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Abstract

DRAT proofs have become the de facto standard for certifying SAT solvers’ results.
State-of-the-art DRAT checkers are able to efficiently establish the unsatisfiability of a
formula. However, DRAT checking requires unit propagation, and so it is computationally
non-trivial. Due to design decisions in the development of early DRAT checkers, the
class of proofs accepted by state-of-the-art DRAT checkers differs from the class of proofs
accepted by the original definition. In this paper, we formalize the operational definition of
DRAT proofs, and discuss practical implications of this difference for generating as well as
checking DRAT proofs. We also show that these theoretical differences have the potential
to affect whether some proofs generated in practice by SAT solvers are correct or not.

1 Prelude

DRAT proofs are sequences of clause additions and clause deletions. Given a formula F , some
DRAT proofs are called correct refutations of F ; for now we can spare ourselves the details
on what correct refutations are, but let us just require that in that case F is unsatisfiable.
Further consider an arbitrary transformation Φ on DRAT proofs (not necessarily correctness-
preserving). Then the following theorem trivially holds:

Theorem 1. Let F be a CNF formula, and π a DRAT proof. If Φ(π) is a correct refutation
of F , then F is unsatisfiable.

Observe that whether π itself is correct or not is irrelevant. An interesting consequence of
this result is that, if we implement a proof checking method that first performs some modifica-
tions on the input proof, and then checks the resulting proof to be correct, such a procedure will
be sound: whenever an input π is accepted, then some correct refutation of F exists (namely
the transform of π). However, it is possible that the class of accepted proofs by this procedure
is different from the class of correct DRAT refutations. One can construe this procedure as
implicitly defining a different proof system.

2 Introduction

The spectacular leap in SAT solvers’ efficiency over the last two decades came with an increase
in the code complexity of solvers. These programs use many techniques, which can interact in
unexpected ways; and convoluted data structures, which rely on mutability and so are difficult
to write in a correct-by-construction way. The main approach to ensure reliability of solving
results is to check individually each result. Wrong satisfiability results are easy to detect: SAT
solvers provide a model of the formula, and this can be independently verified in linear time.

Wrong unsatisfiability results are harder to recognize. Since 2003, several proof systems of
increasing expressive power have been developed [8, 29, 11, 11, 12, 28, 17]. Each of them is
based on the same idea: providing a small set of inferences which can be efficiently checked,
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and simulating the execution of the solver with these rules, logging them into an unsatisfiabil-
ity proof. A proof checker would then independently verify that each individual inference is
correct [14, 19].

Delete Resolution Asymmetric Tautology (DRAT) is the current standard format for unsat-
isfiability proofs [14], although an extension called Delete Propagation Redundant (DPR) has
been proposed [17]. Many SAT solvers are able to produce DRAT proofs, to the extent that
this is now a requirement in SAT Competitions [3]. Due to their expressive power, generating
a DRAT proof during the execution of a CDCL solver is relatively easy: it suffices to log the
clauses infered or removed by the solver [8]. When satisfiability-preserving techniques are used
to introduce or remove clauses, DRAT allows to express these clause introductions and dele-
tions [23, 21, 26, 13]. Furthermore, inferences allowed in DRAT are based on unit propagation,
which allows very efficient proof checking by using sophisticated data structures adapted from
SAT solving [22]. Since some proof search is necessary for unit propagation, deletion infor-
mation greatly helps in proof checking; otherwise, lemmas that are no longer necessary would
accumulate, and too much time would be spent in proof search [28].

However, deletion information introduces an issue in unit propagation: when a clause is
deleted, the set of literals implied by unit propagation from the current formula may change.
Invariants maintained by lazy data structures [22] often used in DRAT checking are broken if
these literals are forgotten.

The approach taken by state-of-the-art DRAT checkers is to ignore deletion instructions
for clauses that can potentially change the set of literals implied by unit propagation, called
unit clauses [14]. However, inferences in DRAT are only satisfiability-preserving, thus non-
monotonic [24]. In particular, this means that correct proofs can be rejected by DRAT checkers
and vice versa; this issue has been documented and acknowledged in the literature [14, 7].

In this paper, we analyze this issue of unit deletion in detail. Our goal is threefold. First,
we clarify why this method for DRAT checking is sound, in the sense that no refutation for
a satisfiable instance would ever be accepted (modulo implementation errors). Second, we
formalize what exactly the class of proofs accepted by state-of-the-art DRAT checkers is, and
provide easily checkable evidence that it is incomparable to the class of DRAT proofs as defined
originally. With this formalization, we can refer to two flavors of DRAT: one corresponding to
the definition from previous literature, and another one accounting for the pragmatics of DRAT
checking. Last, we aim to spark a discussion on whether one flavor or the other should be taken
as a standard. We believe that efficiently checking DRAT proofs according to the original
definition is possible. We discuss possible problems arising from the use of either flavor, and
we would like to gauge the SAT community’s interest on this issue.

3 Preliminaries

Given a variable x, we denote its complement by x. A literal is a variable or its complement.
For a set of literals L, we denote by L the set of its complements. A clause is a disjunction of
literals; we denote clauses by juxtaposition, i.e. xyz is the clause usually denoted by x∨y∨z. We
assume that clauses do not contain complementary literals. The unsatisfiable or empty clause
is the clause containing no literals, which we denote by 2. A CNF formula is a conjunction of
clauses; we construe CNF formulas as finite sets of clauses. For a clause C, we denote by C
the set of clauses containing the size-one clause l for each literal l ∈ C. A partial assignment
is a set of literals I which does not contain complementary literals. For any literal l, we define
I(l) as follows: I(l) = 1 if l ∈ I; I(l) = 0 if l ∈ I; and I(l) = ? otherwise. A clause C is called
unit w.r.t. a partial assignment I whenever there is a literal l ∈ C with I(l) = 1, and for any
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other literal k ∈ C \ {l} we have I(k) = 0. We follow the usual definitions of satisfiability and
entailment of CNF formulas or clauses.

Let F be a CNF formula. We say that a literal l is implied by unit propagation over F
whenever there is a finite sequence l1, . . . , ln of literals such that ln = l, and for each 1 ≤ i ≤ n
we can find a clause Ci ∈ F with li ∈ Ci and Ci\{li} ⊆ {l1, . . . , li−1}. Furthermore, we say that
unit propagation over F leads to contradiction whenever there are two complementary literals
l and l implied by unit propagation over F . A clause C is a reverse unit propagation (RUP)
clause in F whenever unit propagation over F ∪C leads to contradiction [8]. Furthermore, C is
called a resolution asymmetric tautology (RAT) in F upon a literal l ∈ C whenever the clause
C ∨ (D \ {l}) is a RUP in F , for every clause D ∈ F with l ∈ D [10].

It has been shown that if C is a RUP in F , then C is a semantic consequence of F [4].
Furthermore, if C is a RAT in F upon l, then F is satisfiability-equivalent to F ∪{C}, although
C needs not be a consequence of F [10]. Whereas the property of being a RUP is monotonic
(i.e. if C is a RUP in F , then C is also a RUP in F ∪ G), this is not the case for RATs. For
example, the clause x is a RAT in the empty formula, but not in the formula {x̄}; for more
details on non-monotonicity of RATs we refer the reader to [24].

Modern SAT solvers are able to generate unsatisfiability certificates called DRAT proofs,
which record the changes made to the input formula by the solver in an incremental way [14].
A DRAT proof π is a string of instructions i1, . . . , in; every instruction is either a clause in-
troduction instruction i:C or a clause deletion instruction d:C, where C is a clause. Given a
DRAT proof π and a CNF formula F , we recursively define the accumulated formula F [π] by
F through π as follows:

F [ε] = F F [π , i:C] = F [π] ∪ {C} F [π ,d:C] = F [π] \ {C}

Given a CNF formula F , a DRAT proof i1, . . . , in is called a correct DRAT proof from F
whenever either of the following holds for every 1 ≤ j ≤ n:

• ij is a deletion instruction d:C.

• ij is an introduction instruction i:C, and C is either a RUP in F [i1, . . . , ij−1], or a RAT
in the same formula upon the first literal l in C.

Furthermore, it is called a correct refutation of F if additionally im = i:2 for some 1 ≤ m ≤ n.
Since clause deletion and RUP introduction are truth-preserving, and RAT introduction is
satisfiability-preserving, we can only derive the empty clause by a correct DRAT proof from
F whenever F is unsatisfiable. In other words: the DRAT proof system is sound, insofar as
correct refutations of F only exist for unsatisfiable formulas F .

Example 1. Consider the CNF formula and DRAT proofs:

F = {xyz, x̄yz, xȳz, x̄ȳz, xyz̄, x̄yz̄, xȳz̄, x̄ȳz̄}
π = i:xy, i:x, i:wx̄, d:wx̄, i: w̄x̄, i:wx, i: yw, i:2

σ = i:xy, i:x, d:x, i:wȳ, i: w̄ȳ, i:w, i:2

The DRAT proof π is a correct refutation of F ; Figure 1 contains a justification for each of the
inferences. In contrast, σ is an incorrect DRAT refutation of F . Consider the instruction i: w̄ȳ.
The CNF formula accumulated before this instruction is F ′ = F ∪ {xy, wȳ}. The clause w̄ȳ is
not a RUP in F ′, since no unit propagation is available in the formula F ′∪{w, y}. Furthermore,
it is not a RAT in F ′ upon its first literal, namely w̄: the only clause containing w in F ′ is wȳ,
and the clause (w̄ȳ) ∨ (wȳ) \ {w} = w̄ȳ is not a RUP in F ′, for the same reason as above.
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previous
instruction accumulated formula justification

i:xy F RUP: x̄ȳ
xyz−−→ z

xyz̄−−→ ⊥

i:x F ∪ {xy} RUP: x̄
xy−→ y

xȳz−−→ z
xȳz̄−−→ ⊥

i:wx̄ F ∪ {xy, x} RAT upon w:
no clauses with w̄ in the accumulated formula

d:wx̄ F ∪ {xy, x, wx̄}
i: w̄x̄ F ∪ {xy, x} RAT upon w̄:

no clauses with w̄ in the accumulated formula

i:wx F ∪ {xy, x, w̄x̄} RAT upon w: clause (wx) ∨ (w̄x̄) \ {w̄} = (wxx̄)
is a tautology, hence a RUP.

i: yw F ∪ {xy, x, w̄x̄, wx} RUP: ȳw̄
x−→ x

x̄yz−−→ z
x̄yz̄−−→ ⊥

i:2 F ∪ {xy, x, w̄x̄, wx, yw} RUP: > x−→ x
w̄x̄−−→ w̄

yw−−→ y
x̄ȳz−−→ z

x̄ȳz̄−−→ ⊥

Figure 1: Each inference in the proof π from Example 1 is justified above. Arrows indicate unit
propagation, and clauses above the arrows indicate the clause triggering each propagation.

3.1 DRAT proof checking

State-of-the-art DRAT proof checkers [14, 19] are complex programs, albeit significantly sim-
pler than SAT solvers (e.g. the commonly used DRAT checker DRAT-trim currently contains
1600 lines of C code). Much of this complexity is due to the implementation of efficient unit
propagation through the two-watched literal schema [22]. Unfortunately, the latter intensively
relies on mutable data structures and pointer arithmetics, and these are hard to simulate with
immutable data structures typical from correct-by-construction implementations. In addition
to fast unit propagation, two improvements are crucial to efficient DRAT checking, namely
incremental prepropagation and backwards checking [11].

Incremental prepropagation By adapting ideas from CDCL SAT solvers [22], a DRAT
checker can save a good amount of work when computing if a clause is a RAT in the accumulated
formula. Literals that follow from the accumulated formula F at the i-th instruction are stored
in a stack, much in the way as zero-decision level literals are stored in SAT solvers. To test
whether a clause C is a RUP in F , the literals from C̄ are added to the stack as assigned but
unprocessed literals. Then, unit propagation on yet unprocessed literals is performed. The
literals from C̄ are analogous to decisions in CDCL SAT solvers, although DRAT checkers
introduce these assumptions at once and only later perform unit propagation; the end result is
essentially equivalent.

At the end of this process the stack has a prefix of prepropagated literals, followed by the
literals in C̄, and by a suffix of additional propagated literals. Now, discarding the whole stack
would be wasteful: the prefix can still be used for later RUP checks. Instead, DRAT checkers
only pop the two latter parts of the stack, and the prefix of prepropagated literals remains in
the stack. Analogously to backtracking in CDCL, this does not harm the invariants preserved
by the two-watched literal schema, as long as all literals that could be prepropagated from F
were in the first part of the stack.
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In order to continue checking the DRAT proof, the clause C needs to be added to the clause
database, which may make further literals available for propagation. The checker is able to
find those literals, which are then pushed into the prepropagated stack, which is then ready to
check the next instruction.

Backwards checking An interesting observation is that, because of the “blind” way on
which SAT solvers perform search, many derived clauses are not involved in the derivation
of the empty clause. Checking these inferences is useless, and skipping them improves the
efficiency of the proof checker. To do this, the proof can be checked backwards [11]. Starting
from the empty clause at the end of the proof, every inference is checked. A DRAT checker is
able to detect which premise clauses are necessary to derive the goal clause; these clauses are
scheduled for later checking. If the checker reads a clause in the proof which is not scheduled,
it is simply skipped.

Incremental prepropagation and backwards checking may seem incompatible: the former
proceeds forward, whereas the latter does so backwards. However, one can take advantage of
the monotonic way in which incremental propagation pushes literals in the stack to pop them
back in the same order during backwards propagation. Proof checking proceeds in two sweeps
through the proof. The proof is firstly sweeped forward performing incremental prepropraga-
tion, and nothing is checked at this stage. Then, the proof is checked backwards, skippping
any unscheduled instruction. During backwards checking, the prepropragated stack needs to
be updated, but since literals in the prepropagation stack are only stacked and never popped
during incremental prepropagation, updating is as simple as popping a segment of the stack.

Example 2. Consider the unsatisfiable CNF formula F containing clauses:

x1

x1x2

x1x2x3

x1x3x4

x5x6

x2x5x7

x1x5x6

x5x6x4

x3x6x8

x6x4x3

x8x5

x3x9x10

x4x9x10

x10x9

x9x7

x7x8x9x10

and the correct DRAT refutation of F given by τ = i:x5, i:x4, i:x9, i:2. We now recreate
the checking process in a DRAT checker. The first sweep proceeds forwards, computing the
prepropagated stack by unit propagation:

• Before the i:x5 instruction, the prepropagated stack is x1, x2, x3, x4, which are propa-
gated using clauses x1, x1x2, x1x2x3, and x1x3x4, respectively.

• Before the i:x4 instruction, the clause x5 is introduced in the formula. The prepropagated
stack is x1, x2, x3, x4, x5, x6, x7, x8, where the extra literals are propagated using clauses
x5, x1x5x6, x2x5x7, and x3x6x8, respectively.

• Before the i:x9 instruction, the clause x4 is introduced in the formula. This clause leads
to no new propagations, so the prepropagated stack remains as in the last step.

• Before the i:2 instruction, the clause x9 is introduced in the formula. The prepropagated
stack is x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x10, where the extra literals are propagated
using clauses x9, x4x9x10, x7x8x9x10 respectively.

At this point, a conflict in the stack is detected due to complementary literals x10 and x10, and
backwards checking starts. Originally, the only clause scheduled for verification is 2.

• The clause 2 is a RUP in F ∪{x5, x4, x9} as shown by the last prepropagated stack. The
non-premise clauses used to derive a conflict are x5 and x9, so the instructions i:x5 and
i:x9 are scheduled for verification.
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• The checker must now show that x9 is a RUP in F ∪ {x5, x4}. Since x9 is removed from
the formula, the literals it led to propagate must be removed from the prepropagation
stack. This is easy, since they were the last to be introduced: the prepropagated stack
at this point should be x1, x2, x3, x4, x5, x6, x7, x8, and this can be obtained by pop-
ping all literals until x9. Now, to check that x9 is a RUP in F ∪ {x5, x4}, the checker
pushes x9 in the stack and performs unit propagation. This leads to the conflicting
stack x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x3, where clauses x9x10 and x3x9x10 are used
in propagation. Hence, the instruction i:x9 is verified, and no new clauses are scheduled
for verification.

• The instruction i:x4 is not scheduled for verification, so it can be skipped. Furthermore, it
led to no prepropagation, so there is no need to perform changes over the prepropagation
stack.

• The checker must finally check that x5 is a RUP in F . By the same procedure as above,
the prepropagated stack x1, x2, x3, x4 is restored. The literal x5 is pushed in the stack,
and unit propagation yields the stack x1, x2, x3, x4, x5, x6, x8, x8, where clauses x5x6,
x5x8, x3x6x8 are used for propagation. The instruction i:x5 is then verified, and no new
clauses are scheduled for verification.

At this point, the checker reaches the start of the proof, and it is reported as correct.

Unit clause deletion The paragraphs above incur into a small simplification: deleting a
clause can provoke that some literals which were implied by unit propagation stop being so.
This is problematic, because propagation of other literals may depend on that one, and it is not
clear how would one update the stack when a deletion instruction is processed. As discussed
above, the invariants for backwards checking depend on the monotonicity of the stack, and so do
the invariants for the two-watched literal schema [22]. Furthermore, simply discarding the whole
stack and recompute it from scratch would defeat the purpose of incremental prepropagation.

Fortunately, there is an easily checked necessary condition for a clause deletion to affect the
stack in this way, namely that the clause is a unit w.r.t. the partial assignment defined by the
stack. State-of-the-art checkers take a pragmatic approach: unit clause deletion instructions
are ignored [14].

Example 3. Consider the correct DRAT refutation τ ′ = i:x5, d:x1x2, i:x9, i:2 of the formula
F from Example 2. If one were to take the unit clause deletion d:x1x2 into account, several
problems arise during checking. For one, the prepropagated stack before this instruction is
x1, x2, x3, x4, x5, x6, x7, x8, and after the instruction is x1, x5, x6, x4, x3, x8; it is not clear
at all how to obtain the latter from the former. Even worse, during backwards checking one
would need to restore the former stack from the latter: the previously helpful method of popping
the last elements in the stack does not work anymore, and we would even need to introduce
literals x2 and x7.

Furthermore, there is another issue regarding the two-watched literal schema, which main-
tains two watched literals in each clause. For its lazy data structures to work, it is necessary
that if a watched literal l in a clause is falsified by the current stack, the other watched literal k
must be satisfied. Consider now the clause x2x5x7, and assume literals x2 and x5 are watched
before applying the deletion d:x1x2. This is a correct watch choice before the deletion, but
after it the literal x5 is falsified and x2 is not satisfied by the corresponding stack. Violating
this condition leads the unit propagation engine to “miss” propagations, and so some RUPs
will not be detected as such.
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4 What DRAT checkers are really checking

The DRAT proof system was designed so that it would be tightly adapted to the operation of
SAT solvers. Several desired features were:

• Soundness, of course. Whenever an input DRAT proof π is reported a correct refutation
of a CNF formula F , the latter should be unsatisfiable. In principle, this is ensured by the
fact that the three inferences (clause deletion, RUP introduction, and RAT introduction)
are satisfiability-preserving [10, 18]. Hence, whenever the empty clause is derived, the
input CNF formula is unsatisfiable. Later in this section we will see the whole picture is
a bit more complex, but even then soundness holds.

• Proofs should be easily generated by SAT solvers. For CDCL solvers, it is very simple to
generate a DRAT proof: every clause learned by CDCL is a RUP [4]. Hence, it suffices
to log the list of learned clauses to produce a DRAT proof [8]. Clause elimination is
unproblematic too, since there is no restriction on which clauses can be deleted. Many
inprocessing techniques, including bounded variable addition [20], self-subsuming resolu-
tion [9], and variable elimination [6], can be easily simulated in DRAT. However, for a
few techniques, notably parity reasoning [27] and symmetry breaking [1], it is notably
more complex to generate a DRAT proof [23, 13]. In this case, whole proof fragments are
generated ad hoc by hard-coded procedures to derive the introduced clauses with minimal
reasoning effort.

• Proofs should be efficiently checkable with significantly simpler programs than SAT solvers.
Although DRAT checkers are not that simple, they are just optimized unit propagation
engines. Furthermore, DRAT checkers are able to enrich the proof so that it can be
validated with certified software in reasonable time [5, 19].

In complying with these constraints, state-of-the-art DRAT checkers slightly deviate from
the original definition of correct DRAT refutations. Formulas are regarded by DRAT checkers
as multisets of clauses; we show in a moment that there are compelling reasons for this. Fur-
thermore, deletion instructions of unit clauses w.r.t. the current stack are ignored, as explained
in Section 3.1. The rest of the paper is devoted to discuss this issue in depth.

Formulas as multisets of clauses Let us assume that a solver introduces clause C in the
CNF formula F by some complex inprocessing technique. A proof generation procedure is
then called, which generates a (hopefully correct) DRAT proof fragment π with the property
that F [π] = F ∪ {C}. It is important that the accumulated formula after π corresponds to
the formula in the SAT solver: RAT introduction is non-monotonic, and so it also depends
on the absence of clauses. Having different clause sets can make future RAT introductions
incorrect. In some circumstances (e.g. parity reasoning [23], and symmetry breaking [13]) the
proof π is rather long and introduces many intermediate clauses that are necessary to derive C.
These clauses do not occur in F ∪ {C}, and so they need to be deleted later in π to avoid the
aforementioned problems; this is an issue addressed in work on proofs for parity reasoning [25].

With the definition of DRAT proofs as given originally, this subtly leads to unnecessary
work at proof generation time. Assume that the proof π above introduces an intermediate
clause D, which then needs to be deleted. The proof thus looks as follows:

π = . . . , i:D, . . . ,d:D, . . . , i:C, . . .
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where we can assume that D and C do not occur anywhere else in π. Observe now that, if
D ∈ F already, then first i:D is redundant, but much worse we have D /∈ F [π] because D
gets deleted by the instruction d:D. Accordingly the condition F [π] = F ∪ {C} fails to hold.
A näıve way to solve this would be to check at generation time if introduced clauses already
occurred in F , and insert the deletion instruction only when they did not. This is inconvenient:
doing so efficiently requires additional data structures, which in turn need maintenance every
time the clause set is modified, hence introducing undesired solving time overhead.

By treating formulas as multisets of clauses, this issue is resolved. Every deletion removes
exactly one copy of a clause, and every introduction inserts exactly one copy. Hence, by
matching the number of introductions and deletions in the proof generation procedure, one can
ensure that the accumulated formula by the proof corresponds to the working clause set in the
solver. Multiset clause introduction of RUP or RAT clauses, as well as multiset clause deletion,
are trivially satisfiability-preserving, since the underlying clause set is either preserved by this
operations or changed in the traditional way. Using multiset semantics is also important for
compositional proofs and parallel proof checking [15].

Ignoring unit clause deletions As explained in Section 3.1, deletion instructions of unit
clauses w.r.t. the current stack are ignored. From Theorem 1 we know that arbitrarily modifying
a proof cannot yield a correct refutation for a satisfiable formula. In particular, ignoring some
clause deletions during checking can be thought of as removing those deletion instructions from
the proof, and then checking the resulting proof. Hence, ignoring these deletion instructions of
unit clauses is sound.

However, completeness is lost. More specifically: the class of proofs accepted by this method
and the class of correct DRAT refutations differ [14]. In fact, these classes are incomparable.
Example 4 shows a correct DRAT refutation but rejected once unit clause deletions are ignored;
Example 5 presents the converse counterexample. These examples have been verified1 with the
current (as of April 20, 2018) versions of state-of-the-art DRAT checkers DRAT-trim 2 and
gratgen 3.

Example 4 (a correct DRAT refutation rejected by DRAT checkers). Consider the formula
F and DRAT proof π from Example 1. There we showed that π is a correct DRAT refutation
of F . However, state-of-the-art DRAT checkers reject it. This is an indirect consequence of
ignoring the deletion instruction d:wx̄. Right before this instruction, the accumulated formula
is F ∪ {xy, x, wx̄}. This formula implies exactly the literals x and w by unit propagation,
and so the stack will contain only these literals. The clause wx̄ is then a unit clause w.r.t. the
stack, and so the deletion instruction d:wx̄ will be ignored. A state-of-the-art DRAT checker
is actually checking the proof

π′ = i:xy, i:x, i:wx̄, i: w̄x̄, i:wx, i: yw, i:2

which is not a correct DRAT refutation of F . Let us walk through the steps that backwards
checking performs over π′, finally rejecting the proof.

• The empty clause 2 is checked for RUP in the formula F ∪ {xy, x, wx̄, w̄x̄, wx, yw}.
This checks succeeds using clauses x, w̄x̄, and wx̄ for propagation; these three clauses are
scheduled for verification.

1 We provide a script for reviewing purposes: https://github.com/arpj-rebola/review-pos2018/
2 https://github.com/marijnheule/drat-trim/
3 https://www21.in.tum.de/~lammich/grat/
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• The clauses yw and wx are not scheduled for verification, so they are skipped.

• The clause w̄x̄ is first checked for RUP in the formula F ∪ {xy, x, wx̄}, and this RUP
check fails. Then the checker tries to find out if w̄x̄ is a RAT in the formula above upon
literal w̄. This check fails as well, since the clause (w̄x̄) ∨ (wx̄) \ {w} = w̄x̄ is not a RUP
in the formula above.

Example 5 (an incorrect DRAT refutation accepted by DRAT checkers). Now consider the
formula F and DRAT proof σ from Example 1, which was an incorrect DRAT refutation of
F . A state-of-the-art DRAT checker will accept it, again because of unit deletion instructions
being ignored, namely d:x. The checked proof is actually

σ′ = i:xy, i:x, i:wȳ, i: w̄ȳ, i:w, i:2

It is easy to check that each introduction in σ′ is a RUP in the previously accumulated formula,
so state-of-the-art checkers accept σ.

The caption “an incorrect DRAT refutation accepted by DRAT checkers” might sound dra-
matic, but let us reassure: we can do this only because the input CNF formula was unsatisfiable,
as we know from Theorem 1. To the best of our knowledge, there is no way to make state-of-
the-art proof checkers accept a DRAT proof of a satisfiable instance (barring overflow errors
and other low level issues), and so this should not be interpreted as a soundness risk in DRAT
checkers. In Section 6 we will however discuss how these issues may affect the pragmatics of
SAT solving.

Thus, from a theoretical perspective, there is no problem on defining the class of DRAT
proofs accepted by DRAT checkers as a proof system itself. Throughout the rest of this paper,
we refer to the proof system defined by correct DRAT refutations as specified DRAT ; and to
the proof system defined by DRAT proofs accepted by DRAT checkers as operational DRAT.

5 Formalizing operational DRAT

Defining a proof system through the properties of a transformation of the proof is unconven-
tional, albeit theoretically admissible. We now formalize the operational DRAT proof system as
a set of inference rules and associated accumulated formulas, in the same fashion as the specified
DRAT system. The criterion to decide whether or not a deletion instruction is accounted for
depends on the literals occurring in the prepropragated stack, so we need to formalize this; once
this is formalized, operational DRAT is straightforward to define. In a nutshell, the prepropa-
gated stack contains a literal if and only if it can be obtained from the accumulated formula by
unit propagation. However, there exists some non-determinism: many propagation choices can
be chosen to decide this. We propose instead a semantic definition of the literals in the stack.

5.1 Shared UP-models

Consider a CNF formula F , and a partial assignment I. We say that I is an unit propagation-
model (UP-model) of F whenever, for every clause C ∈ F , either of the following holds:

1. there is some literal l ∈ C with I(l) = 1.

2. there are at least two distinct literals l, k ∈ C such that I(l) = I(k) =?.
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Intuitively, a unit propagation-model is stable under unit propagation: assuming the literals
assigned by I, no further literals can be deduced from F by unit propagation. We say that a
CNF formula F is UP-satisfiable whenever there exists an UP-model of F .

If F is UP-satisfiable, then we can define its shared UP-model SF as the following mapping
from literals to the set {0, ?, 1}:

SF (l) =

{
p if for all UP-models I of F we have I(l) = p

? otherwise

In other words: whenever all UP-models I of F agree in the value of I(l), then SF maps l to
that value; and otherwise it maps l to ?.

Theorem 2. If F is UP-satisfiable, then SF is an UP-model of F .

Proof. Observe that since all UP-models of F are partial assignments, so is SF : whenever
SF (l) = 1 for some literal l, then SF (l̄) = 0 and vice versa, since in these cases all UP-models
of F agree on the values of l and l̄.

We now show that SF is an UP-model of F by reduction to absurd. Assume it is not. Then,
there is a clause C such that, firstly, SF (l) 6= 1 for every l ∈ C; and secondly, there is at most
one literal k ∈ C such that SF (k) =?. We discuss two cases:

• No such k exists. Then, for every literal l ∈ C, we find SF (l) = 0. Therefore, for every
UP-model I of F , and every literal l ∈ C, we have I(l) = 0. This is a contradiction, since
it implies that I is not an UP-model of F , and we know that some UP-model exists.

• Exactly one such k exists. Then, we know that for some UP-model I of F we have
I(k) 6= 1. Since I is an UP-model of F , there must be two distinct literals k1 and k2 in C
such that I(k1) = I(k2) =?. This implies SF (k1) = SF (k2) =?, whether all models agree
on the value ? for k1 and k2 or whether they do not. But then we have k1 = k2 = k,
which contradicts that k1 and k2 are distinct.

In both cases we reach a contradiction, so SF is an UP-model of F .

The following is the main result relating the shared UP-model to the prepropagated stack
in a DRAT checker. The latter holds all literals that are implied by the current formula by
unit propagation. Furthermore, once two complementary literals are found to be implied by
unit propagation during stack prepropagation, DRAT checkers move on to backwards checking,
regardless that the empty clause has been reached in the proof: at this stage, the empty clause
can be derived as a RUP, since the formula itself leads to contradiction by unit propagation.

Theorem 3. Let F be a CNF formula. The following hold:

1. If F is UP-satisfiable, then a literal l is implied by unit propagation over F if and only if
SF (l) = 1.

2. If F is UP-unsatisfiable, then either F contains the empty clause, or two complementary
literals are implied by unit propagation over F .

Proof. To show this theorem, we will first prove two lemmas. We first show that, if a literal l
is implied by unit propagation from F and I is an UP-model of F , then I(l) = 1. In this case,
there must be literals l1, . . . , ln and clauses C1, . . . , Cn in F such that ln = l, and furthermore
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for every 1 ≤ i ≤ n, we have li ∈ Ci and Ci \ {li} ⊆ {l1, . . . , li−1}. We show that I(li) = 1 for
all 1 ≤ i ≤ n by induction on i. The claim then follows straightforwardly because ln = l.

If i = 1, then the clause C1 only contains the literal l1. Since C1 is in F and I is an UP-
model of F , we conclude I(l1) = 1. Now assume that I(l1) = · · · = I(li) = 1 for some i < n;
we show that I(li+1) = 1. From li+1 ∈ Ci+1 and Ci+1 \ {li+1} ⊆ {l1, . . . , li} we conclude that
the only literal k in Ci+1 with I(k) 6= 0 is li+1. But since I is an UP-model of F , this implies
that I(li+1) = 1. This concludes the proof by induction.

We now show the second lemma. Consider the set L of literals implied by unit propagation
over F . If no two complementary literals occur in L, one can construct the a partial assignment
J given by:

J(l) = 1 if l ∈ L J(l) = 0 if l̄ ∈ L J(l) =? if l, l̄ /∈ L

We show that, if no two complementary literals are implied by unit propagation over F , and F
does not contain the empty clause, then J is an UP-model of F . Let C be any clause in F .

Let C be an arbitrary clause in F . Every literal l ∈ C with J(l) = 0 satisfies that l̄ is
implied by unit propagation over F . Hence, we can find a finite sequence of literals l1, . . . , ln
and clauses D1, . . . , Dn in F with the following properties: firstly, for every 1 ≤ i ≤ n, we have
li ∈ Di and Di \ {li} ⊆ {l1, . . . , li−1}; and secondly, for every literal l ∈ C with J(l) = 0, the
literal l is one of the literals l1, . . . , ln.

We now reason by reduction to absurd. Assume J does not UP-satisfy C, i.e. there is at
most one literal l ∈ C satisfies J(l) =?, and for all literals l ∈ C we have J(l) 6= 1. In particular,
this implies that all literals in C except at most one are mapped to 0 by J . Furthermore, C is
nonempty, because 2 /∈ F . Hence, we can choose l to be the only literal in C with J(l) 6= 0,
if such a literal exists; and otherwise an arbitrary literal in C. Since every other literal in C
is one of l1, . . . , ln, we have C \ {ln+1} ⊆ {l1, . . . , ln}. This shows that ln+1 is implied by unit
propagation over F . In particular, J(ln+1) = 1, which contradicts that no literals in C are
mapped to 1 by J . By reduction to absurd, we conclude that J is an UP-model F .

We can now show the theorem. To show the “only if” implication of Claim 1, observe that
if l is implied by unit propagation over F , then I(l) = 1 holds for every UP-model I of F by
the first lemma above. Now, F is UP-satisfiable, so its shared UP-model SF is an UP-model
of F , hence SF (l) = 1. We now show the “if” implication. Firstly observe that 2 /∈ F : were
this the case, F would be UP-unsatisfiable. Furthermore, no two complementary literals k,
k̄ are implied by unit propagation over F , for the “only if” implication we have just shown
would then yield 1 = SF (k) = 0. Hence, the second lemma shows that the partial assignment
J defined above is an UP-model of F , and so it agrees with SF in the value of l. We conclude
that l is implied by unit propagation over F .

Finally, Claim 2 follows straightforward from the second lemma: if F is UP-unsatisfiable,
F does not contain the empty clause and no two complementary literals are implied by unit
propagation over F , the lemma shows that the partial assignment J is an UP-model of F ,
contradicting UP-unsatisfiability.

5.2 The operational DRAT proof system

Equipped with these theoretical results, we are now ready to give a formal definition of oper-
ational DRAT as a proof system. We maintain the same conditions for a correct refutation of
a formula F ; we instead modify the notion of accumulated formula. We recursively define the
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adjusted accumulated formula F 〈π〉 of a formula F through a DRAT proof π as follows:

F 〈ε〉 = F

F 〈i:C, π〉 = F 〈π〉 ∪ {C}

F 〈d:C, π〉 =

{
F 〈π〉 \ {C} if F 〈π〉 is UP-satisfiable, and C is a unit clause w.r.t. SF 〈π〉
F 〈π〉 otherwise

where unions and complementations have been taken as multiset operations. We then say that
a DRAT proof i1, . . . , in is an operationally correct DRAT refutation of F if 2 = im for some
1 ≤ m ≤ n, and for every 1 ≤ j ≤ n either of the following holds:

• ij is a deletion instruction d:C.

• ij is an introduction instruction i:C, and C is either a RUP in F 〈i1, . . . , ij−1〉, or a RAT
in the same formula upon the first literal l in C.

6 How do you like your DRAT proofs?

Now that we have formal definitions for both flavors of DRAT, and that we have clarified their
theoretical differences, we would like to open a discussion in the SAT community about the
convenience to use one or another flavor. As explained above, both of them are sound proof
systems, insofar as there is no correct DRAT refutation of a satisfiable formula for either flavor.

Hence, the theory does not yield a clear preference; we must consider the pragmatics of
current and future SAT solving to decide on this. This section discusses a few issues that we
consider interesting to take into account.

Checking specified DRAT proofs The reason why DRAT checkers do not check the speci-
fied flavor, deciding instead for the operational DRAT flavor, lies on unit propagation. Efficient
unit propagation techniques adapted from SAT solving do not work when arbitrary literals are
eliminated from the stack. This has to be done when a clause is removed through a deletion
instruction, since otherwise the stack may contain literals that are not implied by unit propaga-
tion. One problem is to find out which literals need to be removed from the stack. Furthemore,
combining backwards checking with stack prepropagation efficiently requires, with the current
techniques, that the order on which literals occur in the stack is compatible with the order on
which clauses are added throughout the proof. Otherwise, invariants on the two-watched literal
may be violated. Given that the involved data structures originate in SAT solving, these issues
may simply be an artifact their procedence. We believe that efficient specified DRAT proof
checking is possible by conveniently adapting the two-watched literal schema.

Practical extent of discrepancies The proofs presented in Examples 1, 4 and 5 are hand-
made, and very unlikely to be produced by a SAT solver. Unfortunately, the nature of unit
propagation makes it very hard to tell whether discrepancies between the two flavors of DRAT
occur in proofs produced by SAT solvers. However, we argue that there is a significant poten-
tial for these discrepancies to occur. The DRAT-trim2 checker issues warnings whenever a unit
clause is deleted in its verbose mode; each such deletion can lead the prepropagated stack not
to precisely reflect the literals that follow by unit propagation over the accumulated formula.

We ran DRAT-trim over the proofs generated by all participant solvers in the SAT Com-
petition 2017 for all unsatisfiable benchmarks1. We set a time limit for each SAT solver and
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DRAT-trim of 5000s. Out of the 3144 instances, in 1857 instances both tools terminated and the
generated DRAT proof was accepted. On these instances, we counted the number of reported
ignored unit clause deletions. In 95% of them, DRAT-trim ignored some unit clause deletion,
and in 44% of them more than a thousand unit clause deletions were ignored, with some cases
reaching the order of 106 ignored deletion instructions. We consider that these results make it
plausible that proofs with discrepant correctness status for each DRAT flavor occur in practice.

Total instances 3144 (100.0%)
SAT solver did not terminate 1059 (33.7%)
SAT solver reported unsatisfiability 2085 (66.3%)

from which DRAT-trim did not terminate 220 (10.6%)
DRAT-trim rejected the proof 8 (0.4%)
DRAT-trim accepted the proof 1857 (89.1%)

from which DRAT-trim ignored deletions 1774 (95.5%)
DRAT-trim ignored more than 100 deletions 1480 (79.7%)
DRAT-trim ignored more than 1000 deletions 814 (43.8%)
Maximum number of ignored deletions 373710

Figure 2: Experimental results on the occurrence of ignored deletions by DRAT-trim.

Proof generation with minimal overhead One of the goals of DRAT proof generation is
to keep the resources dedicated to proof generation at solving time to a minimum. Discrepancies
due to unit clause deletion sometimes require additional data structures and computing time.
Certain techniques such as shrinking proofs during solving through extended resolution [2]
or (inprocessing) bounded variable addition [20] regularly need to introduce and discard new
variables and thus benefit from also internally deleting variables completely, before they are
reused. This can be done when all occurrences of the reused literal are eliminated from the
formula. However, if the literal has been propagated, some clauses would not be deleted when
checking the associated DRAT proof. To generate a proof which is accepted by available
checkers, one must store a dictionary of literal correspondences with new variables, and generate
proof fragments with new variable names when literals are reused.

Another instance of unnecessary overhead provoked by unit deletion is the aforementioned
deletion of intermediate clauses in proof generation for inprocessing techniques. In order for
the accumulated formula in the proof to correspond to the clause database in the solver, it is
necessary to know at solving time which deletion instructions will be ignored and which will be
applied. Now, intermediate clauses are generated by hard-coded methods; in order to identify
unit clause deletions, unit propagation must be performed over the intermediate clauses, which
involves unnecessary reasoning effort. To the best of our knowledge, the current approach is
to simply generate the proof as though the clause would be deleted, taking the risk that the
accumulated formula and the clause database do not coincide. This becomes problematic once
non-monotonicity of RAT introduction is taken into consideration.

Last, the DPR proof system [17], which supersedes DRAT, has a great potential to generate
proof fragments for inprocessing techniques without using new variables [17]. This increases the
risk of propagating a literal due to an intermediate clause that will be subsequently deleted in
the proof fragment, since the isolation of effects provided by new variables is lost. The recently
proposed translation of PR into DRAT proofs [16] uses exactly one variable which is introduced
and deleted for every PR proof steps and thus leads to the same risk.

13



Two Flavors of DRAT A. Rebola-Pardo, A. Biere

On the other hand, since there are no checkers for specified DRAT, we are not aware of
any efforts to generate proofs that comply with this standard. As a consequence, the extent of
potential problems arising from switching to specified DRAT proofs is unknown. We also do
not know how frequently, if at all, solvers produce proofs intended to be checked as specified
DRAT proofs but rejected by DRAT checkers.

DRAT proofs for debugging If developers want to use DRAT checkers to debug their
solvers, several problems arise. The most obvious is that since there was so far no theoretical
description of the two flavors of DRAT, the developer may code a proof generation procedure
that sticks to one flavor, but the proof is then checked by the other flavor, potentially leading
to unexpected results and use of unnecessary resources for debugging. We think this is a
compelling reason for the SAT community to decide for one of the two flavors.

A more subtle problem is proof rejection. When a DRAT checkers accept a proof, a cor-
rectness witness is generated and can be checked with certified tools [5, 19]. However, when
the proof is rejected, there is currently no way to confirm this result. In particular, a developer
would have a hard time figuring out whether an isolated incorrect proof is due to flavor discrep-
ancy, to a bug in the SAT solver, or to a bug in the DRAT checker. Given that DRAT checkers
are not that simple, and bugs have been found in the past, we consider that an incorrectness
witness that can be validated by certified means would be desirable.

7 Conclusion

The original definition of the DRAT proof system in [28], which we call specified DRAT, contains
significant differences with respect to the class of refutations accepted by DRAT checkers,
referred to as operational DRAT. One aspect on which they differ is that operational DRAT
treats formulas as multisets of clauses, whereas specified DRAT deals with sets of clauses.
However, we consider this a mere matter of simplification in presentation, since proof generation
becomes much simpler with multiset semantics, and this translates into shorter solving runtimes.

The second aspect on which they differ is the treatment of deletion of unit clauses. DRAT
checkers use efficient techniques that depend on convoluted and fragile invariants. Limitations
in the adaption of the two-watched literal schema have led DRAT checkers to ignore unit clause
deletion instructions. The specified and operational flavors, where unit deletion instructions
are performed and ignored respectively, result in incomparable classes of accepted refutations.

Despite non-monotonicity of RAT introduction, the operational DRAT proof system is
sound: we have argued that ignoring unit clause deletion instructions does not lead to ac-
cept proofs for satisfiable formulas as refutations — in fact, ignoring arbitrary instructions has
this property. We have then formalized the operational DRAT proof system in a more tradi-
tional way, with inferences and criteria for them. We do this by introducing the notion of shared
unit propagation-models, which formalize the set of all literals that follow by unit propagation.

Currently there exists no efficient checker for the specified DRAT, although we identify some
issues one such checker would need to tackle. Without a specified DRAT checker, we can only
speculate about whether discrepant results ever occur in practice. Experimental results suggest
that unit clause deletions, which is a necessary condition for discrepancies, occur overwhelmingly
often. In any case, we consider this a reasonable motivation to work on efficient specified DRAT
checkers. Finally, we discuss the relevance of this difference for the pragmatics of SAT solving.
We consider implications for the proof generation overhead at solving time, as well as the use
of DRAT proofs as a tool for developers; in particular, we believe it is important that methods
to certify incorrectness results reported by DRAT checkers.
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