
Confluence in Constraint Handling Rules:

A retrospective overview

Henning Christiansen and Maja H. Kirkeby

Computer Science, Roskilde University, Denmark
henning@ruc.dk and majaht@ruc.dk

1 Introduction

Constraint Handling Rules, CHR, is a nondeterministic programming language whose programs
consists of rewrite rules over program states, and being able to show confluence may be an
important part of a program correctness proof. Confluence of has been studied from the first
introduction of CHR [8, 9]. The first essential results on proving confluence in CHR [1–3],
developed during the 1990s, were formulated with respect to a logic based semantics. This
choice gave elegant proofs for terminating systems based on the subsumption principle. More
recent work extends the previous methods for proving confluence to include invariants and
confluence modulo equivalence. Furthermore, these results were developed for a more realistic
semantics that reflects the de-facto standard implementations of CHR upon Prolog, including
a correct treatment of Prolog’s non-logical devices (e.g., var/1, nonvar/1, is/2) and runtime
errors. In the following we give an overview of confluent results for Constraint Handling Rules,
from early, fundamental results to recent extensions including state invariants and confluence
modulo equivalence.

2 Preliminaries

We rephrase the following standard definitions and properties. A transition system D = 〈S,→〉
consists of a set of states S; a transition is an element of → : S → S, written s1 → s2 or,
alternatively, s2 ← s1, and →∗ is the reflexive transitive closure of →. An object corner is
a structure of the form s1 ← s → s2 in which the indicated relationships hold. A system is
confluent whenever, for all s, s1, s2 with s1 ←∗ a →∗ s2, that s1, s2 are joinable, i.e. there
exists a state t such that s1 →∗ t←∗ s2; and it is locally confluent whenever any object corner
is joinable. Newman’s lemma: A terminating system is confluent if and only if it is locally
confluent.

Proving different types of systems confluent has been facilitated by constructions of sets
of critical pairs – or critical corners as we refer to, including the common ancestor state.
Typically, these critical corners are selected object corners of the same system (but we will
relax this later) and are accompanied by a notion of subsumption (that may vary depending on
the type of system), i.e., a given critical corner subsumes a set object corners.

The set of critical corners should satisfy the following properties1 - whenever a critical
corner is joinable, any object corner that it covers is joinable, - an object corner not covered by
a critical corner is known to be joinable in some way or another (and thus referred to as trivial
corners). Thus, a proof of confluence for a terminating system may a matter of 1) describe
a set of critical corner, 2) show each of them joinable; we refer to this proof strategy as the

1E.g., as a consequence of a property called the Critical pair lemma, that we no not exactly rephrase here.

subsumbtion principle. Ideally a set of critical corners is finite, but this may not always be the
case.

3 Constraint Handling Rules

Constraint Handling Rules [8, 10, 11], CHR, is a nondeterministic programming language based
on rewriting rules. It was originally designed for constraint solving but has become important as
a general-purpose language for representing knowledge and expressing algorithms in a high-level
fashion; today it is applied in many areas, for instance analysis of types, multi-agent systems,
scheduling, and abductive reasoning; see, e.g., [12] for an overview. While most common CHR
implementations are deterministic rather than nondeterministic, it is still useful to consider
CHR programs as nondeterministic as it allows the programmer to disregard the execution
model of the specific implementation.

CHR relates to the logic programming tradition; constraints are first-order atoms and the
language has a declarative semantics [11] based on a logical reading of the rules. CHR programs
consist of (a finite set of) guarded rewrite rules over multi-sets of constraints, called constraint
stores.

Example 1 ([4, 5]). The following CHR program, consisting of a single rule (without guard),
collects a number of separate items into a set represented as a list of items.

set(L), item(A) <=> set([A|L]).

This rule will apply repeatedly, replacing constraints matched by the left hand side by those
indicated to the right, there exists a substitution from the rule constraints to the constraint
store constraints. The query

?- item(a), item(b), set([]).

may lead to two different final states, {set([a,b])} and {set([b,a])}, both representing the
same set.

There are three rule types in CHR; the one in the example above is a simplification rule
that replaces constraints by new constraints; another rule type called propagation rule adds
new constraints (such a rule is written using a different arrow ‘==>’); and the last type, called
a simpagation, is a generalization of these two. CHR applies a bookkeeping mechanism to
avoid trivial looping that otherwise arises with propagation rules. This is easily incorporated
into a formal semantics, but for simplicity we have decided to ignore this. For an in-depth
introduction of all rule types, see e.g. [11].

There are two sorts of constraints user-defined that are those appearing in the head of the
rules, and built-in constraints. The exact set of available built-in constraints and the modeling
of their meaning varies with the CHR semantics of interest. Several CHR semantics have
been proposed [1–7, 11]. The semantics used for confluence considerations has traditionally
only allowed logical built-ins [1–3, 6, 7, 11], but a recent semantics [4, 5] reflects the de-facto
standard implementations of CHR upon Prolog, including a correct treatment of Prolog’s non-
logical devices (e.g., var/1, nonvar/1, is/2) and runtime errors.

The shape of a CHR state varies with the semantics: in a simple2 logic-based semantics, a
state is of the form 〈S,B〉 where S is a constraint store and B is a built-in store containing
a conjunction of built-ins where each built-in has a logical meaning; and in a Prolog-based

2When states were introduced originally [1–3], they contained several extra state components, but these
extra components were shown redundant [4, 5].

semantics, a state consists of a constraint store S and each built-in has an operational meaning
producing a special substitution that is applied to S. For instance t1>t2 evaluates to an empty
substitution if t1 and t2 are ground arithmetic expressions with values v1 and v2, and v1 > v2
holds, it evaluates to a failure substitution if instead v1 6 >v2, and to an error substitution, oth-
erwise. Applying an error (a failure) substitution to a state change the state to a special state,
namely an error -state (a failure-state); if such a state is reached no further transformations are
allowed; therefore, the Prolog-based semantics is sensitive to the execution order of built-ins.

A built-in constraint may occur in the constraint store either introduced in the start query
or by a rule body, and in rule-guards; user-defined constraints may not occur in the guards and
built-in constraints may not occur on the rules left-hand sides. In the logic based semantics,
built-ins in the constraint store are transferred to the built-in store, and in the Prolog based
semantics they are evaluated by their operational meaning and the state is updated accord-
ingly. For instance, considering the logic based semantics 〈{a=X, p(X)}, true〉 is updated to
〈{p(X)}, X=a〉 and considering instead the Prolog based semantics 〈{a=X, p(X)}〉 is trans-
formed to 〈{p(a)}〉, see, e.g., [11] and respectively [5] for definitions.

A guard is a sequence of built-in constraints3; in the above example there are no guards, but
the following example includes rule-guards on the right-hand side, e.g. (X>0 |). For the logic
based semantics a rule may be applied if the built-in store implies the guard; and in the Prolog
based semantics it may be applied if a rule-guard evaluates to neither failure nor an error, and
it does not instantiate existing constraint store variables.

Example 2. Consider the following CHR program with four rules, r1–r4.

r1: p(X) <=> q(X) r3: q(X) <=> X>0 | r(X)

r2: p(X) <=> r(X) r4: r(X) <=> X<-0 | q(X)

In both semantics r3 applies to q(n) constraints when n is a positive number, e.g., q(1). Under
the Prolog based semantics the rule cannot apply to the state 〈{q(X)}〉 since the variable X

causes the guard X>0 to result in an error. Under the logic based semantics the r3 may transform
a state 〈{q(X)}, X>2〉 to 〈{r(X)}, X>2〉 because X>0 is a logical consequence of X>2, whereas r3,
for instance, does not transform the state 〈{q(X)}, true〉.

4 Confluence in CHR

The results on confluence for CHR are similar to those for term rewriting systems; critical
corners appear when two instances of rules can apply to overlapping constraints in the constraint
store, see, e.g., following example.

Example 3 (Ex. 1 continued). The set-program of Example 1 is not confluent under neither
semantics4, as both critical corners

set([X1|L]), item(X2)} {set([X|L1]), set(L2)}
↥ ↥

{item(X1), set(L), item(X2)} 〈{set(L1), item(X), set(L2)}
↧ ↧

{item(X1), set([X2|L])} {set(L1), set([X|L2])}

are not joinable. Note that the built-in store would be true under the logic based semantics.

3In the logic based semantics it is seen as a conjunction. In the Prolog based semantics they are evaluated
from left to right, each influencing the whole state including the subsequent series of the built-ins; if the guard
evaluates to failure or error these updates are discarded, see [5] for details.

4The built-in store under the logic based semantics is true for all indicated states.

Example 4 (Ex. 2 continued). The program of Example 2 is not confluent under neither seman-
tics4, as its single critical corner {q(X)}← {p(X)} →{r(X)} is not joinable.

When a critical corner is formed by rules with guards, their satisfaction is incorpotated
into the common ancestor state, which works nicely under the logic based semantics when
only logical built-ins are assumed. Here subsumption of an object corner by a critical corner
is defined by applying substitution and adding more constraints; the inherent monotonicity
ensures joinabilty of any object corner subsumed by a critical corner.

However, the subsumption principle as explained so far as well as the use of the logic based
semantics cannot handle not-logical built-in predicates that are available – and extensively
used in practice – in standard implementations of CHR. Consider, for example, the CHR rule
p(X) <=> var(X) | q(X), whose guard is consists of Prolog’s test for whtter its argument is
an uninstantiated variable. While the rule may apply to a state containing p(X), it does not
apply to a more specific state containing p(1). The other way round, if the guard is instead
nonvar(X), the rule may apply to a lot of subsumed instanced with p(1), p(2), ..., but this
cannot be “verified” by investigating a most general state including p(X) to which the nonvar

version of the rule does not apply.
In order to restore a subsumption principle aiming at finite proofs, we have taken the

consequence in our own work to describe critical corners in a different system with higher
expressibility than the object system. In the informal example considered above we can formally
characterize — as a meta-level state – expressions like“p(x) where x is a variable”, as well as
“... x is a constant”, and perform meta-level transitions. As it is shown below, the use of
such a meta-level representation is also a powerful tool when confluence under invariant and/or
modulo equivalence, which otherwise has been problematic, even for the logical subset of CHR
under a logic-based semantics.

5 Invariants and modulo equivalence

It can be argued that invariants and confluence modulo equivalence are important from a
practical point of view. In this section we give definitions and examples and later we consider
how to prove the properties. Most programs are developed with a particular set of initial
queries in mind, which reduces the set of reachable states. In 2007, Duck et al. [7] suggested to
take such an induced invariant into account and, thus, make a much larger class of programs
confluent.

Definition 1. A set I is a state invariant for a relation → if x ∈ I ∧ x → y implies y ∈ I.

Such an invariant may be induced by a set of reachable states from a set of (initial) states Q,
i.e. I = {s′ | s ∈ Q ∧ s 7→∗ s′}.
Example 5 (Ex. 1 continued). The set-program reflects a tacitly assumed state invariant: only
one set-constraint is allowed. If we open up for a query such as

?- item(a), item(b), set([]), set([c]).

we obtain a collection of different answers, representing different ways of partitioning {a, b, c}
into two sets. However, this may not be intended, and the relevant invariant Iset must specify
that a state must include at most one set/1 constraint and a series of item/1 constraints.

Definition 2. A relation → is observable confluent (under invariant I) if and only if ∀x, y, y′ ∈
I : y′ ←∗ x →∗ y′ ⇒ ∃z ∈ I : y′ →∗ z ←∗ y′. We may write I-observable confluent meaning
observable confluent (under invariant I).

Example 6 (Ex. 2 continued). Consider the program of Example 2 together with an invariant I>0

induced by initial states with a single atom p(X) where n is a positive number (not a variable).
The program is I>0-observable confluent, since each forked state q(n)← p(n) → r(n) is joinable
by rule r3: r(n) → q(n).

Confluence modulo equivalence is a generalization where forked states must reach equivalent
states, rather than a common state. For instance, a program may produce redundant data
structures such as representing sets as lists, and the equivalence states that the order of the
elements does not matter. Confluence modulo equivalence was first considered for CHR in 2014
by Christiansen and Kirkeby [4].

Definition 3. A relation→ is confluent modulo an equivalence ≈ if and only if ∀x, y, x′, y′ : y′ ←∗
x′ ≈ x →∗ y′ ⇒ ∃z, z′ : y′ →∗ z′ ≈ z ←∗ y′.

Example 7 (Ex. 1, 5 continued). The set-program is supposed to produce one set representa-
tion, and we introduce a state equivalence ≈set reflecting the redundant data structures. Two
states are equivalent if they have the same item-constraints and their respective set-constraint
set(L1) and set(L2) are such that L1 and L2 are permutations of each other.

We generalize confluence modulo equivalence and observable confluence as follows.

Definition 4. A relation → is I-observable confluent modulo an equivalence ≈ if and only if
∀x, y, x′, y′ ∈ I : y′ ←∗ x′ ≈ x →∗ y′ ⇒ ∃z, z′ ∈ I : y′ →∗ z′ ≈ z ←∗ y′.

Both observable confluence, confluence modulo equivalence and classic confluence are special
cases of this definition.

Huet [14] provided a pair of local properties for showing terminating programs confluent
modulo equivalence; we extend these with an invariant as follows.

Definition 5. A rewriting system → is locally I-observable confluent modulo ≈ if and only if
it has the following α- and β-properties.

α : ∀x, y, y′ ∈ I : y′ ← x → y′ ⇒ ∃z, z′ ∈ I : y′ →∗ z′ ≈ z ←∗ y′
β : ∀x, y, y′ ∈ I : y′ ≈ x → y′ ⇒ ∃z, z′ ∈ I : y′ →∗ z′ ≈ z ←∗ y′

We refer to structures of the form y′ ← x → y′ as α-corners and those of the form y′ ≈ x → y′

as β-corners.

Theorem 1 (obs. confl. mod. equivalence). A terminating relation → is I-observable confluent
modulo ≈ if and only if it is locally I-observable confluent modulo ≈.

In the special cases where equivalence is ‘=’, the β-property trivially holds and when, further-
more, the invariant is unrestrictive the α-property reduces to local confluence.

Both the invariant and the equivalence relation may be tailored for the individual program.
By nature, they are meta level properties that in general cannot be expressed in its own system:
the state itself is implicit and properties such as groundness (or certain arguments bound to be
variables) cannot be expressed in a logic-based semantics for CHR.

6 Proving observable confluence

As mentioned, observable confluence was introduced by Duck et al. [7]. They suggested methods
of proving this property for logic CHR programs using a logic based semantics and as a direct
continuation of the logic subsumption principle.

Firstly, they construct the set of critical corners based from the program rules as explained
in Section 4. Typically, the states in these corners do not satisfy the invariant (a rule typically
includes variables, contradicting groundness), and the next step is to characterize a set of
“minimal extensions” of each critical corner such that 1) the states of such an extension satisfies
the invariant, 2) the set of all such extensions subsumes (by substitution and adding constraints)
all non-trivial object corners. Proving observable confluence amounts to show joinability af such
extension, using the standard transition relation for CHR.

There are two problems in this approach, first of all there is no formal representation of the
invariant that allows to take it into account when reasoning formally about joinability, and –
more importantly – as also noticed by Duck et al. [7], quite often there is an infinite number of
such extensions. This happens even for an intuitively simple invariant such as requiring ground
states. We can demonstrate this phenomenona for the program of Example 2.

Example 8. Consider the program of Example 2; it is not confluent as its single critical corner
q(X)← p(X)→ r(X) is not joinable (the built-in store is always true and thus omitted). How-
ever, adding an invariant “reachable from an initial state p(n) where n is an integer” makes it
confluent. We indicate the smallest set of corners found by minimal extensions of the critical
corner; the dotted transitions prove each of them joinable:

p(-1)

q(-1) r(-1)

r1 r2

r4

p(0)

q(0) r(0)

r1 r2

r4

p(1)

q(1) r(1)

r1 r2

r3

p(2)

q(2) r(2)

r1 r2

r3

. . .

p(-1)

q(-1) r(-1)

r1 r2

r4

p(0)

q(0) r(0)

r1 r2

r4

p(1)

q(1) r(1)

r1 r2

r3

p(2)

q(2) r(2)

r1 r2

r3

. . .

p(-1)

q(-1) r(-1)

r1 r2

r4

p(0)

q(0) r(0)

r1 r2

r4

p(1)

q(1) r(1)

r1 r2

r3

p(2)

q(2) r(2)

r1 r2

r3

. . .

This set is exactly the set of all non-trivial object level corners. These corners and their proofs
of joinability obviously fall in two groups of similar shapes, but there is no way to construct a
finite set (of, say, one or two elements) of critical corners in CHR, that covers all object corner.

To avoid this problem, Christiansen and Kirkeby [15] suggests to describe critical corners in a
more powerful meta-language rather than using CHR itself, inspired by earlier work on meta-
programming in logic programming. Each term of CHR is here named by a ground term,
specifically, variables named by ground constants. A variable in such a term is thus a meta-
variable, which may be covered by a meta-level constraint. For example, the meta-level term
p(x) where type(const,X) subsumes all object level (=CHR) atoms whose predicate is p/1
and whose argument is a constant, i.e., p(a), p(b), ..., p(1), ... The authors define a notion
of abstract similation making precise what it means for meta-level transitions and corners to
subsume5 sets of object level transitions and corners. Built-in predicates are reflected at the
meta-level, such that, say n<̂0 restricts n to names of terms t that satisfy the object level
condition t < 0, i.e., n is limited names of number constrants less that zero.

Example 9. (Continuing Ex. 2, 8) The invariant is formalized at the meta-level as states of the
form 〈{pred(n)}, true〉 where type(int,n) where pred is one of p, q and r. Below is shown
the two joinable critical meta-level corners that can be shown to subsume all non-trivial object
level corners.

5[15] use the terminology of a meta-level term covering object level notions.

{p(X)} WHERE type(int,X), X≥0

{q(X)} WHERE type(int,X), X≥0 {r(X)} WHERE type(int,X), X≥0

r1 r2

r4

{p(X)} WHERE type(int,X), X<0)

{q(X)} WHERE type(int,X), X<0 {r(X)} WHERE type(int,X), X<0

r1 r2

r3

^

^^

^

^ ^

This example illustrates an additional technique called splitting: First a meta-level corner
is produced in the classical way, considering how rules can overlap; this yields a common meta-
level ancestor state p(x) where type(int,x) and the other states as above containing q(x),
resp. r(x). This meta-level corner is in itself not joinable as no single rule can apply, but
turning it into two meta-level corners, each joinable and together subsuming the same set of
object-level corners, proves observable confluence.

7 Proving Confluence modulo equivalence

Confluence modulo equivalence has been studied since the first half of the 20th century in a
variety of contexts; see, e.g., [5, 14] for an overview. It was introduced and motivated for CHR
by [4], also arguing that invariants are important for specifying meaningful equivalences. An
in-depth theoretical analysis, including the use of the ground representation, is given by [5] in
relation the Prolog-related semantics mentioned above.

To show confluence modulo equivalence for terminating CHR programs, two types of crit-
ical corners must be constructed: critical α-corners which are the standard critical corners
constructed by rule overlap as above, and critical β-corners of the form y′ ≈ x → y′, cf. Def-
inition 5. As before the critical β-corners must subsume all non-trivial object-level β-corners.
The meta-level language described above is also suitable for describing state equivalences [15].

Example 10 (Ex. 1 continued). The set-program of Example 1 is observable confluent modulo
≈set (Ex. 7) under invariant Iset (Ex. 5) since the critical α-corner with two set-constraints
does not subsume Iset corners and both the other critical α-corner and the critical β-corner are
joinable modulo ≈set, see below. The meta-level constraint its/1 constrains its argument to a
set of item-constraints and perm/2 constrains the arguments to a pair of permuted lists.
α-corner:

{set([X1|L]), item(X2)}] C where its(C) → {set([X2,X1|L])}] C where its(C)
↥

{item(X1), set(L), item(X2)}] C where its(C)

≈

↧

{item(X1), set([X2|L])}] C where its(C) → {set([X1,X2|L])}] C where its(C)

β-corner:

{set([L2]), item(X)}] C where perm(L1,L2) ∧ its(C) → {set([X|L2])}] C where perm(L1,L2) ∧ its(C)≈

{set([L1]), item(X)}] C where perm(L1,L2) ∧ its(C) ≈
↧

{set([X|L1])}] C where perm(L1,L2)] C ∧ its(C)

A recent paper [13] attempts to handle (observable) confluence modulo equivalence within
the logic-based semantics, along the lines of Duck et al [7]. However, this implies the mentioned

problems of infinitely many proof cases, which seems to be inherent in relying on pure logic-
based subsumption without having the enhanced expressibility provided by a suitable meta-level
representation.

8 Future work

We have given an overview of classic and recent results for confluence in CHR. The classic
results provide a theoretical foundation and the recent results on observable confluence and
modulo equivalence points towards more practical applications of these notions in a program-
ming context.

There exist methods for automatic check of confluence for CHR [16] in a strictly logical
setting, and in our own work we are developing similar methods for automatic or semi-automatic
proofs of observable confluence modulo equivalence. Naturally, invariants and state equivalences
may involve undecidability.

References

[1] S. Abdennadher. Operational semantics and confluence of constraint propagation rules. In
CP, pages 252–266, 1997.

[2] S. Abdennadher, T. W. Frühwirth, and H. Meuss. On confluence of Constraint Handling
Rules. In CP, volume 1118 of LNCS, pages 1–15. Springer, 1996.

[3] S. Abdennadher, T. W. Frühwirth, and H. Meuss. Confluence and semantics of constraint
simplification rules. Constraints, 4(2):133–165, 1999.

[4] H. Christiansen and M. H. Kirkeby. Confluence modulo equivalence in constraint handling
rules. In LOPSTR 2014, volume 8981 of LNCS, pages 41–58, 2015.

[5] H. Christiansen and M. H. Kirkeby. On proving confluence modulo equivalence for con-
straint handling rules. Formal Aspects of Computing, 29(1):57–95, 2017.

[6] G. J. Duck, P. J. Stuckey, M. J. G. de la Banda, and C. Holzbaur. The refined operational
semantics of Constraint Handling Rules. In ICLP 2004, volume 3132 of LNCS, pages
90–104. Springer, 2004.

[7] G. J. Duck, P. J. Stuckey, and M. Sulzmann. Observable confluence for Constraint Handling
Rules. In ICLP, volume 4670 of LNCS, pages 224–239. Springer, 2007.

[8] T. W. Frühwirth. User-defined constraint handling. In ICLP, pages 837–838. MIT Press,
1993.

[9] T. W. Frühwirth. Constraint handling rules. In Constraint Programming: Basics and
Trends, Châtillon Spring School, Châtillon-sur-Seine, France, May 16 - 20, 1994, Selected
Papers, volume 910 of LNCS, pages 90–107. Springer, 1994.

[10] T. W. Frühwirth. Theory and practice of Constraint Handling Rules. Journal of Logic
Programming, 37(1-3):95–138, 1998.

[11] T. W. Frühwirth. Constraint Handling Rules. Cambridge Uni. Press, 2009.

[12] T. W. Frühwirth. Constraint handling rules - what else? In N. Bassiliades, G. Gottlob,
F. Sadri, A. Paschke, and D. Roman, editors, Rule Technologies: Foundations, Tools, and
Applications - 9th International Symposium, RuleML 2015, Berlin, Germany, August 2-
5, 2015, Proceedings, volume 9202 of Lecture Notes in Computer Science, pages 13–34.
Springer, 2015.

[13] D. Gall and T. Frühwirth. Confluence modulo equivalence with invariants in Constraint
Handling Rules. In FLOPS 2018, 2018. To appear.

[14] G. P. Huet. Confluent reductions: Abstract properties and applications to term rewriting
systems. Journal of the ACM, 27(4):797–821, 1980.

[15] M. H. Kirkeby and H. Christiansen. Confluence of CHR revisited: invariants and modulo
equivalence. CoRR, 2018. (submitted to an international symposium).

[16] J. Langbein, F. Raiser, and T. W. Frühwirth. A state equivalence and confluence checker
for CHRs. In Proc. Int’l Workshop on Constraint Handling Rules, Report CW 588, pages
1–8. Katholieke Universiteit Leuven, Belgium, 2010.

	Introduction
	Preliminaries
	Constraint Handling Rules
	Confluence in CHR
	Invariants and modulo equivalence
	Proving observable confluence
	Proving Confluence modulo equivalence
	Future work

