
Relational Parametricity and Quotient Preservation for
Modular (Co)datatypes

Andreas Lochbihler and Joshua Schneider

Institute of Information Security, Department of Computer Science, ETH Zürich,
Zürich, Switzerland

andreas.lochbihler@inf.ethz.ch, joshua.schneider@inf.ethz.ch

Abstract. Bounded natural functors (BNFs) provide a modular framework for
the construction of (co)datatypes in higher-order logic. Their functorial operations,
the mapper and relator, are restricted to a subset of the parameters, namely those
where recursion can take place. For certain applications, such as free theorems,
data refinement, quotients, and generalised rewriting, it is desirable that these
operations do not ignore the other parameters. In this paper, we generalise BNFs
such that the mapper and relator act on both covariant and contravariant parameters.
Our generalisation, BNFCC, is closed under functor composition and least and
greatest fixpoints. In particular, every (co)datatype is a BNFCC. We prove that
subtypes inherit the BNFCC structure under conditions that generalise those for the
BNF case. We also identify sufficient conditions under which a BNFCC preserves
quotients. Our development is formalised abstractly in Isabelle/HOL in such a
way that it integrates seamlessly with the existing parametricity infrastructure.

1 Introduction

Datatypes and codatatypes are a fundamental tool in functional programming and proof
assistants. Proof assistants based on type theory usually provide (co)datatypes as a
built-in concept (e.g. Coq [31], Agda [29], Lean [28]), whereas other tools defer the
construction to definitional (Isabelle [7], HOL [36]) or axiomatic packages (PVS [30],
Dafny [23]). Traytel et al. [38] proposed bounded natural functors (BNFs) as a seman-
tic criterion for (co)datatypes that are constructible in higher-order logic, which was
subsequently implemented as a definitional package in Isabelle/HOL [7]. Notably, the
BNF class includes important non-free types such as finite sets and discrete probability
distributions. The package allows a modular approach: Once a type constructor has been
proved to be a BNF, it can be used to define new (co)datatypes.

For example, following the coalgebraic theory of systems [34], deterministic discrete
systems are modelled as elements of a codatatype (a,b) dds, where a is the type of inputs,
and b is the type of outputs of the system. In Isabelle/HOL, the following command
defines this type with constructor Dds and destructor run.

codatatype (a,b) dds = Dds (run : a⇒b× (a,b) dds)

Note that (a,b) dds on the right-hand side occurs inside a product (b×◊) and a function
type (a⇒◊), which both are BNFs. Yet, not all recursive specifications produce valid
HOL (co)datatypes [13]. For example, a datatype must not recurse through the domain of
predicates ◊⇒bool. Otherwise, HOL’s set-theoretic semantics would have to contain an

injection into a non-empty set from its powerset. To avoid such inconsistencies, BNFs dis-
tinguish live type parameters from dead ones, and (co)recursion is limited to live parame-
ters. For the function space a⇒b, b is live and a is dead, and the same holds for (a,b) dds.

Many type constructors come with a map operation (mapper) that lifts unary func-
tions on the type parameters to the whole type. For lists, e.g., the mapper maplist ::
(a⇒b)⇒a list⇒b list applies the given function to all elements in the list. The func-
tion space’s mapper map⇒ g h f = h◦ f ◦g transforms both the domain and the range of
f . Every BNF has a mapper, but it acts only on the live parameters. For the function space,
the BNF mapper map⇒ id h therefore transforms only the range, but not the domain. Sim-
ilarly, the BNF mapper mapdds for DDS’s has type (b⇒b′)⇒ (a,b) dds⇒ (a,b′) dds,
i.e., it can transform a system’s outputs. But it is useless if we want to transform the inputs.
For example, consider a system S turning integers into booleans (e.g., testing whether
the partial sum of inputs is even). Then, we cannot easily use it on natural numbers. In
contrast, if the mapper acted also on the contravariant type parameter a, i.e., mapdds ::
(a′⇒a)⇒ (b⇒b′)⇒ (a,b) dds⇒ (a′,b′) dds, then the new system could be written as
mapdds int id S, where int :: nat⇒ int embeds the natural numbers in the integers.

This limitation of the BNF mapper is pervasive. First of all, it also affects the derived
relator, which lifts relations rather than functions. For example, the list relator rellist R
relates two lists iff they have the same length and the elements at the same indices are
related by R. The function space relator A Z⇒B takes a relation A on the domain and
a relation B on the codomain. It relates two functions if they map A-related inputs to
B-related outputs. But when seen as a BNF, A is always fixed to the identity relation (=).
Accordingly, due to the modular construction of (co)datatypes, the DDS relator lifts only
a relation on outputs, and the input’s relation is fixed to (=).

Mappers and relators are used by many reasoning tools built on relational parametric-
ity [33]. A polymorphic term is relationally parametric if its instances for related types
are related, too. This requires an interpretation of types as relations and, thus, relators.
The BNF restriction to live parameters hampers many applications of the interpretation:
Quotients cannot be lifted through dead parameters [17], data refinement cannot happen
in dead parameter positions [9,21], rewriting with equivalence relations must not affect
dead parameters [37], free theorems can talk only about live parameters [39], and so on.
Whenever—today in Isabelle/HOL—any of this is needed for dead parameters, too, one
has to manually define more general mappers and relators ad hoc for the affected types.

In this paper, we generalise the BNF notion to BNFCC, where dead parameters are
refined into covariant, contravariant, and fixed parameters—“CC” stands for covariance
and contravariance. While live parameters are technically covariant, we reserve the latter
term for non-live parameters. For example, the type of second-order functions (a⇒b)⇒c
is a BNF where only c is live and a and b are dead. Considered as a BNFCC, c is live, b is
contravariant because it occurs at a negative position with respect to the function space,
and a is covariant as it occurs at a positive, but not strictly positive position. The BNFCC
mapper and relator act on all type parameters but the fixed ones. For dds, e.g., we do ob-
tain the desired mapper that lets us transform both the inputs and the outputs. The BNFCC
notion coincides with the BNF notion when there are only live and fixed parameters.

The key feature of BNFs is that they are closed under composition and least and
greatest fixpoints, i.e., (co)datatypes. BNFCCs also enjoy these properties. So, they are

2

as modular as the BNFs and can be integrated into Isabelle’s (co)datatype package. We
emphasise that BNFCCs do not allow users to define more (co)datatypes than BNFs do.
The difference is that BNFCCs yield more versatile mappers and relators with useful prop-
erties. Moreover, they integrate nicely with the rest of the functor-based infrastructure.

The main contributions of this paper are the following:

– We introduce the notion of BNFCC as a generalisation of BNF (Sect. 2). BNFCCs are
equipped with more general relators and mappers than what the underlying natural
functor provides. These operations are useful for various reasoning tasks (Sect. 1.2).

– We prove that BNFCCs are closed under composition (Sect. 3) and least and great-
est fixpoints (Sect. 4). This makes BNFCCs modular and avoids syntactic condi-
tions on definitions. In particular, every (co)datatype defined with Isabelle/HOL’s
(co)datatype package [7,8] is a BNFCC.

– We prove that subtypes preserve the BNFCC structure under certain conditions
(Sect. 5). Consequently, non-uniform (co)datatypes [8] are BNFCCs, too. If there are
no covariant and contravariant parameters, our conditions are equivalent to those for
BNFs.

– We prove that BNFCCs lift quotients unconditionally through live parameters and
under mild conditions through covariant and contravariant parameters (Sect. 6). This
makes Isabelle’s Lifting package more powerful, as the BNF theory only proves
lifting for live parameters.

We formalised all our constructions and proofs in Isabelle/HOL [25]. Since reasoning
about abstract functors is impossible in HOL, we axiomatised two generic BNFCCs with
sufficiently many parameters of each kind, and used them for the concrete constructions.
The formalisation includes the examples from Sections 1 and 2. In addition, we give
informal proof sketches for most propositions and theorems in Appendix A (Online
Resource). The implementation of BNFCCs as an extension of the existing packages is
left as future work (Sect. 8).

1.1 Background: Bounded Natural Functors

A bounded natural functor (BNF) [38] is a type constructor F of some arity equipped with
a mapper, conversions to sets, and a cardinality bound on those sets. A type parameter of
F is either live or dead; dead parameters are ignored by the BNF operations. The mapper
is given by the polymorphic operation mapF :: (l⇒ l′)⇒ (l,d) F⇒ (l′,d) F on the live
parameters l, whereas the dead parameters d remain fixed.1 We assume without loss of
generality that all live parameters precede the dead ones in the parameter list. For each
live type parameter li, a BNF comes with a polymorphic setter seti

F :: (l,d) F⇒ li set.
The cardinality bound bdF is assumed to be infinite and may depend only on non-live
parameters. The BNF operations must satisfy the following laws [7]:

1 The notation x stands for a meta-syntactic list of formal entities x1,x2, . . . ,xn. We use this
notation quite liberally, such that the expanded type of mapF reads

(l1⇒ l′1)⇒ (l2⇒ l′2)⇒ . . .⇒ (lm⇒ l′m)⇒ (l1, . . . , lm,d1, . . . ,dn) F⇒ (l′1, . . . , l
′
m,d1, . . . ,dn) F.

Similarly, we write i. ϕ for the conjunction of all instances of ϕ over the index i. Superscripts
select a subsequence, e.g., x>2 represents x3,x4, . . . ,xn.

3

mapF id = id mapF (f ◦g) = mapF f ◦mapF g i. |seti
F| ≤ bdF (1)

i. seti
F (mapF f x) = fi ‘ seti

F x
i. ∀y ∈ seti

F x. fi y = gi y
mapF f x = mapF g x

(2)

relF R# relF Sv relF (R#S) (3)

Here, f ‘A = {y | ∃x ∈ A. y = f x} denotes A’s image under f , |A| is A’s cardinality, # is
relation composition, and v is relation containment. Relations are represented as binary
predicates of type a⊗b= (a⇒b⇒bool). The relator relF is defined as

relF R x y = (∃z.(i.seti
F z⊆ {(a,b) | Ri a b})∧mapF π1 z = x∧mapF π2 z = y) (4)

where π1 and π2 project a pair to its components. The relator extends mapF to relations,
interpreting functions f by their graphs Gr f = (λx y. y = f x):

Lemma 1. If F is a BNF, then Gr (mapF f) = relF (Gr f).

BNFs are closed under various operations: functor composition, “killing” of live type
parameters, and least and greatest fixpoints. Examples of basic BNFs are the identity
functor, products (×), sums (+), and function spaces (⇒), where the domain is dead.
Finite lists a list are a datatype and hence a BNF, too, with mapper maplist, relator rellist,
and bound ℵ0. The setter setlist returns the set of elements in the list.

1.2 Examples and Applications

We now illustrate the benefits of parametricity-based reasoning using small examples,
which all require the generalised mappers and relators. Although all our examples
revolve around the DDS codatatype, parametricity-based reasoning is not restricted
to coalgebraic system models. It can equally be used for all the other (co)datatypes,
and whenever a type parameter is covariant or contravariant (e.g., a in (a,b) tree =
Leaf b | Node (a⇒ (a,b) tree)), the BNFCC theory makes the reasoning more powerful
than the BNF theory.

Free theorems. Wadler [39] showed how certain theorems can be derived from para-
metricity by instantiating the relations with the graphs of functions and using Lemma 1,
which we generalise to BNFCCs in Sect. 2. As shown in the introduction, the inputs and
outputs of a DDS can be transformed with the mapper mapdds. Parallel || and sequential •
composition for DDS’s, e.g., are defined corecursively by

primcorec (||) :: (a,b) dds⇒ (c,d) dds⇒ (a+ c,b+d) dds where
run (S1 ||S2) = (λx. case x of

Inl a⇒ let (b,S′1) = run S1 a in (Inl b,S′1 ||S2)
| Inr c⇒ let (d,S′2) = run S2 c in (Inr d,S1 ||S′2))

primcorec (•) :: (a,b) dds⇒ (b,c) dds⇒ (a,c) dds where
run (S1 •S2) = (λa. let (b,S′1) = run S1 a; (c,S′2) = run S2 b in (c,S′1 •S′2))

where Inl and Inr denote the injections into the sum type.
The following “free” theorems are derived from the parametricity laws by rewriting

only; no coinduction is needed. Note that the BNF mapper on live parameters only would
not be any good for • as the function g occurs both in the live and dead positions.

4

mapdds f h S1 ||mapdds g k S2 = mapdds (map+ f g) (map+ h k) (S1 ||S2)

mapdds f g S1 •S2 = mapdds f id (S1 •mapdds g id S2)

S1 •mapdds g h S2 = mapdds id h (mapdds id g S1 •S2)

Reasoning with parametricity is especially useful in larger applications. The first
author formalised a cryptographic algebra based on sub-probabilistic discrete systems
(sPDS) similar to Maurer’s random systems [26]. Deriving the free theorems from
parametricity pays off particularly for transformers of sPDS, which are formalised as a
codatatype that recurses through another codatatype of probabilistic resumptions. Proofs
by coinduction would require substantially more effort even for such simple theorems.

Data refinement. Data refinement changes the representation of data in a program. It
offers a convenient way to go from abstract data structures like sets to efficient ones
like red-black trees, which are the key to generate efficient code from a formalisation.
Several tools automate the data refinement and synthesise an implementation from an
abstract specification in this way [9,10,14,21]. As these tools are based on parametricity,
(nested) data refinement is only possible in type parameters on which the relators act.
A more general relator thus increases the refinement capabilities.

For example, consider a DDS traverse G parametrised by a finite graph G. Upon in-
put of a node set A, it returns all successor nodes G[A] of A that have not yet been visited.
Such a DDS can be used to implement a breadth-first or depth-first search traversal of
a graph. Suppose that the correctness proof works with abstract graphs, say, represented
by a finite set of edges (type (a×a) fset), whereas the refinement traversei represents
the graph as a list of edges and the inputs and outputs as lists (we use Haskell-style list
comprehension syntax). Using the canonical DDS coiterator dds-of and the refinement
relation fset-as-list :: a list⊗a fset for implementing finite sets by lists, we get the follow-
ing refinement theorem. Note that we need the general relator reldds to lift the refinement
relations on the inputs and outputs. (Recall that Z⇒ is the function space relator.)

primcorec dds-of :: (s⇒a⇒b× s)⇒ s⇒ (a,b) dds where
run (dds-of f s) = map× id (dds-of f)◦ f s

definition traverse :: (a×a) fset⇒ (a fset,a fset) dds where
traverse G = dds-of (λV A. (G[A]−V,V ∪A)) /0

definition traversei :: (a×a) list⇒ (a list,a list) dds where
traversei E = dds-of (λV A. [y | (x,y)← E,x ∈ setlist A,y /∈ V],V ∪ setlist A)) /0

lemma REFINEMENT : (fset-as-list Z⇒ reldds fset-as-list fset-as-list) traversei traverse

Quotients. Quotient preservation theorems are used to modularly construct quotient
types and to lift functions and lemmas to them [16,17,20]. For example, the type of finite
sets fset is a quotient of lists where the order and multiplicity of the elements are ignored.
Given the quotient preservation theorems for ⇒ and dds, Isabelle’s Lifting package
can lift this fset–list quotient to traverse’s type. It can thus synthesise a definition for
traverse using traversei and prove the REFINEMENT lemma automatically given a proof
that traversei respects the quotient.

The refinement relation fset-as-list can additionally be parametrised by a refine-
ment relation R on the elements [20]: fset-as-list′ R = rellist R# fset-as-list. Combining

5

traversei’s parametricity with REFINEMENT using some BNFCC relator properties, one
can then automatically derive a stronger refinement rule, where the node type can si-
multaneously be refined; the assumption expresses that R must preserve the identity of
nodes, as expected from traversei’s implicit dependence on the equality operation.

(R Z⇒R Z⇒ (=)) (=) (=)

(fset-as-list′ R Z⇒ reldds (fset-as-list′ R) (fset-as-list′ R)) traversei traverse

Generalised rewriting. Rewriting replaces subterms with equal terms. In generalised
rewriting, relations other than equality are considered, and the context in which rewriting
takes place must have an appropriate congruence property [37]. For example, the DDS
seen outputs all the elements in the current input set that it has seen before. It is a
monotone system with respect to the subset relation, which we express using the DDS
relator. The graph traversal traverse is also monotone in the underlying graph provided
that the input sets remain the same.

definition seen :: (a fset,a fset) dds where seen = dds-of (λS A. (S ∩A,S ∪A)) /0
lemma SEEN-MONO : reldds (⊆) (⊆) seen seen
lemma TRAVERSE-MONO : reldds (=) (⊆) (traverse G) (traverse H) if G⊆ H

Now suppose that H is a supergraph of G, or equivalently G ⊆ H. Using the
parametricity of sequential composition, we can thus rewrite traverse G • seen to
traverse H • seen, where the systems are related by reldds (=) (⊆).

2 Bounded Natural Functors with Co- and Contravariance

The operations specified by a BNF act only on live type parameters. As discussed in
the introduction, many types admit more general operations, for example the function
space’s mapper map⇒ g h f = h◦ f ◦g. Yet, the BNF structure is restricted to the mapper
map⇒ id h, which targets only the range, but not the domain.

In this section, we define bounded natural functors with covariance and contravari-
ance (BNFCC) as a generalization of BNFs. A BNFCC has a mapper and relator which
take additional covariant and contravariant arguments corresponding to (a subset of) the
dead parameters d. Thus d is refined into three disjoint sequences: c for covariant, k for
contravariant, and f for the remaining fixed parameters which are ignored by the gener-
alised operations. The names covariant and contravariant indicate whether the mapper
preserves the order of composition or swaps it, and whether the relator is monotone or
anti-monotone in the corresponding argument, respectively. (Live parameters behave like
covariant parameters in this regard. We use “covariant” only for parameters that are not
live.) For example, the function space k⇒ l is a BNFCC that is live in l and contravariant
in k, as map⇒’s type (k′⇒ k)⇒ (l⇒ l′)⇒ (k⇒ l)⇒ (k′⇒ l′) indicates. Similarly, the
BNFCC (c⇒ k)⇒ l is live in l, covariant in c, and contravariant in k.

Definition 1 (BNFCC). A BNFCC is a type constructor F with operations

mapF :: (l⇒ l′)⇒ (c⇒ c′)⇒ (k′⇒ k)⇒ (l,c,k, f) F⇒ (l′,c′,k′, f) F

relF :: l⊗ l′⇒ c⊗ c′⇒ k⊗ k′⇒ (l,c,k, f) F⊗ (l′,c′,k′, f) F

6

and, like for plain BNFs, a cardinality bound bdF and set functions seti
F for all live

parameters li. The cardinality bound may depend on c, k, and f, but not on l. We define
two conditions posF,negF for the relator relF subdistributing over relation composition:2

posF,negF :: (c⊗ c′)× (c′⊗ c′′)⇒ (k⊗ k′)× (k′⊗ k′′)⇒bool

posF (C,C′) (K,K′)←→(
∀L L′. relF L C K # relF L′ C′ K′ v relF (L#L′) (C #C′) (K #K′)

) (5)

negF (C,C′) (K,K′)←→(
∀L L′. relF (L#L′) (C #C′) (K #K′)v relF L C K # relF L′ C′ K′

) (6)

The BNFCC operations must satisfy the conditions shown in Figure 1:

1. The mapper mapF is functorial with respect to all non-fixed parameters (7) and
relationally parametric (8).

2. The BNF laws about the setters (the cardinality bound, naturality, and congruence)
are satisfied for the mapper map?F `=mapF ` id id restricted to live arguments (9).

3. The relator relF is monotone in live and covariant arguments, and anti-monotone
in contravariant arguments; the relator re Fl

? L = re Fl
? L (=) (=) restricted to live

arguments is strongly monotone (10).3
4. The relator preserves equality and distributes over converses −1 (11).
5. The relator distributes over relation composition if the relations for covariant and

contravariant parameters are equality (12).

In comparison to plain BNFs, the BNFCC relator is a primitive operation because it is
not obvious how to generalise the characterisation (4) in terms of the mapper and setters
to covariant and contravariant arguments. We therefore require several properties of the re-
lator. Note that strong monotonicity (10) and negative composition subdistributivity (12)
on live arguments are equivalent to the characterisation of re Fl

?, given the other axioms.
Distributivity over relation composition is split into two directions (positive and

negative) because concrete functors satisfy the directions under different conditions and
some theorems only need one of the two directions. The names positive and negative
stem from Isabelle’s Lifting package, which needs the appropriate direction for positive
or negative positions in types. In this paper, we often derive sufficient criteria for each
direction, for concrete functors and BNFCC constructions. For example, the function
space k⇒ l satisfies the positive direction unconditionally, i.e., pos⇒ =True. In contrast,
the negative direction does not always hold. But it does if the contravariant relations are
functional, i.e., graphs of functions:

left-unique K right-total K right-unique K′ left-total K′

neg⇒ (K,K′)
, (13)

2 In our formalisation, posF and negF take type tokens to avoid issues with hidden polymorphism
in the live and fixed type parameters. We omit this detail in the paper to simplify the notation.

3 When posF ((=),C) ((=),K) = negF ((=),C) ((=),K) = True for all C and K, then the two
monotonicity rules (10) are equivalent to the following combined rule:

i. ∀a ∈ seti
F x. ∀b ∈ seti

F y. Li a b−→ L′i a b i. Ci vC′i i. K′i v Ki

relF L C K x y−→ relF L′ C′ K′ x y

7

mapF id id id= id mapF (`◦ `′) (c◦ c′) (k′ ◦ k) =mapF ` c k ◦mapF `′ c′ k′ (7)(
(L Z⇒L′) Z⇒ (C Z⇒C′) Z⇒ (K′ Z⇒K) Z⇒ relF L C K Z⇒ relF L′ C′ K′

)
mapF mapF (8)

i. |seti
F| ≤ bdF i. seti

F (map?F ` x) = `i ‘ seti
F x

i. ∀y ∈ seti
F x. `i y = `′i y

map?F ` x =map?F `′ x
(9)

i. Li v L′i i. Ci vC′i i. K′i v Ki

relF L C K v relF L′ C′ K′
i. ∀a ∈ seti

F x. ∀b ∈ seti
F y. Li a b−→ L′i a b

re Fl
? L x y−→ re Fl

? L′ x y
(10)

relF (=) (=) (=) = (=) (relF L C K)−1 = relF L−1 C−1 K−1 (11)

posF ((=),(=)) ((=),(=)) negF ((=),(=)) ((=),(=)) (12)

Fig. 1. Conditions on the operations of a BNFCC

where left-unique R = (∀x z y. R x z∧R y z−→x = y) and left-total R = (∀x. ∃y. R x y),
and right-unique and right-total are defined analogously.

The precise relationship between BNFs and BNFCCs is as follows:

Proposition 1.
1. Every BNF (l,d) F is a BNFCC where l are live, d are fixed, and mapF, setF, bdF,

and relF are inherited from the BNF. So posF = negF = True.
2. Every BNFCC (l,c,k, f) F is a BNF with live parameters l and dead parameters c,k, f

for the mapper map?F, setters setF, bound bdF, and relator re Fl
?.

The BNFCC axioms are either BNF axioms or routinely proved from them, and vice
versa. The only exception is re Fl

?’s equational characterisation (4) for a BNFCC, which
implies, e.g., that negF = True [7]. To show the characterisation, we use the following
property, which generalises Lemma 1 to the BNFCC mapper and relator. It follows from
the functor laws (7), parametricity (8), and equality preservation (11).

Lemma 2. For a BNFCC F, the graph of mapF ` c k is the relator applied to the graphs
of `, c, and the converse graphs of k: Gr (mapF ` c k) = relF (Gr `) (Gr c) (Gr k)−1.

We now give some examples of BNFCCs. Every BNF without dead parameters is
also a BNFCC with all parameters being live by Proposition 1. This includes all sums-
of-product (co)datatypes, which are also known as polynomial (co)datatypes. Many
other BNFs such as distinct lists, finite and countable sets, and discrete probability
distributions fall into this class, too. For these, our BNFCC generalisation would not have
been necessary. But there are other types where BNFCCs do make a difference:

(a) We previously mentioned the function type k⇒ l with mapper map⇒ and relator Z⇒,
where l is live and k is contravariant.

(b) The powerset functor c set has the image operation as the mapper and the relator

relset C X Y = (∀x ∈ X . ∃y ∈ Y. C x y)∧ (∀y ∈ Y. ∃x ∈ X . C x y).

The parameter c is covariant and not live only because there is no bound on the
cardinality. We have posset = negset = True.

8

(c) Sets c bsetb with a finite cardinality bound b ∈ N are a subtype of the powerset
functor c set. For b > 2, bsetb is not a BNF in c [15]. We will see in Sect. 5
that we obtain the BNFCC properties by composition and subtyping. We have
posbsetb = True, and right-unique C∨ left-unique C′ implies negbsetb (C,C′).

(d) Predicates k pred = k⇒bool are the contravariant powerset functor with mapper
map⇒ k id and relator K Z⇒(=). Interestingly, the negative subdistributivity condition
negpred is weaker than neg⇒ because the live parameter of⇒ has been instantiated to
bool. We thus get that negpred (K,K′) is implied by left-unique K∧ right-total K∨
right-unique K′∧ left-total K′, i.e., only one of the two relations must be functional,
not both as in (13). Clearly, pospred = True.

(e) Filters c filter (sets of sets closed under finite intersections and supersets) can be
viewed as a semantic subtype of c pred pred=(c⇒bool)⇒bool. Here, c is covariant
because we go twice through⇒’s left-hand side.

These examples propagate: whenever one of these types occurs inside a larger type, this
type also benefits from BNFCC’s greater generality over BNF’s.

3 Simple Operations on BNFCCs

We now show that BNFCCs are closed under functor composition, like BNFs are. This
property is crucial for a modular construction of (co)datatypes. It allows us to con-
struct arbitrarily complex signatures from simple building blocks, because the BNFCC
properties follow by construction. For example, the type k option⇒ (c1× c2) set is a
composition of the type constructors⇒, option, set, and×. For BNFCCs, we distinguish
three kinds of composition depending on whether the composition occurs in a live (set
in k⇒◊), covariant (× in ◊ set), or contravariant parameter (option in ◊⇒ l).

Before we turn to composition, we discuss two technical issues: demoting and
merging parameters. For BNFs, demotion is known as killing, which transforms a live
parameter into a dead. For BNFCCs, there are three kinds of demotion ():

live covariant

contravariant
fixed

Demotion is a preparatory step for composition: If composition happens in a covariant
or contravariant position, the live parameters of the inner functor are no longer live.
Demotion first transforms all live parameters into covariant ones. During composition
in a covariant or contravariant parameter, we can thus assume that the inner functor has
no live parameters.

Merging unifies two type parameters of a BNFCC. Both type parameters must be of
the same kind (live, covariant, contravariant, or fixed)—otherwise, they must be demoted
first. For example, we can merge c1 and c2 in (c1× c2) set directly to obtain the unary
covariant functor (c× c) set. In contrast, before merging k and l in k⇒ l, we must demote
the live parameter l and the contravariant parameter k to fixed. Treating merging as a
separate operation simplifies the composition theorem (Theorem 1 below) as we can
assume without loss of generality that the two functors do not share any parameters.

Proposition 2. BNFCCs are closed under all kinds of demotion and merging.

9

Demoting a live parameter adds an argument to the conditions for composition dis-
tribution, i.e., it removes the corresponding relations from the universal quantifiers in
(5,6). So the conditions become weaker. It may therefore be useful to associate one
type constructor with several BNFCC instances that differ in the live parameters. In
k⇒ l, e.g., demoting l to c allows us to relax the conditions on k’s relations by imposing
some on c’s. In the covariant case, negative distributivity neg⇒ (C,C′) (K,K′) holds
if right-unique K′, left-total K′, left-unique C′, and right-total C′. But in the live case,
neg⇒ (K,K′) does not hold for right-unique K′, left-total K′ in general. This difference
will be crucial for quotient preservation (Sect. 6).

We now return to composition and show that the class BNFCC of functors is closed
under composition. We only discuss composition in a single parameter. This is not a
restriction because composing with multiple functors simultaneously is equivalent to a
sequence of single compositions, independent of the order. We also assume that the two
functors do not share any parameters. A subsequent merge step can always introduce
the sharing. We distinguish four different kinds of composition depending on which
parameter the inner functor instantiates. For each case, we obtain different sufficient
criteria for relator subdistributivity, as shown in the next theorem.

Theorem 1. BNFCCs are closed under composition in all kinds of parameters. Formally,
let (lF,cF,kF, fF) F and (lG,cG,kG, fG) G be BNFCCs such that no parameter is shared
between F and G. We consider four kinds of composing F with G into a new functor FG,
where i denotes the position of the composition in F’s corresponding parameter list:4

Live (l<i
F ,(lG,cG,kG, fG) G, l

>i
F ,cF,kF, fF) F is a BNFCC with l6=i

F , lG live, cF,cG covariant,
kF,kG contravariant, and fF, fG fixed. posF (CF,C′F) (KF,K′F) and posG (CG,C′G)
(KG,K′G) are sufficient for posFG (CF,C′F) (CG,C′G) (KF,K′F) (KG,K′G); it is the same
for negFG.

Covariant If lG is empty, then (lF,c
<i
F ,(cG,kG, fG) G,c

>i
F ,kF, fF) F is a BNFCC with lF

live, c6=i
F ,cG covariant, kF,kG contravariant, and fF, fG fixed. posG (CG,C′G) (KG,K′G)

and posF (CF,C′F)<i (relG CG KG, relG C′G K′G) (CF,C′F)>i (KF,K′F) are sufficient for
posFG (CF,C′F)6=i (CG,C′G) (KF,K′F) (KG,K′G); it is the same for negFG.

Contravariant If lG is empty, then (lF,cF,k
<i
F ,(cG,kG, fG) G,k>i

F , fF) F is a BNFCC

with lF live, cF,kG covariant, k6=i
F ,cG contravariant, and fF, fG fixed. negG (CG,C′G)

(KG,K′G) and posF (CF,C′F) (KF,K′F)<i (relG CG KG, relG C′G K′G) (KF,K′F)>i are
sufficient for posFG (CF,C′F) (KG,K′G) (KF,K′F)6=i (CG,C′G); it is the same for negFG.
(Note that in the new functor, CG,C′G are now contravariant and KG,K′G covariant.)

Fixed If lG, cG, kG are all empty, then (lF,cF,kF, f
<i
F , fG G, f>i

F) F is a BNFCC with lF live,

cF covariant, kF contravariant, and f 6=i
F , fG fixed. posF (CF,C′F) (KF,K′F) is sufficient

for posFG (CF,C′F) (KF,K′F); it is the same for negFG.

For example, consider the composition of (l1,k1) F= k1⇒ l1 with (c1,k2) G= k2⇒c1
in the contravariant parameter k1. In G, the range c1 is normally live, but it has already
been demoted such that there are no more live parameters. We obtain the BNFCC

4 For example, if we instantiate the third covariant parameter of F with G, then i = 3.

10

(k2⇒ c1)⇒ l1, where k2 is now covariant and c1 is contravariant, while l1 remains
live. The conditions pos⇒ (K2,K2) = True and neg⇒ (K2 Z⇒C1,K′2 Z⇒C′1) are sufficient
for negative subdistributivity of the composed relator (K2 Z⇒C1) Z⇒L1, i.e., they imply
neg(⇒)⇒ (K2,K′2) (C1,C′1).

4 Least and Greatest Fixpoints

Bounded natural functors have been introduced mainly to construct (co)datatypes
modularly in HOL. A (co)datatype a T defined by the command

(co)datatype a T = ctorT (dtorT : (a T,a) F)

corresponds to the least (greatest) solution X of the fixpoint equation a X ∼= (a X ,a) F,
up to the (co)algebra isomorphism given by the constructor ctorT and destructor dtorT.
Whenever the (co)recursion goes through a live type parameter of F, the fixpoint exists
and it is again a BNF for the remaining live parameters—this is the closure property
under fixpoints.5

In this section, we show that every (co)datatype defined over a BNFCC can be ex-
tended to a BNFCC in a meaningful way, namely such that the following primitive
(co)datatype operations are parametric with respect to the generalised relator: the con-
structor ctorT, the destructor dtorT, and a (co)recursor, which witnesses initiality or
finality of the (co)algebra. In the following, we consider a BNFCC F and its least fixpoint
T taken over the first live parameter. We define T’s generalised mapper by primitive
(co)recursion according to the fixpoint equation

mapT ` c k (ctorT x) = ctorT (mapF (mapT ` c k) ` c k x),

and T’s generalised relator (co)inductively as the least or greatest predicate closed under

relF (relT L C K) L C K x y
relT L C K (ctorT x) (ctorT y)

.

Note that relT is well-defined since relF is monotone in the live arguments. This choice
of the relator (and therefore of the mapper, due to Lemma 2) is intuitively correct as we
obtain a general form of parametricity to the extent permitted by relF:

Proposition 3. The constructor, destructor, and (co)recursor for T are parametric with
respect to relT.

The canonical BNF map function for T, which acts only on T’s live parame-
ters, is equal to map?T by definition. Similarly, the restricted relator re Tl

? satisfies the
BNF characterisation (4). The setters setT satisfy only the restricted parametricity
law (re Tl

? L Z⇒ relset Li) seti
T seti

T. As they ignore the covariant and contravariant pa-
rameters, the general parametricity law (relT L C R Z⇒ relset Li) seti

T seti
T does not

make sense and does not hold in general either. For example, the setter for the func-
tion space k⇒ l takes the range of the function. Choosing K = ⊥, where ⊥ is the

5 For mutually recursive (co)datatypes, the solutions are taken over a system of equations instead
of a single fixpoint equation. The BNFCC theory generalises to systems of equations in the
same way as the BNF theory does.

11

empty relation, and L = (=), then (K Z⇒ L) (λ . True) (λ . False), but clearly not
relset (=) (range (λ . True)) (range (λ . False)).

Theorem 2. BNFCCs are closed under least and greatest fixpoints through live parame-
ters. In particular, if T is the least or greatest fixpoint through one of F’s live parameters,
then posF (C,C′) (K,K′) implies posT (C,C′) (K,K′), and the same for negF and negT.

5 Subtypes

In HOL, a new type a T is defined by carving out a non-empty subset S of an already
existing type a F. Such a type definition creates an embedding isomorphism RepT ::
a T⇒a F between a T and S with inverse AbsT :: a F⇒a T, where AbsT is unspecified
outside of S. If F is a BNF, then the new type T can inherit F’s BNF structure provided
that S is “well-behaved.” Biendarra [6] identified the following two conditions on S,
from which his Isabelle/HOL command lift-bnf derives the BNF properties.

– Closed under the BNF mapper: whenever x ∈ S, then map?F ` x ∈ S; and
– Reflects projections: if map?F π1 z ∈ S and map?F π2 z ∈ S, then z ∈ S.

Meanwhile, Popescu [32] weakened the second condition as follows: whenever map?F π1 z∈
S and map?F π2 z∈ S, then there exists y∈ S such that seti

F y⊆ seti
F z for all i, map?F π1 y=

map?F π1 z, and map?F π2 y = map?F π2 z.
In this section, we generalise Biendarra’s and Popescu’s conditions to BNFCCs:

Theorem 3 (BNFCC inheritance for subtypes). Let (l,c,k, f) F be a BNFCC and let
(l,c,k, f) T be isomorphic to the non-empty set S :: (l,c,k, f) F set via the morphisms
RepT and AbsT. The type T inherits the BNFCC structure from F via

mapT ` c k = AbsT ◦mapF ` c k ◦RepT seti
T = seti

F ◦RepT bdT = bdF

relT L C K x y = relF L C K (RepT x) (RepT y)

if relT (L#L′) (=) (=) v relT L (=) (=)# relT L′ (=) (=) for all L,L′, and x ∈ S
implies mapF ` c k x ∈ S. Moreover, posF (C,C′) (K,K′) implies posT (C,C′) (K,K′).

Negative subdistributivity can often be reduced to proving closedness under zippings,
which generalises reflection of projections in the BNF case. We allow a condition neg′T
that is stronger than negF, assuming that neg′T ((=),(=)) ((=),(=)) still holds. The set
S is closed under zippings for neg′T iff

x ∈ S y ∈ S relF L (C #C′) (K #K′) x y

relF (λa (a′,b). a′ = a∧L a b) C K x z relF (λ (a,b′) b. b′ = b∧L a b) C′ K′ z y
z ∈ S

for all x,y,z and all L,C,C′,K,K′ such that neg′T (C,C′) (K,K′).

Lemma 3. Let S be closed under zippings for neg′T. Then neg′T (C,C′) (K,K′) implies
negT (C,C′) (K,K′).

Corollary 1. BNFCCs are closed under subtypes that are closed under the BNFCC
mapper and zippings (for some condition on negative subdistributivity).

12

Non-uniform (co)datatypes are therefore also BNFCCs, as they are defined as subtypes
of ordinary (co)datatypes [8], and the subtype predicate is invariant under the mapper.

The assumptions on S in Theorem 3 and Corollary 1 are indeed generalisations of
Popescu’s and Biendarra’s conditions, respectively. For when there are neither covariant
nor contravariant parameters, the assumptions on S in Theorem 3 are equivalent to
Popescu’s conditions, given the BNF relator characterisation (4). Similarly, closure
under zippings is equivalent to Biendarra’s reflecting projections in that case.

Note that closure under zippings strictly implies negative subdistributivity. For
example, sets of cardinality at most two are a BNF and a subtype of the finite powerset
BNF fset. Yet, the cardinality restriction to at most two does not reflect projections (take
z = {a,b}×{0,1}). Our Theorem 3 handles this case, but Lemma 3 cannot be used as
closedness under zippings is not provable. The current implementation of lift-bnf
cannot handle this case either.

Since BNFCCs do not require the relator distributing unconditionally over rela-
tion composition, there can be several relators that extend the mapper in the sense
of Lemma 2. For example, filters (Sect. 2) are a subtype of the BNFCC obtained by
composing the contravariant powerset functor with itself. This view yields the mapper
mapfilter c F = {X | c−1(X) ∈ F} from the literature. (We omit the conversions between
sets and predicates for clarity). Yet, there are two relator canditates for filter: First, the
construction in Theorem 3 gives rel1filter R F G = relpred (relpred R) F G. Second, the
canonical categorical extension of a functor on SET to REL [12,34] gives

rel2filter R F G = (∃Z. R ∈ Z∧F = {U | π−1
1 (U)∩R ∈ Z}∧G = {V | π−1

1 (V)∩R ∈ Z})

•
•
•

•
•

F G

Rwhere f−1(V) denotes the preimage of V under f . The latter relator
is strictly stronger than the former. For example, the drawing on the
right shows a filter F = {{a1,a2,a3}} on a three-element type, a
filter G = {{b1},{b1,b2}} on a two-element type, and a relation R
between the elements. We have rel1filter R F G, but not rel2filter R F G.
In this case, rel2filter is the right choice as it gives posfilter = negfilter = True [12]. But
sometimes the relator definition from Theorem 3 is better. Probability distributions with
a finite cardinality bound on the support, e.g., preserve quotients only with the relator
from Theorem 3 (Sect. 6).

6 Quotient Preservation

We now consider quotient relationships between types and how BNFCCs preserve such
relationships. This allows a modular construction of quotients by composing BNFCCs.

A type a is a quotient of another type r under a partial equivalence relation R on r iff a
is isomorphic to r’s equivalence classes. A quotient a can thus be viewed as an abstraction
of r, and, conversely, r as a refinement of a. (This definition subsumes both subtypes and
total quotients. One must consider partial equivalence relations in a higher-order setting
for reasons similar to why parametricity uses relations instead of functions [16].) A type
constructor b F preserves quotients in the type parameters b∈I = bi1 , . . . ,bim iff a F is a
quotient of r F whenever a∈I are quotients of r∈I and a/∈I = r/∈I (for some construction of

13

the equivalence relation; we provide the details below). For lists, e.g., a quotient between
element types a and r yields a quotient between lists of such elements, a list and r list.
Note that quotient preservation is different from the construction of a quotient type or
subtype from a BNFCC. The former, which we discuss in this section, deals with type
instantiation, while the latter produces a truly new type.

In HOL, a quotient between types is described by a relation Q :: r⊗ a that is
right-total and right-unique. Such a relation induces (i) an embedding morphism
rep :: a⇒ r, (ii) an abstraction morphism abs :: r⇒ a, and (iii) the underlying par-
tial equivalence relation R = Q#Q−1. The embedding rep picks an unspecified element
in the equivalence class, which may require the axiom of choice, and abs r is unspecified
if no equivalence class contains r. Due to this underspecification, it is useful to keep track
of rep and abs as primitive operations, e.g., for code generation. Similarly, Isabelle’s
Lifting package [17] maintains the explicit characterisation of the equivalence relation
R to simplify the respectfulness proof obligations presented to the user. The predicate
Quot formalises these relationships:

Quot R abs rep Q←→ (Q≤ Gr abs∧Gr rep≤ Q−1∧R = Q#Q−1). (14)

Quotient preservation can thus be expressed as an implication. For lists, e.g., we
have that Quot R abs rep Q implies Quot (rellist R) (maplist abs) (maplist rep) (rellist Q).
Note how the relator and mapper lift the relations and morphisms from elements to lists.
BNFs preserve quotients in all live parameters; this is an easy consequence of relator
monotonicity and distributivity.

Theorem 4 ([20, Sect. 4.7]). BNFs preserve quotients in live parameters, in the follow-
ing sense: Quot (relF R) (mapF abs) (mapF rep) (relF Q) holds whenever (l,d) F is a
BNF and i. Quot Ri absi repi Qi.

This theorem does not fully generalise to BNFCCs with covariant and contravariant
parameters, as the counterexample in Appendix B (Online Resource) shows. We obtain
the following result, however, which shows that positive subdistributivity of the relator
over the quotient relations and their converses is a sufficient condition for quotient
preservation.

Theorem 5. Let (l,c,k, f) F be a BNFCC. Assume that i. Quot Ri
χ absi

χ repi
χ T i

χ for all

χ ∈ {L,C,K}. If posF (QC,Q−1
C) (QK,Q−1

K), then

Quot (relF RL RC RK) (mapF absL absC repK) (mapF repL repC absK) (relF QL QC QK).

We now illustrate how this theorem applies to different BNFCCs. Note that it applies
to all the BNFCCs mentioned at the end of Sect. 2, as their relators all positively distribute
over all relation compositions (if we use the right relator for filters as dicussed in
Sect. 5). For a BNFCC F constructed from these primitives, posF = True need not hold,
though, as BNFCC composition in negative positions swaps the positive and negative
conditions. Nevertheless, we can derive posF (Q,Q−1) for quotient relations Q by using
our composition theorems, as the following two examples illustrate. First, predicates
over predicates c pp = (c⇒bool)⇒bool do preserve quotients. By the contravariant
case of Theorem 1, pospp (Q,Q−1) follows from pospred (Q Z⇒ (=),Q−1 Z⇒ (=)) and

14

negpred (Q,Q−1). The former is trivial as pospred = True. For the latter, observe that
predicates k pred are obtained from the function space k⇒ c by instantiating c with the
nullary BNFCC bool. So, by Theorem 1 (the covariant case), negpred (Q,Q−1) follows
from negbool = True and neg⇒ ((=),(=)) (Q,Q−1), which is easily proved using Q
being a quotient relation. In this reasoning, it is essential that we do not use the function
space BNFCC with the live codomain. Instead, we first demote the codomain to a
covariant parameter (fixed would also do). For in the live case, Theorem 1 gives us only
the implication from neg⇒ (Q,Q−1) (without the live parameter relations as arguments)
to negpred (Q,Q−1), but neg⇒ (Q,Q−1) does not hold as it quantifies over all live
parameter relations. This illustrates the weakening by demotion that we discussed below
Proposition 2.

The second example shows that it is important to associate several BNFCCs with one
type constructor, even in a single type expression. The codatatype

codatatype (c,k) T = ctorT ((c⇒ k)⇒ (c,k) T)

is the final coalgebra of the functor (l,c,k) F = (c⇒ k)⇒ l and it preserves quotients.
To derive posT (C,C′) (K,K′) modularly from the construction, we must treat F’s outer
function space with live codomain (as the corecursion goes through this parameter) and
F′s inner function space with covariant codomain (for the same reason as in the pp case).

7 Related Work

We have already discussed the related work on bounded natural functors [6,7,8,20,38] in
the previous sections. Here, we discuss how BNFCCs fit into the Isabelle ecosystem, and
compare our approach to previous work for other theorem provers.

The Transfer package by Huffman and Kunčar [17] implements Mitchell’s represen-
tation independence [27] using a database of parametricity theorems and (conditional)
respectfulness theorems for equality and quantifiers. BNFCC relators can be directly
used in the parametricity rules, making them more versatile than BNF relators thanks
to the generalisation to covariant and contravariant arguments. The respectfulness the-
orems follow from monotonicity and positive or negative relator distributivity, whose
preconditions our composition theorems carefully track. Moreover, Gilcher’s automatic
derivation of parametricity theorems [11] also benefits from the generalised relators.

The Lifting package [17] lifts constants over quotients and derives appropriate
transfer rules using databases of quotient preservation theorems and relator monotonicity
and distributivity. Like for Transfer, our theorems can be fed directly into these databases,
making the Lifting package more useful.

Lammich’s Autoref tool [21,22] performs data refinement based on parametricity.
Currently, Lammich must manually derive relators for (co)datatypes. BNFCCs offer a
systematic way to define relators and to derive their fundamental properties.

Apart from HOL, parametricity has recently received a lot of attention in dependent
type theories as implemented in Coq, Agda, and Lean. In these rich logics, it is possible to
internalise Reynolds’ relational interpretation of types [5]. So, the parametricity theorem
is just a syntactic translation of a type and its proof can be systematically programmed.
Various such translations have been studied for different subsets of the logics [3,19,2];

15

Anand and Morrisett provide a good overview [2]. These works prove (by induction
over the syntax of the logic) that all functions defineable in the logic are parametric and
then implement this proof as a tool such as ParamCoq [19] and ParamCoq-iff [2]. As
HOL lacks the syntactic nature of type theories and its classical axioms forbid a general
parametricity result, we follow a semantic approach using BNFCCs instead. This has the
advantage that our approach is modular: only semantic properties matter, but not the
particular way that something was defined in.

Moreover, most of the syntax-directed type-theoretic works hardly study how the
relational interpretation can be used. At best, free theorems are derived (e.g., Anand
and Morrisett derive respectfulness of α-equivalence of λ -terms from an operational
semantics being parametric). Parametricity is also the foundation for two data refinement
frameworks in Coq, Fiat [10] and CoqEAL [9], similar to Autoref [22] in Isabelle/HOL.
They define the relators manually in an ad hoc way and it is unclear whether the syntax-
directed works could be used instead. In contrast, BNFCCs provide a framework to
systematically define mappers and relators and to derive their rich properties. They thus
directly lead to a wealth of applications, including free theorems, data refinement, and
type abstraction through quotients.

8 Conclusion and Future Work

BNFCCs generalise the concept of bounded natural functors, which are motivated by the
construction of (co)datatypes in HOL. They equip both covariant and contravariant type
parameters with a functorial structure, even when they do not meet the requirements
of bounded naturality. Hence, the mapper and relator of a BNFCC act on these type
parameters, too. We have shown that BNFCCs are closed under the most important type
construction mechanisms in HOL: composition, datatypes, codatatypes, and subtypes.
This way, we obtain canonical definitions of the mapper and the relator for these con-
structions, together with proofs of some useful properties. For (co)datatypes, it is crucial
that we stay compatible with the BNF restrictions, which motivates our unified view on
the functorial structure of types. Applications of parametricity, such as data refinement,
quotients, and generalised rewriting, benefit from the extended operations.

We have not yet automated the BNFCC construction in Isabelle/HOL, but we have
formalised the constructions and proofs in an abstract setting. Moreover, we applied the
BNFCC theory manually in a few applications. In the CryptHOL framework [4,24], e.g.,
the first author manually defined the generalised mapper and relator for the codatatype

codatatype (a,b,c) gpv = GPV ((a+(b× (c⇒ (a,b,c) gpv))) option pmf)

which models sub-probabilistic discrete systems, and proved properties like relator mono-
tonicity and distributivity. Following the BNFCC theory, we have refactored the defini-
tions and proofs. By exploiting the modularity, they became cleaner, simpler, and shorter.

BNFCCs are functors on the category of sets, but for covariant and contravariant pa-
rameters, they need not be functors on the category of relations, as the relator need not dis-
tribute unconditionally over relation composition [17]. This is a necessary consequence
of dealing with the full function space. Therefore, the relator is not uniquely determined
by the mapper, either, and one must choose the relator that fits one’s needs best.

16

There are now four groups of type parameters: live, covariant, contravariant, and
fixed. Are they enough or do we need further refinements? In the category of sets,
this is as far as we can possibly get while retaining the functorial structure. But in
some cases, we would like to go beyond. For example, the state s in a state monad
(s,a) stateM = s⇒ a× s occurs in a positive and a negative position, so demotion
makes s fixed. The BNFCC mapper and relator therefore ignore it. One could generalise
the mapper to s if we restrict the morphisms to bijections, i.e., change the underlying
category to bijections. Similarly, if a type parameter has a type class constraint, only type
class homomorphisms can be mapped in general. Extending BNFCCs into this direction
is left as future work.

Moreover, we have not studied whether quotient types [17,18] can be equipped with
a BNFCC structure in general. We are still working on identifying the conditions under
which a quotient inherits the BNF structure from the raw type. For the extension to
BNFCCs, we conjecture that we must first generalise the setter concept from live to
covariant and contravariant parameters, as unsound (set) functors seem to require repair
even in the BNF case [1]. Furthermore, we are interested in lifting a family of quotient
relations between two BNFCCs to a quotient relation between their fixpoints. This is
necessary for refining a whole collection of types that is closed under (co)datatype
formation, as needed, e.g., in [35].

Acknowledgements. The authors thank Dmitriy Traytel, Andrei Popescu, and the anonymous
reviewers for inspiring discussions and suggestions how to improve the presentation. The authors
are listed alphabetically.

References

1. Adámek, J., Gumm, H.P., Trnková, V.: Presentation of set functors: A coalgebraic perspective.
J. Log. Comput. 20, 991–1015 (2010)

2. Anand, A., Morrisett, G.: Revisiting parametricity: Inductives and uniformity of propositions.
CoRR abs/1705.01163 (2017), http://arxiv.org/abs/1705.01163

3. Atkey, R., Ghani, N., Johann, P.: A relationally parametric model of dependent type theory.
In: POPL 2014. pp. 503–515. ACM (2014)

4. Basin, D., Lochbihler, A., Sefidgar, S.R.: CryptHOL: Game-based proofs in higher-order
logic. Cryptology ePrint Archive: Report 2017/753, https://eprint.iacr.org/2017/753 (2017)

5. Bernardy, J.P., Jansson, P., Paterson, R.: Proofs for free: Parametricity for dependent types.
Journal of Functional Programming 22(2), 107–152 (2012)

6. Biendarra, J.: Functor-preserving type definitions in Isabelle/HOL. Bachelor thesis, Fakultät
für Informatik, Technische Universität München (2015)

7. Blanchette, J.C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A., Traytel, D.: Truly modular
(co)datatypes for Isabelle/HOL. In: ITP 2014. LNCS, vol. 8558, pp. 93–110. Springer (2014)

8. Blanchette, J.C., Meier, F., Popescu, A., Traytel, D.: Foundational nonuniform (co)datatypes
for higher-order logic. In: LICS 2017. pp. 1–12. IEEE (2017)

9. Cohen, C., Dénès, M., Mörtberg, A.: Refinements for free! In: CPP 2013. LNCS, vol. 8307,
pp. 147–162. Springer (2013)

10. Delaware, B., Pit-Claudel, C., Gross, J., Chlipala, A.: Fiat: Deductive synthesis of abstract
data types in a proof assistant. In: POPL 2015. pp. 689–700. ACM (2015)

17

http://arxiv.org/abs/1705.01163
https://eprint.iacr.org/2017/753

11. Gilcher, J., Lochbihler, A., Traytel, D.: Conditional parametricity in Isabelle/HOL (extended
abstract). Poster at TABLEAU/FroCoS/ITP 2017, http://www.andreas-lochbihler.de/pub/
gilcher2017ITP.pdf (2017)

12. Gumm, H.P.: Functors for coalgebras. Algebra univers. 45, 135–147 (2001)
13. Gunter, E.L.: Why we can’t have SML-style datatype declarations in HOL. In: TPHOLs 1992.

IFIP Transactions, vol. A-20, pp. 561–568. North-Holland/Elsevier (1992)
14. Haftmann, F., Krauss, A., Kunčar, O., Nipkow, T.: Data refinement in Isabelle/HOL. In:

Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 100–115.
Springer (2013)

15. Hölzl, J., Lochbihler, A., Traytel, D.: A formalized hierarchy of probabilistic system types.
In: Urban, C., Zhang, X. (eds.) ITP 2015. Lecture Notes in Computer Science, vol. 9236, pp.
203–220. Springer (2015)

16. Homeier, P.V.: A design structure for higher order quotients. In: TPHOLs 2005. LNCS, vol.
3603, pp. 130–146. Springer (2005)

17. Huffman, B., Kuncar, O.: Lifting and Transfer: A modular design for quotients in Is-
abelle/HOL. In: CPP 2013. LNCS, vol. 8307, pp. 131–146. Springer (2013)

18. Kaliszyk, C., Urban, C.: Quotients revisited for Isabelle/HOL. In: SAC 2011. pp. 1639–1644.
ACM (2011)

19. Keller, C., Lasson, M.: Parametricity in an impredicative sort. CoRR abs/1209.6336 (2012),
http://arxiv.org/abs/1209.6336

20. Kunčar, O.: Types, abstraction and parametric polymorphism in higher-order logic. Ph.D.
thesis, Fakultät für Informatik, Technische Universität München (2016)

21. Lammich, P.: Automatic data refinement. In: ITP 2013. LNCS, vol. 7998, pp. 84–99. Springer
(2013)

22. Lammich, P., Lochbihler, A.: Automatic refiement to efficient data structures: A comparison
of two approaches. Journal of Automated Reasoning (2018)

23. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In: LPAR
2010. LNCS, vol. 6355, pp. 348–370. Springer (2010)

24. Lochbihler, A.: CryptHOL. Archive of Formal Proofs (2017), http://isa-afp.org/entries/
CryptHOL.html, Formal proof development

25. Lochbihler, A., Schneider, J.: Bounded natural functors with covariance and contravariance.
Archive of Formal Proofs (2018), http://isa-afp.org/entries/BNF CC.html, Formal proof
development

26. Maurer, U.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 110–132. Springer (2002)

27. Mitchell, J.C.: Representation independence and data abstraction. In: POPL 1986. pp. 263–
276. ACM (1986)

28. de Moura, L.M., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The Lean theorem
prover (system description). In: CADE 2015. LNCS, vol. 9195, pp. 378–388. Springer (2015)

29. Norell, U.: Towards a practical programming language based on dependent type theory. Ph.D.
thesis, Department of Computer Science and Engineering, Chalmers University of Technology
(2007)

30. Owre, S., Shankar, N.: Abstract datatypes in PVS. Tech. Rep. CSL-93-9R, Computer Science
Laboratory, SRI International (1993)

31. Paulin-Mohring, C.: Inductive definitions in the system Coq – rules and properties. In: TLCA
1993. LNCS, vol. 664, pp. 328–345. Springer (1993)

32. Popescu, A.: Personal communication (2017)
33. Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: IFIP 1983. Information

Processing, vol. 83, pp. 513–523. North-Holland/IFIP (1983)
34. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theor. Comput. Sci. 249(1), 3–80

(2000)

18

http://www.andreas-lochbihler.de/pub/gilcher2017ITP.pdf
http://www.andreas-lochbihler.de/pub/gilcher2017ITP.pdf
http://arxiv.org/abs/1209.6336
http://isa-afp.org/entries/CryptHOL.html
http://isa-afp.org/entries/CryptHOL.html
http://isa-afp.org/entries/BNF_CC.html

35. Schneider, J.: Formalising the run-time costs of HOL programs. Master’s thesis, Department
of Computer Science, ETH Zurich (2017)

36. Slind, K., Norrish, M.: A brief overview of HOL4. In: TPHOLs 2008. LNCS, vol. 5170, pp.
28–32. Springer (2008)

37. Sozeau, M.: A new look at generalized rewriting in type theory. J. Formalized Reasoning 2(1),
41–62 (2009)

38. Traytel, D., Popescu, A., Blanchette, J.C.: Foundational, compositional (co)datatypes for
higher-order logic. In: LICS 2012. pp. 596–605. IEEE (2012)

39. Wadler, P.: Theorems for free! In: FPCA 1989. pp. 347–359. ACM (1989)

19

	Relational Parametricity and Quotient Preservation for Modular (Co)datatypes

