B = (E1[A1], E2[A2]) such that the actions of E1[A1]
and E2[A2] have p as relative offset.

Let A1 and A2 and n1, n2 such that ni = |s2Ai| and

s2Ai = (ri,1 ∗ αi,1 ∗ si,1) ∗ ... ∗ (ri,n1 ∗ αi,n1 ∗0 si,n1)

The proof of the last property gives us a procedure to compute all the context E1, E2 such that
(E1[A1], E2[A2]) is a critical branching. See figure 2 for the procedure.

Example. We apply this procedure for the computation of critical branchings between the
rewrite rules A and A in the theory of monoids. There are only two possible relative offset p
to test: 0 and 1. When p = 0, the procedure produces no context because it is the case of the
trivial branching. So we focus on the case p = 1. In this case, the two whiskers to unify are the
following:

and

It is easy to unify them using u1 = 0, u2 = 0, v1 = 1 and v2 = 0. Using the formulas of the
procedure, we then define

φ1 = 1 φ2 = ψ1 = ψ2 = 1

These elements define contexts E1, E2 with Ei = φi ∗ (ui ∗ ∗ vi) ∗ ψi and they define a
branching B = (E1[A], E2[A]) where E1[A] and E2[A] are rewrite step as follows:

E1[A]

V and
E2[A]

V

B is non-independent since the action intervals of E1[A] and E2[A] are respectively {1, 2}
and {2, 3} so they overlap. Moreover, this branching is minimal. So B is critical.

4
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procedure CriticalBranching(A1, A2)
let P = ∅
for p = 0 to n1 − 1 do (MainFor) . All possible relative offset are tested

if (p = 0 and A1 = A2)
or (r1,p+1 is not a suffix of r2,1 and r2,1 is not a suffix of r1,p+1)
or (s1,p+1 is not a prefix of s2,1 and s2,1 is not a prefix of s1,p+1) then

continue MainFor
end if
let u1, u2 be the smallest such that u1 ∗ r1,p+1 = u2 ∗ r2,1
let v1, v2 be the smallest such that s1,p+1 ∗ v1 = s2,1 ∗ v2
for i = p+ 1 to n1 do

if u1 ∗ r1,i 6= u2 ∗ r2,i or α1,i 6= α2,i−p then
continue MainFor

end if
end for
let φ1 = 1 and φ2 = ∗pi=1((u1 ∗ r1,i) ∗ α1,i ∗ (s1,i ∗ v1))
let ψ1 = ∗n2

i=n1−p+1((u2 ∗ r2,i) ∗ α2,i ∗ (s2,i ∗ v2))
and ψ2 = ∗n1

i=n2+p+1((u1 ∗ r1,i) ∗ α1,i ∗ (s1,i ∗ v1))
P ← P ∪ {(φ1 ∗ (u1 ∗ ∗ v2) ∗ ψ1, φ2 ∗ (u2 ∗ ∗ v2) ∗ ψ2)}

end for
return P

end procedure

Conclusion

In this work, we showed how rewriting formalism can be used for the interpretation of algebraic
structures in a 3-dimensional categorical setting. In particular, we defined the notion of signa-
tures, rewriting systems, rewrite rules and rewrite paths in this setting and stated an adaptation
of Newman’s lemma for coherence, which relates the coherence property to the critical branch-
ings of the rewriting system. Then we gave an algorithm to compute the critical branchings,
and gave an example for the theory of pseudomonoids. Even though we restricted ourselves to
dimension 3, the formalism and the algorithm can be readily used with higher dimensions.
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