
Verified Memoization and
Dynamic Programming

Simon Wimmer, Shuwei Hu, and Tobias Nipkow

Fakultät für Informatik, Technische Universität München

Abstract. We present a lightweight framework in Isabelle/HOL for the
automatic verified (functional or imperative) memoization of recursive
functions. Our tool constructs a memoized version of the recursive func-
tion and proves a correspondence theorem between the two functions. A
number of simple techniques allow us to achieve bottom-up computation
and space-efficient memoization. The framework’s utility is demonstrated
on a number of representative dynamic programming problems.

1 Introduction

Verification of functional properties of programs is most easily performed on
functional programs. Performance, however, is more easily achieved with im-
perative programs. One method of improving performance of functional algo-
rithms automatically is memoization. In particular dynamic programming is
based on memoization. This paper presents a framework and a tool [24] (for
Isabelle/HOL [16, 17]) that memoizes pure functions automatically and proves
that the memoized function is correct w.r.t. the original function. Memoization
is parameterized by the underlying memory implementation which can be purely
functional or imperative. We verify a collection of representative dynamic pro-
gramming algorithms at the functional level and derive efficient implementations
with the help of our tool. This appears to be the first tool that can memoize
recursive functions (including dynamic programming algorithms) and prove a
correctness theorem for the memoized version.

1.1 Related Work

Manual memoization has been used in specific projects before, e.g. [21, 3], but
this did not result in an automatic tool. One of the few examples of dynamic
programming in the theorem proving literature is a formalization of the CYK
algorithm where the memoizing version (using HOL functions as tables) is de-
fined and verified by hand [2]. In total it requires 1000 lines of Isabelle text. Our
version in Section 3.4 is a mere 120 lines and yields efficient imperative code.

Superficially very similar is the work by Itzhaky et al. [9] who present a sys-
tem for developing optimized DP algorithms by interactive, stepwise refinement
focusing on optimizations like parallelization. Their system contains an ad-hoc
logical infrastructure powered by an SMT solver that checks the applicability

2

conditions of each refinement step. However, no overall correctness theorem is
generated and the equivalent of our memoization step is performed by their
backend, a compiler to C++ which is part of the trusted core.

We build on existing infrastructure in Isabelle/HOL for generating executable
code in functional and imperative languages automatically [1, 7, 6].

2 Memoization

2.1 Overview

The workhorse of our framework is a tool that automatically memoizes [15] re-
cursive functions defined with Isabelle’s function definition command [11]. More
precisely, to memoize a function f , the idea is to pass on a memory between
invocations of f and to check whether the value of f for x can already be found
in the memory whenever f x is to be computed. If f x is not already present in
the memory, we compute f x using f ’s recursive definition and store the result-
ing value in the memory. The memory is threaded through with the help of a
state monad. Starting from the defining equations of f , our algorithm produces a
version f ′m that is defined in the state monad. The only place where the program
actually interacts with the state is on recursive invocations of f ′m. Each defining
equation of f of the form

f x = t

is re-written to
f ′m x =m tm

where tm is a version of t defined in the state monad. The operator =m encapsu-
lates the interaction with the state monad. Given x, it checks whether the state
already contains a memoized value for f x and returns that or runs the compu-
tation tm and adds the computed value to the state. Termination proofs for f ′m
are replayed from the termination proofs of f . To prove that f still describes the
same function as f ′m, we use relational parametricity combined with induction.
The following subsections will explain in further detail each of the steps involved
in this process: monadification (i.e. defining f ′m in the state monad), replaying the
termination proof, proving the correspondence of f and f ′m via relational para-
metricity, and implementing the memory. Moreover, we will demonstrate how
this method can be adopted to also obtain a version fh that is defined in the heap
monad of Imperative HOL [4] and allows one to use imperative implementations
of the memory.

2.2 Monadification

We define the state monad with memory of type ′m and pure (result) type ′a:

datatype (′m, ′a) state = State (run state : ′m→ ′a× ′m) .

That is, given an initial state of type ′m, a computation in the state monad
produces a pair of a computation result of type ′a and a result state (of type

3

′m). To make type (′m, ′a) state a monad, we need to define the operators
return (〈-〉) and bind (�=):

return :: ′a→ (′m, ′a) state
bind :: (′m, ′a) state→ (′a→ (′m, ′b) state)→ (′m, ′b) state

〈a〉 = State (λM. (a,M))
s �= f = State (λM. case run state s M of (a,M ′)⇒ run state (f a) M ′)

The definition of �= describes how states are threaded through the program.
There are a number of different styles of turning a purely functional program

into a corresponding monadified version (see e.g. [5]). We opt for the call-by-
value monadification style from [8]. This style of monadification has two distinct
features: it fixes a strict call-by-value monadification order and generalizes suit-
ably to higher-order functions. The type M(τ) of the monadified version of a
computation of type τ can be described recursively as follows:

M(τ) = (′m,M ′(τ)) state

M ′(τ1 → τ2) = M ′(τ1)→M(τ2)

M ′(τ1 ⊕ τ2) = M ′(τ1)⊕M ′(τ2) where ⊕ ∈ {+,×}
M ′(τ) = τ otherwise

As a running example, consider the map function on lists. Its type is

(′a→ ′b)→ (′a list→ ′b list)

and its monadified version mapm has type

(′m, (′a→ (′m, ′b) state)→ (′m, ′a list→ (′m, ′b list) state) state) state .

The definitions of mapm and map′m are

mapm = 〈λf ′m. 〈λxs. map′m f ′m xs〉〉
map′m f ′m [] = 〈[]〉

map′m f ′m (Cons x xs) = Consm • (〈f ′m〉 • 〈x〉) • (map′m • 〈f ′m〉 • 〈xs〉)
Consm = 〈λ x. 〈λ xs. 〈Cons x xs〉〉〉

compared to map:

map f [] = []

map f (Cons x xs) = Cons (f x) (map f xs) .

As can be seen in this definition, the idea of the translation is to wrap up all
bound variables in a return, to replace function application with the “•”-operator
(see below), and to replace constants by their corresponding monadified versions.
The combinator map′m follows the recursive structure of map and combinator
mapm lifts map′m from type M ′(τ) to M(τ) where τ is the type of map.

4

The lifted function application operator “•” simply uses �= to pass along
the state:

fm • xm = fm �= (λf. xm �= f) .

Our monadification algorithm can be seen as a set of rewrite rules, which are
applied in a bottom-up manner. The algorithm will maintain a mapping Γ from
terms to their corresponding monadified versions. If we monadify an equation
of the form f x = t into f ′m x ′m = tm

1, then the initial mapping Γ0 includes the
bindings f 7→ 〈f ′m〉 and x 7→ 〈x ′m〉. Let Γ ` t tm denote that t is monadified to
tm given Γ . Moreover, we say that a term is Γ -pure if none of its subterms are
in the domain of Γ . Our monadification rules are the following:

e :: τ0 → τ1 → . . .→ τn e is Γ -pure ∀i. M ′(τi) = τi

Γ ` e 〈λt0. 〈λt1. · · · 〈λtn−1. e t0 t1 · · · tn−1〉 · · ·〉〉
Pure

Γ [x 7→ 〈x ′m〉] ` t tm

Γ ` (λx :: τ . t) 〈λx ′m :: M ′(τ). tm〉
λ

Γ ` e em Γ ` x xm

Γ ` (e x) (em • xm)
App

g ∈ domΓ

Γ ` g Γ (g)
Γ

The rules are ordered from highest to lowest priority.

An additional rule specifically treats case-expressions:

g is a case-combinator with n branches
Γ ` t1 η t

′
1 . . . Γ ` tn η t

′
n

Γ ` g t1 . . . tn 〈g t′1 . . . t′n〉
Comb

Here Γ ` t η t
′ denotes that t is fully η-expanded to λx1 . . . xk. s first, and if

Γ [x1 7→ 〈x′1〉, . . . , xk 7→ 〈x′k〉] ` s s′, then Γ ` t η λx
′
1 . . . x

′
k. s
′. The value

that is subject to the case analysis is another argument tn+1, and the arguments
to t1, . . . , tn are produced by the case-combinator.

As an example, consider the following unusual definition of the Fibonacci
sequence:

fib n = 1 + sum ((λf. map f [0..n− 2]) fib) .

Its right-hand side can be transformed via the following derivation:

· · ·

map ∈ domΓ ′

Γ ′ ` map mapm

Γ
f ∈ domΓ ′

Γ ′ ` f 〈f ′m〉
Γ

[0..n− 2] . . .
�

〈λf ′m. mapm•〈f ′m〉•(�)〉 λ
fib

〈fib′m〉
Γ

Γ ` fib n 〈λx. 〈1 + x〉〉•(〈λxs. 〈sum xs〉〉•(〈λf ′m. mapm•〈f ′m〉•(. . .)〉•〈fib′m〉))

1 If f has type τ1 → · · · → τn and x has type τ , the variables f ′m and xm are assumed
to have types M ′(τ1)→ · · · →M ′(τn) and M(τ), respectively. For a term x :: τ that
satisfies M ′(τ) = τ , x and x ′

m are used interchangeably.

5

([..]) 0

〈λr. 〈[0..r]〉〉 Pure
(−)

〈λx. 〈λy. 〈x− y〉〉〉 Pure
n
〈n ′m〉

Γ
2
〈2〉 Pure

[0..n− 2] 〈λr. 〈[0..r]〉〉•(〈λx. 〈λy. 〈x− y〉〉〉•〈n ′m〉•〈2〉)
=: �

where Γ ′ = Γ [f 7→ 〈f ′m〉] and Γ = [fib 7→ 〈fib′m〉,n 7→ 〈n ′m〉]. Parts of the
derivation tree have been elided, and the left-hand side and Γ have been left
out where they are clear from the context. A double line represents multiple
applications of the App-rule. Note that the term λf. map f [0..n−2] falls through
the Pure-rule before being processed by the λ-rule. This is because the bound
variable f has the function type τ = int→ int, which means M ′(τ) 6= τ .

2.3 Reasoning with Parametricity

We want to use relational parametricity [19, 22] to prove the correspondence be-
tween a program and its memoized version. A memory m is said to be consistent
with a pure function f :: ′a → ′r, if it only memoizes actual values of f : if m
maps a to r, then r = f a. We will use a relation ⇓R v s to assert that, given a
consistent state m, run state s m will produce a consistent state and a compu-
tation result v′ with R v v′. Formally, ⇓ is defined with respect to the function
f that we want to memoize, and an invariant invm on states:

⇓R v s = ∀m. cmem m ∧ invm m −→
(case run state s m of (v′, m′)⇒ R v v′ ∧ cmem m′ ∧ invm m′)

where cmem m expresses that m is consistent with f and invm m expresses that
m correctly represents a memory. Using the function relator

R 99K S = λf g. ∀x y. R x y −→ S (f x) (g y) ,

one can state the parametricity theorems for our fundamental monad combina-
tors as (the relations can be understood as types):

(R 99K ⇓R) (λx. x) return

(⇓R 99K (R 99K ⇓S) 99K ⇓S) (λv g. g v) (�=)

(⇓(R99K ⇓S) 99K ⇓R 99K ⇓S) (λ g x. g x) (•) .

To prove the parametricity theorem, e.g. for map and map′m, one needs only
the first and third property, and the parametricity theorems for all previously
monadified constants that appear in map and map′m.

To prove the correspondence theorem for a monadification result, we use
induction (following the recursion structure of the monadified function) together
with parametricity reasoning.

Automating this induction proof is non-trivial. The reason is that the func-
tion definition command uses an elaborate extraction procedure based on congru-
ence rules [11, 20] to extract recursive function calls and a surrounding context,
which is used to prove termination of the function and to prove the induction

6

theorem. This may lead to complex (and necessary) assumptions in the induc-
tion hypotheses that specify for which sets of function arguments the hypotheses
are valid. The challenge is to integrate the specific format of these assumptions
with parametricity reasoning.

To combat this problem, we opt for a more specialized approach that per-
forms an induction proof by exploiting parametricity but that goes beyond the
infrastructure that is provided by Isabelle’s integrated parametricity reasoning
facility [12]. The main difference is that we use special variants of parametric-
ity theorems that resemble the structure of the congruence theorems used by
the function definition command. These produce the right pre-conditions to dis-
charge the induction hypotheses.

Consider the fib function defined at the end of section 2.2. Both its termi-
nation and its generated induction rule are based on the information that fib n
can call fib x only if x is between 0 and n−2. This information is extracted with
the help of this congruence rule:

xs = ys ∀x. x ∈ set ys −→ f x = g x

(map f xs) = (map g ys)
map cong

Similarly, for the monadified version fib′m, its recursive calls are extracted by a
pre-registered congruence rule:

xs = ys ∀x. x ∈ set ys −→ f ′m x = g ′m x

(mapm • 〈f ′m〉 • 〈xs〉) = (mapm • 〈g ′m〉 • 〈ys〉)
mapm cong

After initiating the induction proof of the correspondence theorem with our
tool, we are left with a goal that grants us the induction hypothesis

∀x. x ∈ set [0, . . . , n− 2] −→ ⇓= (fib x) (fib′m x)

and asks us to prove

⇓list all2 (=) (map fib [0, . . . , n− 2]) (mapm • 〈fib′m〉 • 〈[0, . . . , n− 2]〉)

where list all2 S compares two lists of equal length elementwise by relation S. To
solve this goal, our tool will apply another pre-registered parametricity theorem
for map and mapm (which is derived from mapm cong following a canonical
pattern):

xs = ys ∀x. x ∈ set ys −→ ⇓S (f x) (f ′m x)

⇓list all2 S (map f xs) (mapm • 〈f ′m〉 • 〈ys〉)
map mapm

It generates the same pre-condition as the congruence rule and yields a goal
that exatcly matches the aforementioned induction hypothesis.

2.4 Termination

When monadifying a recursive function f that was defined with the function
definition command [11], we need to replay the termination proof of f to define

7

f ′m. The termination proof—whether automatic or manual—relies on exhibiting a
well-founded relation that is consistent with the recursive function calls of f . To
capture the latter notion, the function definition command defines a relation f rel
between values in the domain of f . The idea for replaying the termination proof
is that f and f ′m share the same domain and the same structure of recursive
function calls. Thus, one tries to prove f rel = f ′m rel , and if this succeeds,
the termination relation for f is also compatible with the one for f ′m, yielding
termination of f ′m.

However, the structure of f rel is sometimes too dissimilar to f ′m rel , and
thus an automated proof of the equality fails. The main reason for that is that
monadification can reorder the control flow and thus can alter the order in which
the function definition commands encounters the recursive function calls when
analyzing f ′m rel . Moreover, sometimes a congruence rule is unnecessarily used
while defining f , causing our tool to fail if a corresponding parametric version
has not been registered with our tool. In such cases, we try to fall back to
the automated termination prover that is provided by the function definition
command.

2.5 Technical Limitations

While the monadification procedure that was presented in the previous sec-
tions is designed to run automatically, it is not universally applicable to any
Isabelle/HOL function without previous setup. This encompasses the following
limiations:

– As outlined above, higher-order combinators such as map generally need to
be pre-registered together with their corresponding congruence and para-
metricity theorems.

– Just like Isabelle’s function definition command, our tool relies on a context
analysis for recursive calls. If we define (note the id)

fib n = 1 + sum (id (λf. map f [0..n− 2]) fib)

it becomes impossible to prove termination with the function definition com-
mand because the information that recursive calls happen only on values
between 0 and n− 2 is lost, and similarly our parametricity reasoner fails.

– Currently, our parametricity reasoner can only prove goals of the form

(R 99K S)(λx. f x)(λy. g y)

if Isabelle’s built-in parametricity reasoner can automatically show R = (=).
We plan to relax this limitation in the future.

Nevertheless, our tool works fully automatically for our case studies consist-
ing of functions on lists and numbers that involve different higher-order combi-
nators and non-trivial termination proofs.

8

2.6 Memoization

Compared to monadification, memoization of a program simply differs by re-
placing = in each defining equation by =m of type

(′a→ (′m, ′r) state)× ′a→ (′m, ′r) state→ bool .

The memoized version of a function of type ′a→ ′r then is of type ′a→M ′(′r)
where ′a should not contain function types. This seems to work only for functions
with exactly one argument but our tool will automatically uncurry the function
subject to memoization whenever necessary.

Concerning the memory type ′m, we merely assume that it comes with two
functions with the obvious intended meaning:

lookup :: ′a→ (′m, ′r option) state

update :: ′a→ ′r → (′m,unit) state

We use a memoizing operation retrieve or run to define =m:(
(f ′m, x) =m t

)
=
(
f ′m x = retrieve or run x (λ . t)

)
retrieve or run x t′ = lookup x�=

(
λr. case r of

Some v ⇒ 〈v〉
| None ⇒ t′ ()�= (λv. update x v �= λ . 〈v〉)

)
.

Note that it is vital to wrap the additional λ-abstraction around t: otherwise
call-by-value evaluation would build up a monadic expression that eagerly follows
the full recursive branching of the original computation before any memoization
is applied.

In order to specify the behavior of lookup and update we define an abstraction
function map of :: ′m→ ′a→ ′r option that turns a memory into a function:

map of heap k = fst (run state (lookup k) heap) .

To guarantee that retrieve or run always produces a consistent memory, lookup k
should never add to the mapping, and update k v should add at most the map-
ping k 7→ v. (We will exploit the permissiveness of this specification in Section
2.9.) Formally, for all m with invm m:

map of (snd (run state (lookup k) m)) ⊆m map of m

map of (snd (run state (update k v) m)) ⊆m (map of m)(k 7→ v)

where (m1 ⊆m m2) ←→ (∀a ∈ dom m1. m1 a = m2 a). Additionally, invm
is required to be invariant under lookup and update. This allows us to prove
correctness of retrieve or run:

⇓= (f x) s −→ ⇓= (f x) (retrieve or run x s) .

9

Given that this is not a parametricity theorem, our method to inductively prove
parametricity theorems for memoized functions needs to treat equations defined
via =m specially before parametric reasoning can be initiated.

From the correctness of retrieve or run and the correspondence theorem for
f ′m we can derive correctness of f ′m:

⇓= (f x) (f ′m x) .

As a corollary, we obtain:

run state (f ′m x) empty = (v, m) −→ f x = v ∧ cmem m .

A simple instantiation of our memory interface can be given with the help of the
standard implementation of mappings via red-black trees in Isabelle/HOL.

2.7 Imperative Memoization

This section outlines how our approach to monadification and memoization can
be extended from a purely functional to an imperative memory implementation.
Imperative HOL [4] is a framework for specifying and reasoning about imperative
programs in Isabelle/HOL. It provides a heap monad

datatype ′a Heap = Heap (execute : heap→ (′a× heap) option)

in which imperative programs can be expressed. The definition shows that the
heap monad merely encapsulates a state monad (specialized to heaps) in an
option monad to indicate failure. Our approach is simple: assuming that none
of the operations in the memoized program fail (failures could only arise from
lookup or update), the heap monad is equivalent to a state monad. This can be
stated formally, where invh is a heap invariant:

⇓hR fm fh = ∀ heap. invh heap −→
(case run state fm heap of (v1, heap1)⇒ case execute fh heap of

Some (v2, heap2)⇒ R v1 v2 ∧ heap1 = heap2 ∧ invh heap2
| None⇒ False)

One could now be tempted to combine ⇓ and ⇓h into a relation between pure
values and the heap monad by defining ⇓′ as a composition of the two:

⇓′R = ⇓R ◦◦ ⇓h=

where ◦◦ is the composition of binary relations. However, this would prohibit
proving the analogue of the parametricity theorem for �=. The reason is that
⇓′ would demand too strong a notion of non-failure: computations are never
allowed to fail, no matter whether we start the computation with a consistent
state or not. Instead we use a weaker notion (analogous to ⇓)

⇓′R v fh = ∀heap. invm heap ∧ invh heap ∧ cmem heap −→
(case execute fh heap of None⇒ False
| Some (v′, heap′)⇒ invm heap′ ∧ invh heap′ ∧R v v′ ∧ cmem heap′)

10

where invm and invh correspond to ⇓ and ⇓h, respectively. The advantage is
that one can prove

(⇓R ◦◦ ⇓h=) v fh =⇒ ⇓′R v fh ,
to exploit compositionality where necessary, while still obtaining the analogous
theorems for the elementary monad combinators (though not through reasoning
via compositionality for�=). Using ⇓′R instead of ⇓R, one can now use the same
infrastructure for monadification and parametricity proofs to achieve imperative
memoization.

2.8 Bottom-up Computation

In a classic imperative setting, dynamic programming algorithms are usually
not expressed as recursive programs with memoization but rather as a com-
putation that incrementally fills a table of memoized values according to some
iteration strategy (typically in a bottom-up manner), using the recurrences to
compute new values. The increased control over the computation order allows
one to reduce the size of the memory drastically for some dynamic programming
algorithms—examples of these can be found below. We propose a combination of
two simple techniques to accomplish a similar behaviour and memory efficiency
within our framework. The first, which is described in this section, is a notion
of iterators for computations in the state monad that allows one to freely spec-
ify the computation order of a dynamic program. The second is to exploit our
liberal interface for memories to use implementations that store only part of the
previously seen computation results (to be exemplified in the next section).

Our interface for iterators consists of two functions cnt :: ′a→ bool and nxt ::
′a → ′a that indicate whether the iterator can produce any more elements and
yield the next element, respectively. We can use these to iterate a computation
in the state monad:

iter state f = wfrec {(nxt x, x) | cnt x}
(λrec x. if cnt x then f x�= (λ . rec (nxt x)) else 〈()〉)

where wfrec takes the well-founded termination relation as its first argument.
Given a size function on the iterator value, we can prove termination if

finite {x | cnt x} and ∀ x. cnt x −→ size x < size (nxt x) .

Provided that a given iteration strategy terminates in this sense, we can use it
to compute the value of a memoized function:

(= 99K ⇓R) g f −→ ⇓R (g x) (iter state cnt nxt f x�= (λ . f x)) .

As an example, a terminating iterator that builds up a table of n rows and m
columns in a row-by-row, left-to-right order can be specified as:

size (x, y) = x ∗ (m+ 1) + y
cnt (x, y) = x ≤ n ∧ y ≤ m
nxt (x, y) = if y < m then (x, y + 1) else (x+ 1, 0)

If the recursion pattern of f is consistent with nxt, the stack depth of the
iterative version is at most one because every recursive call is already memoized.

11

2.9 Memory Implementations

To achieve a space-efficient implementation for the Minimum-Edit Distance
problem or the Bellman-Ford algorithm, one needs to complement the bottom-
up computation strategy from the last section with a memory that stores only
the last two rows. We will showcase how such a memory can be implemented
generically within our framework, and how to exploit compositionality to get an
analogous imperative implementation without repeating the correctness proof.

Abstractly, we will implement a mapping ′k → ′v option and split up ′k
using two key functions key1 :: ′k → ′k2 and key2 :: ′k → ′k1. We demand that
together, they are injective:

∀k k′. key1 k = key1 k
′ ∧ key2 k = key2 k

′ −→ k = k′ .

For a rectangular memory, for instance, key1 and key2 could map a key to its
row and column index. We use two pairs of lookup and update functions, (l1, u1)
and (l2, u2) to implement the memory for the two rows. We also store the row
keys k1 and k2 that the currently stored values correspond to in the memory.

For the verification it is crucial that we have previously introduced a memory
invariant. The invariant states that k1 and k2 are different, and that the first and
second row only store key-value pairs that correspond to k1 and k2, respectively.
The main additional insight that is used in the correctness proof for this memory
implementation is the following monotonicity lemma, where ∪m denotes map
union:

(m1 ∪m m2) ⊆m (m′1 ∪m m′2)

if m1 ⊆m m′1, m2 ⊆m m′2, and dom m1 ∩ dom m′2 = {} .

We now extend this formalization towards an imperative implementation that
stores the two rows as arrays. To this end, assume we are also given a function
idx of :: ′k2 → nat with

mem update k v = (let i = idx of f k in

if i < size then (Array.upd i (Some v) mem�= (λ . return ()))

else return ()

To verify this implementation, we wrap lookup, update, and move in

state of s = State (λ heap. the (execute s heap))

where the (Some x) = x, and prove that these correctly implement the interface
for the previous implementation in the state monad. As the second step, one
relates—via parametricity reasoning—this implementation with an implementa-
tion in the heap monad, where lookup, update and move are used without the
state of wrapper: we can prove ⇓h= (state of m) m if m never fails and preserves
the memory invariant.

12

3 Examples

This section presents five representative but quite different examples of dynamic
programming. We have also applied the tool to further examples that are not
explained here, for instance the optimal binary search tree problem [18] and the
Viterbi algorithm [23]. For the first example, Bellman-Ford, we start with a re-
cursive function, prove its correctness and refine it to an imperative memoized
algorithm with the help of the automation described above. Because the refine-
ment steps are automatic and the same for all examples, they are not shown for
the other examples.

The examples below employ lists: x · xs is the list with head x and tail xs;
xs @ ys is the concatenation of the lists xs and ys; xs ! i is the ith element of xs;
[i..j] is the list of integers from i to j, and similarly for the set {i..j}; slice xs i j
is the sublist of xs from index i (starting with 0) to (but excluding) index j.

For the verification of the Knapsack problem and the Bellman-Ford algo-
rithm, we followed Kleinberg and Tardos [10]. In both cases, the crucial part of
the correctness argument involves a recurrence of the form

OPT (Suc n) t1 . . . tk = Π{u1, . . . , um}

where each of the ui involve terms of the form OPT n and Π ∈ {Min,Max}.
We prove this equality by proving two inequalities (≤, ≥). The easier direction
is the one where we just need to show that the left-hand side covers all the
solutions that are covered by the right-hand side. This direction is not explicitly
covered in the proof by Kleinberg and Tardos. For the other direction, we first
prove that the unique minimum or maximum exist and then analyze the solution
that computes the minimum or maximum, directly following the same kind of
argument as Kleinberg and Tardos.

3.1 Bellman-Ford Algorithm

The Bellman-Ford Algorithm solves the single-destination shortest path problem
(and the single-source shortest path problem by reversing the edges): given nodes
1, . . . , n, a sink t ∈ {1, . . . , n}, and edge weights W :: nat→ nat→ int, we have
to compute for each source v ∈ {1, . . . , n} the minimum weight of any path
from v to t. The main idea of the algorithm is to consider paths in the order
of increasing path length. Thus we define OPT i v as the weight of the shortest
path leading from v to t, and using at most i edges:

OPT i v = Min ({if t = v then 0 else ∞} ∪
{weight (v · xs) | length xs + 1 ≤ i ∧ set xs ⊆ {0..n}}) .

If OPT (n + 1) s = OPT n s for all s ∈ {1, . . . , n}, then there is no cycle of
negative weight (from which t can be reached), and OPT n represents shortest
path lengths. Otherwise, we know that there is a cycle of negative weight.

Following Kleinberg and Tardos, we prove

OPT (Suc i) v = min (OPT i v) (Min {OPT i w +W v w | w. w ≤ n}) ,

13

yielding a recursive solution (replacing sets by lists):

BF 0 j = (if t = j then 0 else ∞)
BF (Suc k) j = min list (BF k, j · [W j i+ BF k, i . i← [0..n]]) .

Applying our tool for memoization, we get:

BFm
′ 0 j =m if m 〈t = j〉 〈0〉 〈∞〉

BFm
′ (Suc k) j =m 〈λxs. 〈min list xs〉〉 • (〈λx. 〈λxs. 〈x · xs〉〉〉 • BFm

′ k j •

(mapm • 〈λi. 〈λx. 〈W j i + x〉〉 • BFm
′ k i〉 • 〈[0..n]〉)) .

Using the technique described in section 2.8, we fill the table in the order
(0, 0), (0, 1), . . . , (n, 0), . . . , (n, n). The pairwise memory implementation from
section 2.9 is used to only store two rows corresponding to the first part of
the pair, which are in turn indexed by the second one. Together, this yields
a program that can compute the length of the shortest path in O(n) space.
The final correctness theorem for this implementation is (with explicit context
parameters n and W):

BF n W t i j = fst (run state
(iter BF n W t (i, j)�= (λ . BFm

′ n W t i j)) Mapping .empty) .

Isabelle can be instructed to use this equation when generating code for BF.
Thus the efficient implementation becomes completely transparent for the user.

Lastly, we can choose how to implement the parameter for the edge weights
W . A common graph representation are adjacency lists of type (nat×int) list list
that contain for each node v an association list of pairs of a neighbouring node
and the corresponding edge weight. To obtain an efficient implementation, the
outer list can be realized with Isabelle’s immutable arrays. They come with a
function IArray that maps ′a list to an immutable array and with the infix !!
array subscript function. Thus we can transform a list into an immutable array
first and then run the Bellman-Ford algorithm:

BF ia n W t i j = (let W ′ = graph of (IArray W) in fst (run state
(iter BF n W ′ t (i, j)�= (λ . BFm

′ n W ′ t i j))
Mapping .empty))

graph of a i j = case find (λp. fst p = j) (a !! i) of
None⇒∞ | Some x⇒ snd x .

Note that the defining equation for BFh
′ looks exactly the same as for BFm

′

but for different underlying constants for the heap monad. For imperative mem-
oization, the final theorems for BF or BF ia would just differ in that run state
would be replaced by execute and the initial memory would be replaced by a
correctly initialized empty heap memory.

3.2 Knapsack Problem

In the Knapsack Problem, we are given n items 1, . . . , n, a weight assignment
w :: nat → nat, and a value assignment v :: nat → nat. Given a Knapsack,

14

which can carry at most weight W, the task is to compute a selection of items
that fits in the Knapsack and maximizes the total value. Thus we define:

OPT n W = Max

{∑
i∈S

v i

∣∣∣∣ S ⊆ {1..n} ∧∑
i∈S

w i ≤ W

}
.

Again following Kleinberg and Tardos, we prove:

OPT (Suc i) W = (if W < w (Suc i) then OPT i W
else max (v (Suc i) + OPT i (W − w (Suc i))) (OPT i W)) .

This directly yields the following recursive solution:

knapsack 0 W = 0
knapsack (Suc i) W = (if W < w (Suc i) then knapsack i W

else max (knapsack i W) (v (Suc i) + knapsack i (W − w (Suc i)))) .

Like Bellman-Ford, the algorithm can be memoized using a bottom-up computa-
tion and a memory, which stores only the last two rows. However, the algorithm’s
running time and space consumption are still exponential in the input size, as-
suming a binary encoding of W .

3.3 A Counting Problem

A variant of Project Euler problem #114 2 was posed in the 2018 edition of
the “VerifyThis” competition 3 [14]. We consider a row consisting of n tiles,
which can be either red or black, and we impose the condition that red tiles only
come in blocks of three consecutive tiles. We are asked to compute count(n), the
number of valid rows of size n. This is an example of counting problems that
can be solved with memoization.

Besides the base cases count(0) = count(1) = count(2) = 1, and count(3) =
2, one gets the following recursion:

count(n) = count(n− 1) + 1 +

n−1∑
i=3

count(n− i− 1) if n > 3 .

These equations directly yield a recursive functional solution, which can be mem-
oized as described for the examples above. The reasoning to prove the main
recursion, however, is different. We define

count(n) = card {l | length l = n ∧ valid l}

where valid is an inductively defined predicate describing a well-defined row. The
reasoning trick is to prove the following case analysis on the validity of a single
row

valid l←→ l = [] ∨ (l ! 0 = B ∧ valid (tl l)) ∨
length l ≥ 3 ∧ (∀i < length l. l ! i = R) ∨

that is then used to split the defining set of count(n) into disjoint subsets that
correspond to the individual terms on the right-hand side of the recursion.

2 https://projecteuler.net/problem=114
3 http://www.pm.inf.ethz.ch/research/verifythis.html

15

3.4 The Cocke-Younger-Kasami Algorithm

Given a grammar in Chomsky normal form, the CYK algorithm computes the set
of nonterminals that produce (yield) some input string. We model productions
in Chomsky normal form as pairs (A,r) of a nonterminal A and a r.h.s. r that
is either of the form T a, where a is a terminal (of type ′t), or NN B C, where
B and C are nonterminals (of type ′n). Below, P :: (′n, ′t) prods is a list of
productions. The yield of a nonterminal is defined inductively as a relation:

(A, T a) ∈ set P

yield P A [a]

(A, NN B C) ∈ set P yield P B u yield P C v

yield P A (u @ v)

A functional programmer will start out with an implementation CYK :: (′n,
′t) prods → ′t list → ′n list of the CYK algorithm defined by recursion on
lists and prove its correctness: set (CYK P w) = {N | yield P N w}. However,
memoizing the list argument leads to an inefficient implementation. An efficient
implementation can be obtained from a version of the CYK algorithm that
indexes into the (constant) list and memoizes the index arguments. Our starting
point is the following function CYK ix where w is not of type ′a list but an
indexing function of type nat → ′t. Isabelle supports list comprehension syntax:

CYK ix :: (′n, ′t) prods → (nat → ′t) → nat → nat → ′n list
CYK ix P w i 0 = []
CYK ix P w i (Suc 0) = [A . (A, T a) ← P , a = w i]
CYK ix P w i n =
[A. k ← [1..n−1], B ← CYK ix P w i k , C ← CYK ix P w (i+k) (n−k),

(A, NN B ′ C ′) ← P , B ′ = B , C ′ = C]

The correctness theorem (proved by induction) explains the meaning of the
arguments i and n:

set (CYK ix P w i n) = {N | yield P N (slice w i (i + n))}

As for Bellman-Ford, we obtain an imperative memoized version CYK ix′m
and a correctness theorem that relates it to CYK ix and parameter w is realized
by an immutable array.

3.5 Minimum Edit Distance

The minimum edit distance between two lists xs and ys of type ′a list is the
minimum cost of converting xs to ys by means of a sequence of the edit operations
copy, replace, insert and delete:

datatype ′a ed = Copy | Repl ′a | Ins ′a | Del

The cost of Copy is 0, all other operations have cost 1. Function edit defines how
an ′a ed list transform one ′a list into another:

16

edit (Copy · es) (x · xs) = x · edit es xs
edit (Repl a · es) (· xs) = a · edit es xs
edit (Ins a · es) xs = a · edit es xs
edit (Del · es) (· xs) = edit es xs
edit [] xs = xs

We have omitted the cases where the second list becomes empty before the first.
This time we start from two functions defined by recursion on lists:

min ed :: ′a list → ′a list → nat
min eds :: ′a list → ′a list → ′a ed list

Function min ed computes the minimum edit distance and min eds :: ′a list →
′a list → ′a ed list computes a list of edits with minimum cost. We omit their
definitions. The relationship between them is trivial to prove: min ed xs ys =
cost (min eds xs ys). Therefore the following easy correctness and minimality
theorems about min eds also imply correctness and minimality of min ed :

edit (min eds xs ys) xs = ys cost (min eds xs (edit es xs)) ≤ cost es

As for CYK, we define a function by recursion on indices

min ed ix :: (nat → ′a) → (nat → ′a) → nat → nat → nat → nat → nat
min ed ix xs ys m n i j =
(if m ≤ i then if n ≤ j then 0 else n − j
else if n ≤ j then m − i

else min list
[1 + min ed ix xs ys m n i (j + 1),
1 + min ed ix xs ys m n (i + 1) j ,
(if xs i = ys j then 0 else 1) +
min ed ix xs ys m n (i + 1) (j + 1)])

and prove that it correctly refines min ed : min ed ix xs ys m n i j = min ed
(slice xs i m) (slice ys j n). Although one can prove correctness of this indexed
version directly, the route via the recursive functions on lists is simpler.

As before we obtain an imperative memoized version min ed ix′m and a cor-
rectness theorem that relates it to min ed ix.

4 Future Work

We plan to expand our work in two major directions in the future. Firstly, we
want to use our memoization tool to allow for other monads than the state and
the heap monad. The main task here is to find monads that play well with our
style of parametric reasoning. In simple monads such as reader or writer monads,
the monadic operations do not interfere with the original computation, so they
fit well in this framework. For the state monad, we can give correspondence
proofs because we thread an invariant—values stored in the state are consistent

17

with the memoized functions—through our relations. For other monads, such as
an IO monad, it is less clear what these invariants would look like. Moreover, our
tool currently only adds monadic effects at recursive invocations of a function—
for other monads one would certainly want to insert these in other places, too.
This added flexibility would also allow us to save recursive function invocations in
memoized functions: instead of performing the memoization at the equality sign,
we could wrap memoization around each recursive invocation of the function.
Furthermore, this would allow one to memoize repeated applications of non-
recursive functions in the context of an enclosing function.

Our second goal is to integrate the memoization process with the Imperative
Refinement Framework [13]. It allows stepwise refinement of functional programs
and to replace functional by imperative data structures in a final refinement
step. The main obstacle here is that the framework already comes with its own
nondeterminism monad to facilitate refinement reasoning. This means that high-
level programs are already stated in terms of this monad. We have started work
to allow automated monadification of these programs by adding the state via a
state transformer monad.

Acknowledgments

Tobias Nipkow is supported by DFG Koselleck grant NI 491/16-1. The authors
would like to thank Andreas Lochbihler for a fruitful discussion on monadifica-
tion.

References

1. Berghofer, S., Nipkow, T.: Executing higher order logic. In: Callaghan, P., Luo, Z.,
McKinna, J., Pollack, R. (eds.) Types for Proofs and Programs (TYPES 2000).
LNCS, vol. 2277, pp. 24–40. Springer (2002)

2. Bortin, M.: A formalisation of the cocke-younger-kasami algorithm. Archive of
Formal Proofs (2016), http://isa-afp.org/entries/CYK.html, Formal proof de-
velopment

3. Braibant, T., Jourdan, J., Monniaux, D.: Implementing and reasoning about hash-
consed data structures in Coq. J. Autom. Reasoning 53(3), 271–304 (2014), https:
//doi.org/10.1007/s10817-014-9306-0

4. Bulwahn, L., Krauss, A., Haftmann, F., Erkök, L., Matthews, J.: Imperative func-
tional programming with Isabelle/HOL. In: Theorem Proving in Higher Order
Logics (TPHOLs 2008). pp. 134–149 (2008)

5. Erwig, M., Ren, D.: Monadification of functional programs. Science of Computer
Programming 52(1), 101 – 129 (2004), http://www.sciencedirect.com/science/
article/pii/S0167642304000486, special Issue on Program Transformation

6. Haftmann, F., Krauss, A., Kunčar, O., Nipkow, T.: Data refinement in
Isabelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013.
LNCS, vol. 7998, pp. 100–115. Springer (2013)

7. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In:
Blume, M., Kobayashi, N., Vidal, G. (eds.) Functional and Logic Programming
(FLOPS 2010). LNCS, vol. 6009, pp. 103–117. Springer (2010)

18

8. Hatcliff, J., Danvy, O.: A generic account of continuation-passing styles. In: Conf.
Record of POPL’94: 21st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. pp. 458–471 (1994), http://doi.acm.org/10.1145/
174675.178053

9. Itzhaky, S., Singh, R., Solar-Lezama, A., Yessenov, K., Lu, Y., Leiserson, C.,
Chowdhury, R.: Deriving divide-and-conquer dynamic programming algorithms us-
ing solver-aided transformations. In: Proc. 2016 ACM SIGPLAN Int. Conf. Object-
Oriented Programming, Systems, Languages, and Applications. pp. 145–164. OOP-
SLA 2016, ACM (2016), http://doi.acm.org/10.1145/2983990.2983993

10. Kleinberg, J.M., Tardos, É.: Algorithm Design. Addison-Wesley (2006)
11. Krauss, A.: Automating Recursive Definitions and Termination Proofs in

Higher-Order Logic. Ph.D. thesis, Technical University Munich (2009), http:

//mediatum2.ub.tum.de/doc/681651/document.pdf

12. Kuncar, O.: Types, Abstraction and Parametric Polymorphism in Higher-Order
Logic. Ph.D. thesis, Technical University Munich, Germany (2016), http://

nbn-resolving.de/urn:nbn:de:bvb:91-diss-20160408-1285267-1-5

13. Lammich, P.: Refinement to Imperative/HOL. In: Urban, C., Zhang, X. (eds.) ITP
2015, Proceedings. Lecture Notes in Computer Science, vol. 9236, pp. 253–269.
Springer (2015)

14. Lammich, P., Wimmer, S.: VerifyThis 2018 — Polished Isabelle solutions. Archive
of Formal Proofs (Apr 2018), http://isa-afp.org/entries/VerifyThis2018.

html, Formal proof development
15. Michie, D.: Memo functions and machine learning. Nature 218, 19–22 (1968)
16. Nipkow, T., Klein, G.: Concrete Semantics with Isabelle/HOL. Springer (2014),

http://concrete-semantics.org

17. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283. Springer (2002)

18. Nipkow, T., Somogyi, D.: Optimal binary search tree. Archive of Formal Proofs
(2018), http://isa-afp.org/entries/Optimal_BST.html, Formal proof develop-
ment

19. Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: IFIP
Congress. pp. 513–523 (1983)

20. Slind, K.: Reasoning about terminating functional programs. Ph.D. thesis, Techni-
cal University Munich, Germany (1999), https://mediatum.ub.tum.de/node?id=
601660

21. Verma, K.N., Goubault-Larrecq, J., Prasad, S., Arun-Kumar, S.: Reflecting BDDs
in Coq. In: He, J., Sato, M. (eds.) Advances in Computing Science - ASIAN 2000.
LNCS, vol. 1961, pp. 162–181. Springer (2000)

22. Wadler, P.: Theorems for free! In: Proc. Fourth Int. Conf. Functional Programming
Languages and Computer Architecture. pp. 347–359. FPCA ’89, ACM (1989),
http://doi.acm.org.eaccess.ub.tum.de/10.1145/99370.99404

23. Wimmer, S.: Hidden markov models. Archive of Formal Proofs (2018), http://
isa-afp.org/entries/Hidden_Markov_Models.html, Formal proof development

24. Wimmer, S., Hu, S., Nipkow, T.: Monadification, memoization and dynamic
programming. Archive of Formal Proofs (2018), http://isa-afp.org/entries/

Monad_Memo_DP.html, Formal proof development

