
A Formally Verified Solver for
Homogeneous Linear Diophantine Equations?

Florian Meßner, Julian Parsert, Jonas Schöpf, and Christian Sternagel

University of Innsbruck, Austria
florian.g.messner@uibk.ac.at julian.parsert@uibk.ac.at

jonas.schoepf@uibk.ac.at christian.sternagel@uibk.ac.at

Abstract. In this work we are interested in minimal complete sets of
solutions for homogeneous linear diophantine equations. Such equations
naturally arise during AC-unification—that is, unification in the presence
of associative and commutative symbols. Minimal complete sets of solu-
tions are for example required to compute AC-critical pairs. We present
a verified solver for homogeneous linear diophantine equations that we
formalized in Isabelle/HOL. Our work provides the basis for formalizing
AC-unification and will eventually enable the certification of automated
AC-confluence and AC-completion tools.

Keywords: homogeneous linear diophantine equations, code genera-
tion, mechanized mathematics, verified code, Isabelle/HOL

1 Introduction

(Syntactic) unification of two terms s and t, is the problem of finding a substi-
tution σ that, applied to both terms, makes them syntactically equal: sσ = tσ.
For example, it is easily verified that σ = {x 7→ z , y 7→ z} is a solution to the
unification problem f(x , y) ≈? f(z , z). Several syntactic unification algorithms
are known, some of which have even been formalized in proof assistants.

By throwing a set of equations E into the mix, we arrive at equational or
E-unification, where we are interested in substitutions σ that make two given
terms equivalent with respect to the equations in E, written sσ ≈E tσ. While
for syntactic unification most general solutions, called most general unifiers, are
unique, E-unification is distinctly more complex: depending on the specific set
of equations, E-unification might be undecidable, have unique solutions, have
minimal complete sets of solutions, etc.

For AC-unification we instantiate E from above to a set AC of associativity
and commutativity equations for certain function symbols. For example, by tak-
ing AC = {(x · y) · z ≈ x · (y · z), x · y ≈ y · x}, we express that · (which we write
infix, for convenience) is the only associative and commutative function symbol.
Obviously, the substitution σ from above is also a solution to the AC-unification
problem x ·y ≈?

AC z ·z (since trivially z ·z ≈AC z ·z). You might ask: is it the only

? This work is supported by the Austrian Science Fund (FWF): project P27502.

x + y = 2z

solution x y z

z1 2 0 1
z2 0 2 1
z3 1 1 1

Table 1: An example HLDE and its minimal complete set of solutions

one? It turns out that it is not. More specifically, there is a minimal complete
set (see Section 2 for a formal definition) consisting of the five AC-unifiers:

{x 7→ z3 , y 7→ z3 , z 7→ z3}
{x 7→ z1 · z1 , y 7→ z2 · z2 , z 7→ z1 · z2}
{x 7→ z1 · z1 · z3 , y 7→ z3 , z 7→ z1 · z3}
{x 7→ z3 , y 7→ z2 · z2 · z3 , z 7→ z2 · z3}
{x 7→ z1 · z1 · z3 , y 7→ z2 · z2 · z3 , z 7→ z1 · z2 · z3}

But how can we compute it? The answer involves minimal complete sets of
solutions for homogeneous linear diophantine equations (HLDEs for short). From
the initial AC-unification problem x · y ≈?

AC z · z we derive the equation in
Table 1, which basically tells us that, no matter what we substitute for x , y ,
and z , there have to be exactly twice as many occurrences of the AC-symbol ·
in the substitutes for x and y than there are in the substitute for z .

The minimal complete set of solutions to this equation, labeled by fresh vari-
ables, is depicted in Table 1, where the numbers indicate how many occurrences
of the corresponding fresh variable are contributed to the substitute for the vari-
able in the respective column. The AC-symbol · is used to combine fresh variables
occurring more than once. For example, the solution labeled by z1 contributes
two occurrences of z1 to the substitute for x and one occurrence of z1 to the
substitute for z , while not touching the substitute for y at all.

Now each combination of solutions for which x , y , and z are all nonzero1

gives rise to an independent minimal AC-unifier (in general, given n solutions,
there are 2n combinations, one for each subset of solutions). The unifiers above
correspond to the combinations: {z3}, {z1 , z2}, {z1 , z3}, {z2 , z3}, {z1 , z2 , z3}.

We refer to the literature for details on how exactly we obtain unifiers from
sets of solutions to HLDEs and why this works [1,12]. Suffice it to say that
minimal complete sets of solutions to HLDEs give rise to minimal complete
sets of AC-unifiers.2 The main application we have in mind, relying on min-
imal complete sets of AC-unifiers, is computing AC-critical pairs. This is for
example useful for proving confluence of rewrite systems with and without AC-
symbols [6,10,11] and required for normalized completion [8,14].

In this paper we investigate how to compute minimal complete sets of solu-
tions of HLDEs, with our focus on formal verification using a proof assistant.

1 The “nonzero” condition naturally arises from the fact that substitutions cannot
replace variables by nothing.

2 Actually, this only holds for elementary AC-unification problems, which are those
consisting only of variables and one specific AC-symbol. However, arbitrary AC-
unification problems can be reduced to sets of elementary AC-unification problems.

2

In other words, we are only interested in verified algorithms (that is, algorithms
whose correctness has been machine-checked). More specifically, our contribu-
tions are as follows:

• We give an Isabelle/HOL formalization of HLDEs and their minimal com-
plete sets of solutions (Section 3).

• We describe a simple algorithm that computes such minimal complete sets of
solutions (Section 2) and discuss an easy correctness proof that we formalized
in Isabelle/HOL (Section 4).

• After several rounds of program transformations, making use of standard op-
timization techniques and improved bounds from the literature (Section 5),
we obtain a more efficient solver (Section 6)—to the best of our knowledge,
the first formally verified solver for HLDEs.

Our formalization is available in the Archive of Formal Proofs [9] (development
version, changeset d5fabf1037f8). Through Isabelle’s code generation feature [4]
a verified solver can be obtained from our formalization.

2 Main Ideas

For any formalization challenge it is a good idea to start from as simple a ground-
ing as possible: trying to reduce the number of involved concepts to a bare
minimum and to keep the complexity of involved proofs in check.

When formalizing an algorithm, once we have a provably correct implemen-
tation, we might still want to make it more efficient. Instead of doing all the
(potentially hard) proofs again for a more efficient (and probably more involved)
variant, we can often prove that the two variants are equivalent and thus carry
over the correctness result from a simple implementation to an efficient one. This
is also the general plan we follow for our formalized HLDE solver.

To make things simpler when computing minimal complete sets of solutions
for an HLDE a • x = b • y (where a and b are lists of coefficients and v • w
denotes the dot product of two lists v = [v1, . . . , vk] and w = [w1, . . . , wk] defined
by v1w1 + · · ·+ vkwk), we split the task into three separate phases:

• generate a finite search-space that covers all potentially minimal solutions
• check necessary criteria for minimal solutions (throwing away the rest)
• minimize the remaining collection of candidates

Generate. For the first phase we make use of the fact that for every minimal
solution (x , y) the entries of x are bounded by the maximal coefficient in b, while
the entries of y are bounded by the maximal coefficient in a (which we will prove
in Section 3).

Moreover, we generate the search-space in reverse lexicographic order, where
for arbitrary lists of numbers u = [u1, . . . , uk] and v = [v1, . . . , vk] we have
u <rlex v iff there is an i ≤ k such that ui < vi and uj = vj for all i < j ≤ k.
This allows for a simple recursive implementation and can be exploited in the
minimization phase.

3

Assuming that x-entries of solutions are bounded by A and y-entries are
bounded by B, we can implement the generate-phase by the function

generate A B m n = tl [(x, y). y ← gen B n, x ← gen A m]

where we use Haskell-like list comprehension and tl is the standard tail func-
tion on lists dropping the first element—which in this case is the trivial (and
non-minimal) solution consisting only of zeroes—and gen B n computes all lists
of natural numbers of length n whose entries are bounded by B, in reverse lexi-
cographic order.

gen B 0 = [[]]

gen B (Suc n) = [x#xs. xs ← gen B n, x ← [0..B]]

Our initial example x + y = 2z can be represented by the two lists of
coefficients [1,1] and [2] and the corresponding search-space is generated
by generate 2 1 2 1, resulting in

[([1,0],[0]),([2,0],[0]),([0,1],[0]),([1,1],[0]),

([2,1],[0]),([0,2],[0]),([1,2],[0]),([2,2],[0]),

([0,0],[1]),([1,0],[1]),([2,0],[1]),([0,1],[1]),

([1,1],[1]),([2,1],[1]),([0,2],[1]),([1,2],[1]),([2,2],[1])]

Check. Probably the most obvious necessary condition for (x , y) to be a minimal
solution is that it is actually a solution, that is, a • x = b • y (taking the later
minimization phase into account, it is in fact also a sufficient condition). We can
implement the check-phase, given two lists of coefficients a and b, by

check a b = filter (λ(x, y). a • x = b • y)

using the standard filter function on lists that only preserves elements satisfying
the given predicate.

For our initial example check [1,1] [2] (generate 2 1 2 1) computes
the first two phases, resulting in [([2,0],[1]),([1,1],[1]),([0,2],[1])].

Minimize. It is high time that we specify in what sense minimal solutions are
to be minimal. To this end, we use the pointwise less-than-or-equal order ≤v on
lists (whose strict part <v is defined by x <v y iff x ≤v y but not y ≤v x). Now
minimization can be implemented by the function

minimize [] = []

minimize ((x,y)#xs) =

(x,y) # filter (λ(u,v). x@y 6<v u@v) (minimize xs)

where @ is Isabelle/HOL’s list concatenation. This is also where we exploit the
fact that the input to minimize is sorted in reverse lexicographic order: then,
since (x,y) is up front, we know that all elements of xs are strictly greater with
respect to <rlex; moreover, u <v v implies u <rlex v for all u and v; and thus,
x@y is not <v-greater than any element of xs, warranting that we put it in the
resulting minimized list without further check.

4

A Simple Algorithm. Putting all three phases together we obtain a straightfor-
ward algorithm for computing all minimal solutions of an HLDE given by its
lists of coefficients a and b

solutions a b =

let A = max b; B = max a; m = length a; n = length b in

minimize (check a b (generate A B m n))

where length xs—which we sometimes write |xs|—computes the length of a
list xs. We will prove the correctness of solutions in Section 4.

Performance Tuning. There are several potential performance improvements
over the simple algorithm from above. In a first preparatory step, we categorize
solutions into special and non-special solutions (Section 5). The former are min-
imal by construction and can thus be excluded from the minimization phase.
For the latter, several necessary conditions are known that are monotone in the
sense that all prefixes and suffixes of a list satisfy them whenever the list itself
does. Now merging the generate and check phases by “pushing in” these condi-
tions as far as possible has the potential to drastically cut down the explored
search-space. We will discuss the details in Section 6.

3 An Isabelle/HOL Theory of HLDEs and their Solutions

In this section, after putting our understanding of HLDEs and their solutions
on firmer grounds, we obtain bounds on minimal solutions that serve as a basis
for the two algorithms we present in later sections.

A homogeneous linear diophantine equation is an equation of the form

a1 x1 + a2 x2 + · · ·+ amxm = b1y1 + b2y2 + · · ·+ bnyn

where coefficients ai and bj are fixed natural numbers. Moreover, we are only
interested in solutions (x , y) over the naturals.

That means that all the required information can be encoded into two lists of
natural numbers a = [a1 , . . . , am] and b = [b1 , . . . , bn]. From now on, let a and b
be fixed, which is achieved by Isabelle’s locale mechanism in our formalization:3

locale hlde = fixes a b :: nat list assumes 0 /∈ set a and 0 /∈ set b

In the locale, we also assume that a and b do not have any zero entries (which
is useful for some proofs; note that arbitrary HLDEs can be transformed into
equivalent HLDEs satisfying this assumption by dropping all zero-coefficients).

Solutions of the HLDE represented by a and b are those pairs of lists (x , y)
that satisfy a • x = b • y . Formally, the set of solutions S(a, b) is given by

S(a, b) = {(x , y) | a • x = b • y ∧ |x | = m ∧ |y | = n}
3 For technical reasons (regarding code generation) we actually have the two locales
hlde-ops and hlde in our formalization.

5

A solution is (pointwise) minimal iff there is no nonzero solution that is
pointwise strictly smaller. The set of (pointwise) minimal solutions is given by

M(a, b) = {(x , y) ∈ S(a, b) | x 6= 0 ∧ @(u, v) ∈ S(a, b). u 6= 0 ∧ u @ v <v x @ y}

where we use the notation v 6= 0 to state that a list v is nonzero, that is, does not
exclusively consist of zeroes. While the above definition might look asymmetric,
since we only require x and u to be nonzero, we actually also have that y and
v are nonzero, because (x , y) and (u, v) are both solutions and a and b do not
contain any zeroes.

Huet [5, Lemma 1] has shown that, given a minimal solution (x , y), the entries
of x and y are bounded by max b and max a, respectively. In preparation for the
proof of this result, we prove the following auxiliary fact.

Lemma 1. If x is a list of natural numbers of length n, then either

(1) xi ≡ 0 (mod n) for some 1 ≤ i ≤ n, or
(2) xi ≡ xj (mod n) for some 1 ≤ i < j ≤ n.

Proof. Let X be the set of elements of x and M = {y mod n | y ∈ X}. If |M | <
|X| then property (2) follows by the pigeonhole principle. Otherwise, |M | = |X|
and either x contains already duplicates and we are done (again by establishing
property (2)), or the elements of x are pairwise disjoint. In the latter case, we
know that |M | = n. Since all elements of M are less than n by construction, we
obtain M = {0, . . . , n−1}. This, in turn, means that property (1) is satisfied. ut

Now we are in a position to prove a variant of Huet’s Lemma 1 for improved
bounds (which were, to the best of our knowledge, first mentioned by Clausen
and Fortenbacher [2]), where, given two lists u and v of same length, we use
max6=0

v (u) to denote max({0} ∪ {ui | 1 ≤ i ≤ |v| ∧ vi 6= 0}), that is, the maximum
of those u-elements whose corresponding v-elements are nonzero.

Lemma 2. Let (x , y) be a minimal solution. Then we have xi ≤ max6=0
y (b) for

all 1 ≤ i ≤ m and yj ≤ max6=0
x (a) for all 1 ≤ j ≤ n.

Proof. Since the two statements above are symmetric, we concentrate on the
first one. Let M = max6=0

y (b) and assume that there is xk > M with 1 ≤ k ≤ m.
We will show that this contradicts the minimality of (x , y). We have

M ·
n∑

j=1

yj ≥ b • y = a • x ≥ akxk > ak ·M

and thus
∑n

j=1 yj > ak .
At this point we give an explicit construction for a corresponding existential

statement in Huet’s original proof. The goal is to construct a pointwise increasing
sequence of lists u = u1, . . . ,uak such that for all v ∈ set u we have (1) v ≤v y
and also (2) 0 <

∑n
i=1 vi ≤ ak . This is achieved by taking ui = (inc y 0)i 0|y|

where 0n denotes a list of n zeroes and we employ the auxiliary function

6

inc y i v =

if i < length y then

if v ! i < y ! i then v[i := v ! i + 1]

else inc y (Suc i) v

else v

that, given two lists y and v, increments v at the smallest position j ≥ i such
that vj < yj (if this is not possible, the result is v). Here x ! i denotes the ith
element of list x and x[i := v] a variant of list x, where the ith element is v.

As long as there is “enough space” (as guaranteed by
∑n

j=1 yj > ak), ui is
pointwise smaller than y and the sum of its elements is i for all 1 ≤ i ≤ ak ,
thereby satisfying both of the above properties.

Now we obtain a list u that in addition to (1) and (2) also satisfies (3) b•u ≡ 0
(mod ak). This is achieved by applying Lemma 1 to the list of natural num-
bers map (λx. b • x) u, and analyzing the resulting cases. Either such a list is
already in u and we are done, or u contains two lists ui and uj with i < j, for
which b • ui ≡ b • uj (mod ak) holds. In the latter case, the pointwise subtrac-
tion uj −v u

i satisfies properties (1) to (3).
Remember that xk > M . Together with properties (1) and (2) we know

b • u ≤M ·
n∑

j=1

uj ≤M · ak < akxk

By (3), we further have b • u = akc for some 0 < c < xk , showing that (x , y) is
strictly greater than the nonzero solution (0|m|[k := c], u). Finally, a contradic-
tion to the minimality of (x , y). ut

As a corollary, we obtain Huet’s result, namely that all xi are bounded by max b
and all yj are bounded by max a, since max6=0

v (c) ≤ max c for all lists v and c.

4 Certified Minimal Complete Sets of Solutions

Before we prove our algorithm from Section 2 correct, let us have a look at a char-
acterization of the elements of minimize that we require in the process (where
<rlex as well as <v are extended to pairs of lists by taking their concatenation).

Lemma 3. set (minimize xs) = {x ∈ set xs | @y ∈ set xs. y <v x} whenever
xs is sorted with respect to <rlex.

Proof. An easy induction over xs shows the direction from right to left. For the
other direction, let x be an arbitrary but fixed element of minimize xs. Another
easy induction over xs shows that then x is also in xs. Thus it remains to show
that there is no y in xs which is <v-smaller than x. Assume that there is such
a y for the sake of a contradiction and proceed by induction over xs. If xs = []

we are trivially done. Otherwise, xs = z # zs and when x is in minimize zs and
y is in zs, the result follows by IH. In the remaining cases either z = x or z = y,

7

but not both (since this would yield z <v z). For the former we have x ≤rlex y
by sortedness and for the latter we obtain y 6<v x by the definition of minimize
(since x is in minimize zs), both contradicting y <v x. ut

In the remainder of this section, we will prove completeness (all minimal
solutions are generated) and soundness (only minimal solutions are generated)
of solutions.

Lemma 4 (Completeness). M(a, b) ⊆ set (solutions a b)

Proof. Let (x , y) be a minimal solution. We use the abbreviations A = max b,
B = max a, and C = set (check a b (generate A B m n)). Then, by Lemma 3,
we have set (solutions a b) = {x ∈ C | @y ∈ C. y <v x}. Note that (x , y)
is in C (which contains all solutions within the bounds provided by A and B,
by construction) due to Lemma 2. Moreover, y 6<v x @ y for all y ∈ C follows
from the minimality of (x , y), since C is clearly a subset of S(a, b). Together,
the previous two statements conclude the proof. ut

Lemma 5 (Soundness). set (solutions a b) ⊆M(a, b)

Proof. Let (x , y) be in solutions a b. According to the definition of M(a, b)
we have to show that (x , y) is in S(a, b) (which is trivial), x is nonzero, and that
there is no <v-smaller solution (u, v) with nonzero u. Incidentally, the last part
can be narrowed down to: there is no <v-smaller minimal solution (u, v) (since
for every solution we can find a ≤v-smaller minimal solution by well-foundedness
of <v, and the left component of minimal solutions is nonzero by definition).

We start by showing that x is nonzero. Since there are no zeroes in a and b,
and (x , y) is a solution, x can only be a zero-list if also y is. However, the elements
of solutions a b are sorted in strictly increasing order with respect to <rlex and
the first one is already not the pair of zero-lists, by construction.

Now, for the sake of a contradiction, assume that there is a minimal solution
(u, v) <v (x , y). By Lemma 4, we obtain that (u, v) is also in solutions a b.
But then, due to its minimality, (u, v) is also in C (the same set we already used
in the proof of Lemma 4). Moreover, (x , y) is in C by construction. Together
with Lemma 3 and (u, v) <v (x , y), this results in the desired contradiction. ut

As a corollary of the previous two results, we obtain that solutions computes
exactly all minimal solutions, that is set (solutions a b) =M(a, b).

5 Special and Non-Special Solutions

For each pair of variable positions i and j , there is exactly one minimal solu-
tion such that only the x-entry at position i and the y-entry at position j are
nonzero. Since all other entries are 0, the equation collapses to aixi = bj yj .
Taking the minimal solutions (by employing the least common multiple) of this
equation, we solve for xi and then for yj and obtain the nonzero x-entry dij =
lcm(ai , bj)/ai and the nonzero y-entry eij = lcm(ai , bj)/bj , respectively. Given

8

i and j , we obtain the special solution (x , y) where x is [0, . . . , dij , . . . , 0] and y
is [0, . . . , eij , . . . , 0].

All special solutions can be computed in advance and outside of our min-
imization phase, since special solutions are minimal (the only entries where a
special solution could decrease are dij and eij , but those are minimal due to the
properties of least common multiples). We compute all special solutions by the
following function

special_solutions a b =

[sij a b i j. i ← [1..length a], j ← [1..length b]]

where

sij a b i j = ((replicate (length a) 0)[i := dij a b i j],

(replicate (length b) 0)[j := eij a b i j])

dij a b i j = lcm (a ! i) (b ! j) div (a ! i)

eij a b i j = lcm (a ! i) (b ! j) div (b ! j)

We have already seen a relatively crude bound on minimal solutions in Sec-
tion 3. A further bound, this time for minimal non-special solutions, follows.

Lemma 6. Let (x , y) be a non-special solution such that xi ≥ dij and yj ≥ eij
for some 1 ≤ i ≤ m and 1 ≤ j ≤ n. Then (x , y) is not minimal.

Proof. Assume that (x , y) is a minimal solution and consider the special solution
(u, v) = ([0, . . . , dij , . . . , 0], [0, . . . , eij , . . . , 0]). Due to xi ≥ dij and yj ≥ eij we
obviously have u @ v ≤v x @ y . Since (x , y) is not special itself, we further obtain
u @ v <v x @ y , contradicting the supposed minimality of (x , y). ut

This result allows us to avoid all candidates that are pointwise greater than
or equal to some special solution during our generation phase, which is the
motivation for the following functions for bounding the elements of non-special
minimal solutions. The function max_y, bounding entries of y , is directly taken
from Huet [5]. Moreover, max_x is our counterpart to max_y bounding entries of
x . As max_x is symmetric to max_y, we only give details for the latter, which is

max_y x j =
if j < n ∧ Ej x 6= ∅ then min (Ej x)
else max a

where Ej is defined by

Ej x = {eij − 1 | i < |x | ∧ xi ≥ dij}

from which we can show that all minimal solutions satisfy the following bounds

boundr x y ←→ (∀1 ≤ j ≤ n. yj ≤ max_y x j)

subdprodl x y ←→ (∀k ≤ m. [a]k • [x]k ≤ b • y)

subdprodr y ←→ (∀l ≤ n. [b]l • [y]l ≤ a • map (max_x [y]l) [1..m])

9

where boundr, subdprodl, and subdprodr are mnemonic for bound on entries
of right component, bound on sub dot product of left component, and bound on
sub dot product of right component, respectively.

Lemma 7. Let (x , y) ∈ M(a, b) be a non-special minimal solution. Then, all
of the following hold:

(1) boundr x y,
(2) subdprodl x y, and
(3) subdprodr x y.

Proof. Property (1) directly corresponds to condition (c) of Huet. Thus, we refer
to our formalization for details but note that this is where Lemma 6 is employed
(apart from motivating the definitions of max_x and max_y in the first place).

Property (2), which is based on Huet’s condition (d), follows from (x , y)
being a solution and the fact that the dot product cannot get larger by dropping
(same length) suffixes from both operands.

The last property (3) is based on condition (b) from Huet’s paper. Again, we
refer to our formalization for details. ut

Given a bound B and a list of coefficients as, the function alls computes
all pairs whose first component is a list xs of length |as| with entries at most B
and whose second component is as • xs. Note that the resulting list is sorted in
reverse lexicographic order with respect to first components of pairs.4

alls B [] = [([], 0)]

alls B (a#as) = [(x # xs, s + a * x).

(xs, s) ← alls B as, x ← [0..B]]

Example 1. For a = [1,1] (corresponding to the left-hand side coefficients of
our initial example) and B = 2 the list computed by alls B a is

[([0,0],0),([1,0],1),([2,0],2),([0,1],1),([1,1],2),([2,1],3),

([0,2],2),([1,2],3),([2,2],4)]

Since for a potential solution (x , y) elements of x and of y have different bounds,
we employ

generate A B a b =

tl (map (λ(x, y). (fst x, fst y)) (alls2 A B a b))

where

alls2 A B a b = [(xs, ys). ys ← alls B b, xs ← alls A a]

4 Also, in case you are wondering, the second component of the pairs will only play a
role in Section 6, where it will avoid unnecessary recomputations of sub dot products.
However, including these components already for alls serves the purpose of enabling
later proofs of program transformations (or code equations as they are called in
Isabelle).

10

Note that the result of generate is sorted with respect to <rlex. If we use max b
and max a as bounds for x and y , respectively, then generate takes care of the
new generate phase.

The static bounds on individual candidate solutions we obtain from Lemma 2
can be checked by the predicate

static_bounds x y ←→
(∀1 ≤ i ≤ m. xi ≤ max6=0

y (b)) ∧ (∀1 ≤ j ≤ n. yj ≤ max6=0
x (a))

The new check phase is based on the following predicate, which is a combination
of these static bounds, the fact that we are only interested in solutions, and the
three further bounds from Lemma 7

check_cond (x, y) = static_bounds x y ∧ a • x = b • y ∧
boundr x y ∧ subdprodl x y ∧ subdprodr y)

and implemented by check' = filter check_cond.
The new minimization phase finally, is still implemented by minimize, only

that this time its input will often be a shorter list.
Combining all three phases, non-special solutions are computed by

non_special_solutions =

let A = max b; B = max a in

minimize (check' (generate' A B a b))

By including all special solutions we arrive at the intermediate algorithm solve,
which already separates special from non-special solutions, but still requires
further optimization:

solve a b = special_solutions a b @ non_special_solutions a b

The proof that solve a b correctly computes the set of minimal solutions, that is
set (solve a b) =M(a, b), is somewhat complicated by the additional bounds,
but structurally similar enough to the corresponding proof of solutions that
we refer the interested reader to our formalization.

Having covered the correctness of our algorithm, it is high time to turn
towards performance issues.

6 A More Efficient Algorithm for Code Generation

While the list of non-special solutions computed in Section 5 lends itself to
formalization (due to its separation of concerns regarding the generate and check
phases), it may waste a lot of time on generating lists that will not pass the later
checks.

Example 2. Recall our initial example with coefficients a = [1,1] and b = [2].
Let A = max b = 2 and B = max a = 1. Then, the list generated by alls B b
contains for example a y-entry ([0],0). This is combined with all nine elements
of alls A a (listed in Example 1) before filtering takes place, even though only a
single x-entry, namely ([0,0],0), will survive the check phase (since all others

exceed the bound max
6=0
[0](b) = 0 for some entry).

11

We now proceed to a more efficient variant of non_special_solutions which
computes the same results (alas, we cannot hope for better asymptotic behavior,
since computing minimal complete sets of solutions of HLDEs is NP-complete).

While all of the following has been formalized, we will not give any proofs
here, due to their rather technical nature and a lack of further insights. We start
with the locale

locale bounded gen check =
fixes C and B
assumes C (x # xs) s = False if x > B
and C (x′ # xs) s′ if C (x # xs) s, x′ ≤ x, s′ ≤ s

which takes a condition C, a bound B, and defines a function gen_check that
combines (to a certain extent) generate' and check' from the previous section.

gen_check [] = [([], 0)]

gen_check (a # as) = concat (map (incs a 0) (gen_check as))

Here, the auxiliary function incs is defined by (note that termination of this
function relies on the fact that there is an upper bound—namely B, as ensured
by the first assumption of the locale—on the entries of the generated lists):

incs a x (xs, s) =

let t = s + a*x in

if C (x#xs) t then (x#xs, t) # incs a (x+1) (xs, s) else []

The idea of gen_check is to length-incrementally (starting with rightmost el-
ements) generates all lists whose elements are bounded by B, such that only
intermediate results that satisfy C are computed.

For us, the crucial property of gen_check is its connection to alls, which is
covered by the following result (for which we need the second locale assumption).

Lemma 8. gen_check a = filter (suffs C a) (alls B a)

Where suffs C a (x, s) ensures that |x| = |a|, s = a • x and all non-empty
suffixes of the list x (including x itself) satisfy condition C.

Now we can define generate_check in terms of two instantiations of the lo-
cale bounded gen check (meaning that each time the locale parameters C and B
are replaced by terms for which all assumptions of the locale are satisfied),
using appropriate conditions C1, C2 and bounds B1, B2, respectively. This re-
sults in the two instances gen_check1 and gen_check2 of gen_check, where
gen_check1 receives a further parameter y, which stands for a fixed y-entry
against which we are trying to generate x-entries.

To be more precise, we use the following instantiations

B1 = λb. max b

B2 = max a

C1 b y x s←→ x = [] ∨ s ≤ b • y ∧ x ≤ max6=0
y (b)

C2 y s←→ y = [] ∨ (y ≤ max a ∧ s ≤ a • map (max_x y) [1..|a|])

12

Combining gen_check1 and gen_check2 we obtain a function that computes
candidate solutions as follows:

generate_check a b = [(x, y) | y ← gen_check2 b, x← gen_check1 y a]

Using Lemma 8 it can be shown that generate_check behaves exactly the
same way as first generating candidates using alls2 and then filtering them
according to conditions C1 and C2.

generate_check a b =
[(x, y)← alls2 (B1 b) B2 a b. suffs (C1 b (fst y)) a x ∧ suffs C2 b y]

We further filter this list of candidate solutions in order to get rid of superfluous
entries, resulting in the function fast_filter defined by

filter P (map (λ(x, y). (fst x, fst y)) (tl (generate_check a b)))

where P (x, y) = static_bounds x y ∧ a • x = b • y ∧ boundr x y.
Extensionally fast_filter is equivalent to what non_special_solutions

of our intermediate algorithm above does before minimization.

Lemma 9. Let A = max b and B = max a. Then

fast_filter a b = check' a b (generate' A B a b)

This finally allows us to use the following more efficient definition of solve for
code generation (of course all results on solve carry over, since extensionally
the two versions of solve are the same, as shown by Lemma 9).

solve a b = special_solutions a b @ minimize (fast_filter a b)

Generating the Solver. At this point we generate Haskell code for solve (and
also for the library functions integer_of_nat and nat_of_integer, which will
be used in our main file) by

export-code solve integer_of_nat nat_of_integer

in Haskell module-name HLDE file“generated/”

(For this step a working Isabelle installation is required.)
The only missing part is the (hand written) main entry point to our program

in Main.hs (it takes an HLDE as command line argument in Haskell syntax,
makes sure that the coefficients are all nonzero, hands the input over to solve,
and prints the result):

main = getArgs >>= parse

parse [s] = start s

parse _ = do

hPutStrLn stderr usage

exitWith (ExitFailure 1)

13

HLDE with verified algorithms

coefficients S I E G

a b #sols time (s) time (s) time (s) time (s)

[1,1] [2] 3 0.001 0.001 0.001 n/a
[1,1] [3] 4 0.001 0.001 0.001 n/a
[1,1,1] [3] 10 0.001 0.002 0.001 n/a
[1,1,1] [3,3,2] 26 0.002 0.003 0.002 n/a
[1,2,5] [1,2,3,4] 39 0.2 0.3 0.07 0.012
[1,1,1,2,3] [1,1,2,2] 44 0.2 0.01 0.01 0.006
[2,5,9] [1,2,3,7,8] 119 188.00 212.00 21.00 0.081
[2,2,2,3,3,3] [2,2,2,3,3,3] 138 262.00 49.00 0.07 0.012
[1,4,4,8,12] [3,6,9,12,20] 232 - - 221.00 0.180

Table 2: Comparing runtimes of verified algorithms and fastest known algorithm

start input = do

let (a, b) = read input :: ([Integer], [Integer])

if 0 `elem` a || 0 `elem` b then do

hPutStrLn stderr "0-coefficients are not allowed"

exitWith (ExitFailure 2)

else if null a || null b then do

hPutStrLn stderr "empty lists coefficients are not allowed"

exitWith (ExitFailure 3)

else

mapM_ (putStrLn . show . (\(x, y) ->

(map integer_of_nat x, map integer_of_nat y))) (

solve (map nat_of_integer a) (map nat_of_integer b))

usage = {- ... -}

A corresponding binary hlde can be compiled using the command (provided
of course that our AFP entry and a Haskell compiler are both installed):

isabelle afp_build HLDE

We conclude this section by an example run (joining output lines to save space):

$./hlde "([2,1],[1,1,2])"

([1,0],[2,0,0]) ([1,0],[0,2,0]) ([1,0],[0,0,1]) ([0,1],[1,0,0])

([0,1],[0,1,0]) ([0,2],[0,0,1]) ([1,0],[1,1,0])

7 Evaluation

We compare our verified algorithms—the simple algorithm (S) of Section 4, the
intermediate algorithm of Section 5 (I), and the efficient algorithm of Section 6

14

(E)—with the fastest unverified implementation we are aware of: a graph algo-
rithm (G) due to Clausen and Fortenbacher [2].

In Table 2 we give the resulting runtimes (in seconds) for computing minimal
complete sets of solutions of a small set of benchmark HLDEs (in increasing
order of number of solutions; column #sols): the first four lines cover our initial
example and three slight modifications, while the remaining examples are taken
from Clausen and Fortenbacher).

However, there are two caveats: on the one hand, the runtimes for G are
direct transcriptions from Clausen and Fortenbacher (hence also the missing
entries for the first four examples), that is, they where generated on hardware
from more than two decades ago; on the other hand, G uses improved bounds
for the search-space of potential solutions, which are not formalized and thus
out of reach for our verified implementations.

Anyway, our initial motivation was to certify minimal complete sets of AC-
unifiers. Which is, why we want to stress the following: already for the first
four examples of Table 2 the number of AC-unifiers goes from five, over 13,
then 981, up to 65 926 605. For the remaining examples we were not even able to
compute the number of minimal AC-unifiers (running out of memory on 20 GB
of RAM); remember that in the worst case for an elementary unification problem
whose corresponding HLDE has n minimal solutions, the number of minimal AC
unifiers is in the order of 2n. Thus, applications that rely on minimal complete
sets of AC-unifiers will most likely not succeed on examples that are much bigger
than the one in line three of Table 2, rendering certification moot.

On the upside, we expect HLDEs arising from realistic examples involving
AC-unification to be quite small, since the nesting level of AC-symbols restricts
the length of a and b and the multiplicity of variables restricts individual entries.

8 Related Work

In the literature, there are basically three approaches for solving HLDEs: lexico-
graphic algorithms, completion procedures, and graph theory based algorithms.

Already in the 1970s Huet devised an algorithm to generate the basis of
solutions to homogeneous linear diophantine equations in a paper of the same
title [5], the first instance of a lexicographic algorithm. Our formalization of
HLDEs and bounds on minimal solutions is inspired by Huet’s elegant and short
proofs. We also took up the idea of separating special and non-special solutions
from Huet’s work. Moreover, the structure of our algorithm mostly corresponds
to Huet’s informal description of his lexicographic algorithm: a striking differ-
ence is that we use a reverse lexicographic order. This facilities a construction
relying on recursive list functions without the need of accumulating parameters.
Compared to the beginning of our work, where we tried to stay with the standard
lexicographic order, this turned out to lead to greatly simplified proofs.

In 1989, Lankford [7] proposed the first completion procedure solving HLDEs.
Fortenbacher and Clausen [2] give an accessible survey of these earlier ap-

proaches and in addition present the first graph theory based algorithm. They

15

conclude that any of the existing algorithms is suitable for AC-unification: on
the one hand there are huge performance differences for some big HLDEs; on
the other hand AC-unification typically requires only relatively small instances;
moreover, if the involved HLDEs grow too big the number of minimal AC-unifiers
explodes massively, dwarfing the resource requirements for solving those HLDEs.

Later, Contejean and Devie [3] gave the first algorithm that was able to
solve systems of linear diophantine equations (and is inspired by a geometric
interpretation of the algorithm due to Fortenbacher and Clausen).

In contrast to our purely functional algorithm, all of the above approaches
have a distinctively imperative flavor, and to the best of our knowledge, none of
them have been formalized using a proof assistant.

9 Conclusions and Further Work

We had two main reasons for choosing a lexicographic algorithm (also keeping
in mind that the problem being NP-complete, all approaches are asymptotically
equivalent): (1) our ultimate goal is AC-unification and as Fortenbacher and
Clausen [2] put it “How important are efficient algorithms which solve [HLDEs]
for [AC-unification]? [. . .] any of the algorithms presented [. . .] might be chosen
[. . .],” and (2) Huet’s lexicographic algorithm facilitates a simple purely func-
tional implementation that is amenable to formalization.

Structure and Statistics. Our formalization comprises 3353 lines of code. These
include 73 definitions and functions as well as 281 lemmas and theorems, most
of which are proven using Isabelle’s Intelligible Semi-Automated Reasoning lan-
guage Isar [13]. The formalization is structured into the following theory files:

List_Vector covering facts (about dot products, pointwise subtraction, several
orderings, etc.) concerning vectors represented as lists of natural numbers.

Linear_Diophantine_Equations covering the abstract results on HLDEs dis-
cussed in Section 3.

Sorted_Wrt, Minimize_Wrt covering some facts about sortedness and mini-
mization with respect to a given binary predicate.

Simple_Algorithm containing the simple algorithm of Section 2 and its cor-
rectness proof (Section 4).

Algorithm containing an intermediate algorithm (Section 5) that separates spe-
cial from non-special solutions, as well as a more efficient variant (Section 6).

Solver_Code issuing a single command to generate Haskell code for solve and
compiling it into a program hlde.

Future Work. Our ultimate goal is of course to reuse the verified algorithm in
an Isabelle/HOL formalization of AC-unification.

Another direction for future work is to further improve our algorithm. For
example, the improved bounds

∑m
i=1 xi ≤ max b and

∑n
j=1 yj ≤ max a are dis-

cussed by Clausen and Fortenbacher [2]. Moreover, already Huet [5] mentions
the optimization of explicitly computing x1 after ([x2 , . . . , xm], y) is fixed (which
potentially divides the number of generated lists by the maximum value in b).

16

References

1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
New York, NY, USA (1998)

2. Clausen, M., Fortenbacher, A.: Efficient solution of linear diophantine equa-
tions. Journal of Symbolic Computation 8(1), 201–216 (1989). doi:10.1016/
S0747-7171(89)80025-2

3. Évelyn Contejean, Devie, H.: An efficient incremental algorithm for solving systems
of linear diophantine equations. Information and Computation 113(1), 143–172
(1994). doi:10.1006/inco.1994.1067

4. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In:
Proceedings of the 10th International Symposium on Functional and Logic Pro-
gramming (FLOPS). Lecture Notes in Computer Science, vol. 6009, pp. 103–117.
Springer (2010). doi:10.1007/978-3-642-12251-4_9

5. Huet, G.: An algorithm to generate the basis of solutions to homogeneous lin-
ear diophantine equations. Information Processing Letters 7(3), 144–147 (1978).
doi:10.1016/0020-0190(78)90078-9

6. Klein, D., Hirokawa, N.: Confluence of non-left-linear TRSs via relative termina-
tion. In: Proceedings of the 18th International Conference on Logic for Program-
ming, Artificial Intelligence, and Reasoning. Lecture Notes in Computer Science,
vol. 7180, pp. 258–273. Springer (2012). doi:10.1007/978-3-642-28717-6_21

7. Lankford, D.: Non-negative integer basis algorithms for linear equations with inte-
ger coefficients. Journal of Automated Reasoning 5(1), 25–35 (1989). doi:10.1007/
BF00245019

8. Marché, C.: Normalized rewriting: An alternative to rewriting modulo a set of
equations. Journal of Symbolic Computation 21(3), 253–288 (1996). doi:10.1006/
jsco.1996.0011

9. Meßner, F., Parsert, J., Schöpf, J., Sternagel, C.: Homogeneous Linear Diophantine
Equations. The Archive of Formal Proofs (Oct 2017), https://devel.isa-afp.
org/entries/Diophantine_Eqns_Lin_Hom.shtml, Formal proof development

10. Nagele, J., Felgenhauer, B., Middeldorp, A.: CSI: New Evidence – A progress
report. In: Proceedings of the 26th International Conference on Automated De-
duction (CADE). Lecture Notes in Computer Science, vol. 10395, pp. 385–397.
Springer (2017). doi:10.1007/978-3-319-63046-5_24

11. Shintani, K., Hirokawa, N.: CoLL: A confluence tool for left-linear term rewrite sys-
tems. In: Proceedings of the 25th International Conference on Automated Deduc-
tion (CADE). Lecture Notes in Computer Science, vol. 9195, pp. 127–136. Springer
(2015). doi:10.1007/978-3-319-21401-6_8

12. Stickel, M.: A unification algorithm for associative-commutative functions. Journal
of the ACM 28(3), 423–434 (1981). doi:10.1145/322261.322262

13. Wenzel, M.: Isabelle/Isar - A Versatile Environment for Human-Readable Formal
Proof Documents. Ph.D. thesis, Technische Universität München, Institut für In-
formatik (2002)

14. Winkler, S., Middeldorp, A.: Normalized completion revisited. In: Proceedings
of the 24th International Conference on Rewriting Techniques and Applications
(RTA). Leibniz International Proceedings in Informatics, vol. 21, pp. 319–334.
Schloss Dagstuhl (2013). doi:10.4230/LIPIcs.RTA.2013.319

17

http://dx.doi.org/10.1016/S0747-7171(89)80025-2
http://dx.doi.org/10.1016/S0747-7171(89)80025-2
http://dx.doi.org/10.1006/inco.1994.1067
http://dx.doi.org/10.1007/978-3-642-12251-4_9
http://dx.doi.org/10.1016/0020-0190(78)90078-9
http://dx.doi.org/10.1007/978-3-642-28717-6_21
http://dx.doi.org/10.1007/BF00245019
http://dx.doi.org/10.1007/BF00245019
http://dx.doi.org/10.1006/jsco.1996.0011
http://dx.doi.org/10.1006/jsco.1996.0011
https://devel.isa-afp.org/entries/Diophantine_Eqns_Lin_Hom.shtml
https://devel.isa-afp.org/entries/Diophantine_Eqns_Lin_Hom.shtml
http://dx.doi.org/10.1007/978-3-319-63046-5_24
http://dx.doi.org/10.1007/978-3-319-21401-6_8
http://dx.doi.org/10.1145/322261.322262
http://dx.doi.org/10.4230/LIPIcs.RTA.2013.319

	 A Formally Verified Solver for Homogeneous Linear Diophantine Equations

