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Abstract. We present a short implementation of the well-known Tor-
toise and Hare cycle finding algorithm in the constructive setting of Coq.
This algorithm is interesting from a constructive perspective because it
is both very simple and potentially non-terminating (depending on the
input). To overcome potential non-termination, we encode the given ter-
mination argument (there exists a cycle) into a bar inductive predicate
that we use as termination certificate. From this development, we extract
the standard OCaml implementation of this algorithm. We generalize the
method to the full Floyd’s algorithm that computes the entry point and
the period of the cycle in the iterated sequence, and to the more efficient
Brent’s algorithm for computing the period only, again with accurate
extractions of their respective standard OCaml implementations.

Keywords: Cycle finding · Bar inductive predicates · Partial algorithms
in Coq · Correctness by extraction

1 Introduction

The Tortoise and the Hare (T&H for short) in particular and cycle detection [1] in
general are standard algorithms that will very likely cross the path of any would-
be computer scientist. They aim at detecting cycles in deterministic sequences
of values, i.e. when the next value depends only on the current value. They have
many applications, from pseudorandom number strength measurement, integer
factorization through Pollard’s rho algorithm [18] or more generally cryptogra-
phy, etc, even celestial mechanics. But our interest with those algorithms lies
more in the framework in which we want to implement and certify them:

– first we want to prove the partial correction of cycle detection algorithms
without assuming their termination. Hence, we do not restrict our study to
finite domains. In the finitary case indeed, the pigeon hole principle ensures
that there is always a cycle to detect and termination can be certified by
cardinality considerations [9];

– inductive/constructive type theories constitute challenging contexts for these
algorithms because they are inherently partial. The reason for that is the
undecidability of the existence of a cycle in an arbitrary given sequence.
Hence, we need to work with partial recursive functions;
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– Coq could wrongfully be considered being limited to total functions. To work
around this, Hilbert’s ε-operator (a non-constructive form of the axiom of
choice) is sometimes postulated as a convenient way to deal with partial
functions [7]. Why not, HOL is based on it? We argue that we can stay
fully constructive and we will show that axiom-free Coq can work with such
partial recursive functions provided they are precisely specified.

T&H was attributed to Robert W. Floyd by Donald E. Knuth [15] but may in
fact be a folk theorem (see [2], footnote 8 on page 21). The idea is to launch
from a starting point x0 both a slow tortoise (the tortoise steps once at each
iteration) and a quick hare (the hare steps twice at each iteration). Then the
hare will recapture the tortoise if and only if there is a cycle in the sequence from
x0. We refer to [1] for further visual explanations about the origin and intuition
behind this very well-known algorithm. The T&H algorithm computes only a
meeting point for the two fabulous animals. We will call Floyd’s cycle finding
the algorithm that builds on this technique to compute the entry point and
period of the cycle. We also consider Brent’s period only finding algorithm [6]
that proceeds with a slow hare and a so-called “teleporting tortoise.”

Because these algorithms do not always terminate, defining the corresponding
fully specified Coq fixpoints might be considered challenging. The folklore fuel
trick could be used to simulate general recursion in Coq. The idea is to use a
term of the type X → (fuel : nat)→ option Y to represent a partial recursive
function f : X⇁Y . The fuel argument ensures termination, as e.g. a bound on
the number of recursive sub-calls. This fuel trick has several problems: computing
a big-enough fuel value from the input x : X might be as complicated as showing
the termination of f(x) itself; but also, the fuel argument is informative and is
thus preserved by extraction, both as a parasitic argument and as a companion
program for computing the input value of fuel from the value of x; and finally,
the output type is now option Y instead of Y so an extra match construct is
necessary. We will show how to replace the informative fuel argument with a
non-informative bar inductive predicate to ensure termination. As such, it is
erased by extraction, getting us rid of parasitic arguments. In particular, we
obtain an OCaml extraction of T&H certified by less than 80 lines of Coq code.

2 Formalization of the problem

Given a set X and a function f : X→X, we define the n-th iterate fn : X→X
of f by induction on n: f0 = x 7→ x and fn+1 = f ◦ fn. In Coq, this definition
corresponds to the code of the iterator (with a convenient compact f n notation):

Fixpoint iter {X : Type} (f : X →X) n x : X :=
match n with O 7→ x | S n 7→ f (f n x) end

where “ f n ” := (iter f n).

We get the identity fa+b(x) = fa (f b(x)) by induction on a. Given a starting
point x0 ∈ X, we consider the infinite sequence x0, f(x0), f2(x0), . . . , fn(x0), . . .



of iterates of f on x0, i.e. the map n 7→ fn(x0). From a classical logic perspective,
two mutually exclusive alternatives are possible:

A1 the sequence n 7→ fn(x0) is injective, i.e. f i(x0) 6= f j(x0) holds unless i = j.
In this case, there is no cycle in the iterated sequence from x0;

A2 there exist i 6= j such that f i(x0) = f j(x0) and in this case, there is a cycle
in the iterated sequence from x0.

It is however not possible to computationally distinguish those two cases: no
cycle finding algorithm can be both correct and always terminating. To show this
undecidability result, one can reduce the Halting problem to the cycle detection
problem (see file cycle_undec.v).

The T&H algorithm terminates exactly when Alternative A2 above holds and
loops forever when Alternative A1 holds. There are many equivalent character-
izations of the existence of a cycle, which we call the cyclicity property.

Proposition 1 (Cyclicity). For any set X, any function f : X →X and any
x0 ∈ X, the four following conditions are equivalent:

1. there exist i, j ∈ N such that i 6= j and f i(x0) = f j(x0);
2. there exist λ, µ ∈ N such that 0 < µ and fλ(x0) = fλ+µ(x0);
3. there exist λ, µ ∈ N s.t. 0 < µ and for any i, j ∈ N, f i+λ(x0) = f i+λ+jµ(x0);
4. there exists τ ∈ N such that 0 < τ and fτ (x0) = f2τ (x0).

Proof. For 1 ⇒ 2, if i < j then choose λ = i and µ = j − i (exchange i and
j if otherwise j < i). For 2 ⇒ 3, first show fλ(x0) = fλ+jµ(x0) by induction
on j. Then f i+λ(x0) = f i(fλ(x0)) = f i(fλ+jµ(x0)) = f i+λ+jµ(x0). For 3 ⇒ 4,
choose τ = (1 + λ)µ and derive fτ (x0) = f2τ (x0) using i = (1 + λ)µ − λ and
j = 1 + λ. For 4 ⇒ 1, choose i = τ and j = 2τ . That proof is mechanized as
Proposition cyclicity_prop in file utils.v. ut

The functional specification of T&H is to compute a meeting index τ ∈ N such
that 0 < τ and fτ (x0) = f2τ (x0) (corresponding to Item 4 of Proposition 1), pro-
vided such a value exists. Operationally, the algorithm consists in enumerating
the sequence of pairs (f(x0), f

2(x0)), (f
2(x0), f

4(x0)), . . . , (f
n(x0), f

2n(x0)), . . .
in an efficient way until the two values fn(x0) and f2n(x0) are equal.

2.1 An OCaml account of the Tortoise and the Hare

The T&H algorithm can be expressed in OCaml as the following two functions:

tort_hare_rec : (f : α→ α)→ (x : α)→ (y : α)→ int

tortoise_hare : (f : α→ α)→ (x0 : α)→ int

let rec tort_hare_rec f x y =
if x = y then 0 else 1 + tort_hare_rec f (f x) (f (f y))

let tortoise_hare f x0 = 1 + tort_hare_rec f (f x0) (f (f x0))

In general, the tail-recursive version is preferred because tail-recursive functions
can be compiled into loops without the help of a stack. The code of the function
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tortoise_hare_tail contains a sub-function loop where the first argument f
of tortoise_hare_tail is fixed and second argument x0 is unused.

tortoise_hare_tail : (f : α→ α)→ (x0 : α)→ int

loop : (n : int)→ (x : α)→ (y : α)→ int

let tortoise_hare_tail f x0 =
let rec loop n x y = if x = y then n else loop (1 + n) (f x) (f (f y))
in loop 1 (f x0) (f (f x0))

Notice that the pre-condition of cyclicity (any item of Proposition 1) is necessary
otherwise the above OCaml code does not terminate and is thus incorrect. Any
correctness proof must include that cyclicity pre-condition, or a stronger one.

2.2 Goals and contributions

The goal of this work is double:

Goal 1: functional correctness. Using purely constructive means, build fully
specified Coq terms that compute a meeting point for the tortoise and the
hare, with the sole pre-condition of cyclicity. Reiterate this for Floyd’s and
Brent’s cycle finding algorithms;

Goal 2: operational correctness. Ensure that the extraction of the previ-
ous Coq terms give the corresponding standard OCaml implementations.
In particular, derive the above implementations of tortoise_hare and
tortoise_hare_tail by extraction.

From these two goals, trusting Coq extraction mechanism, we get the functional
correctness of the standard OCaml implementations for free.

For T&H, solving Goal 1 can be viewed as constructing a term of type

th_coq : (∃τ, 0 < τ ∧ f τ x0 = f 2τ x0)→{τ | 0 < τ ∧ f τ x0 = f 2τ x0}

from the assumptions of a type X : Type, a procedure =?
X for deciding equality

over X, and a sequence given by f : X→X and x0 : X. Notice the assumption
=?
X : ∀x y : X, {x = y}+{x 6= y} of an equality decider for X that is necessary in

Coq. Indeed, unlike OCaml which has a built-in polymorphic equality decider,1
Coq does (and can) not have equality deciders for every possible type.

Solving Goal 2 means that after extraction of OCaml code from th_coq, we
get the same function code as tortoise_hare (resp. tortoise_hare_tail).

This paper is a companion for Coq implementations of cycle finding algo-
rithms. The corresponding source code can be found at

https://github.com/DmxLarchey/The-Tortoise-and-the-Hare

The implementation involves around 3000 lines of Coq code but this does not re-
flect the compactness of our implementation of T&H. Indeed, it contains Floyd’s
1 OCaml equality decider is partially correct, e.g. it throws exceptions on functions.
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and Brent’s algorithms as well, and there are several accompanying files illus-
trating certified recursion through bar inductive predicates. To witness the con-
ciseness of our approach, we give a standalone tail-recursive implementation of
T&H of less than 80 lines, not counting comments (see th_alone.v). This project
compiles under Coq 8.6 and is available under a Free Software license.

The designs of the cycle finding algorithms that we propose are all based
on bar inductive predicates used as termination certificates for Coq fixpoint
recursion. In Section 3, we give a brief introduction to these predicates from a
programmer’s point of view and show why they are suited for solving termination
problems. The corresponding Coq source code can be found in file bar.v.

In Section 4, we present two fully specified implementations of T&H, one non-
tail recursive and one tail-recursive. We give a detailed account of the algorithmic
part of the implementation that we isolate from logical obligations. We explain
how bar inductive predicates are used to separate/postpone termination proofs
from algorithmic considerations. The corresponding file is tortoise_hare.v.

In Section 5, we give an overview of the implementation of the full Floyd
cycle finding algorithm that computes the characteristic index and period of an
iterated sequence. The corresponding Coq file is floyd.v. In Section 6, we give a
brief account of our implementation of Brent’s period finding algorithm, in fact
two implementations: one suited for binary numbers and one suited for unary
numbers. The corresponding source code files are brent_bin.v and brent_una.v.

The T&H has already been the subject of implementations in Coq [9,11], but
under different requirements. In Section 7, we compare our development with
those alternative approaches. From a constructive point of view, we analyse the
pre-conditions under which correctness is established in each case.

3 Termination using Bar Inductive Predicates

In this section, we explain how to use bar inductive predicates [12] — a construc-
tive and axiom-free form of bar induction2 — as termination certificates.

As explained in Section 3.2, in the context we use them (decidable terminated
cases), these predicates have the same expressive power as the accessibility predi-
cates used for well-founded recursion in Coq in the modules Wf and Wellfounded

from the standard library (see also left part of Fig. 1). But we think that bar
inductive predicates have several advantages over accessibility predicates:

– compared to the general accessibility predicates of [4], they do not need the
simultaneous induction/recursion schemes of Dybjer [10] (not integrated in
Coq so far) in case of nested/mutual recursion [17];

– unlike standard accessibility predicates (module Wf) which involve thinking
about termination before implementing the algorithm, or inductively defined
domain predicates (see [3] pp 427–432) which involve thinking about ter-
mination together with the algorithm, bar inductive predicates focuses on

2 Conventional bar induction often requires Brouwer’s thesis which precisely postu-
lates that bar predicates are inductive.
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∀y,R y x→ Acc y

Acc x

T x

bar x

∀y,R x y→ bar y

bar x

Fig. 1. Inductive rules for Acc and bar termination certificates.

terminated cases and recursive sub-calls so termination proofs can be sepa-
rated from the algorithm.

We argue that separating/postponing the proof of termination makes the use of
bar inductive predicates more versatile. At least, we hope that we illustrate our
case here. Of course, a comprehensive comparison with [5] would be necessary to
complete our case. The reader could be interested in recent developments that
show that the method of bar inductive predicates scales well to more complicated
nested/mutual recursive schemes [17].

We do not really introduce new concepts in the section. But we want to stress
the links between the notion of cover-induction [8] and the notion of bar inductive
predicate (e.g. inductive bars [12]). We insist on these notions because we will
specialize the following generic implementation to get an “extraction friendly”
Coq definition of cycle finding algorithms.

3.1 Dependently typed recursion for bar inductive predicates

Let us consider a type X, a unary relation T : X → Prop and a binary relation
R : X→X→ Prop. Here are some possible intuitive interpretations of T and R:

T x: the computation at point x is terminated (no recursive sub-call);
R x y: a call at point x may trigger a recursive sub-call at point y.

We define the inductive predicate bar : X → Prop which covers points where
computation is warrantied to terminate, by the two rules on the right of Fig. 1:

Variables (X : Type) (T : X → Prop) (R : X →X → Prop).

Inductive bar (x : X) : Prop :=
| in_bar_0 : T x → bar x
| in_bar_1 : (∀y,R x y→ bar y) → bar x.

The first rule in_bar_0 states that a terminated computation terminates. The
second rule in_bar_1 states that if every recursive sub-call y of x terminates
then so is the call at x. Notice that the predicate bar x : Prop carries no com-
putational content and thus cannot be used to perform computational choices.
Termination is only warrantied by the bar x predicate, it is not performed by it.

Hence we assume a decider term Tdec : ∀x, {T x} + {¬T x} for terminated
points. We then define bar_rect, a dependently typed recursion principle for
bar x. For this, we need the following inductions hypotheses:

Hypothesis (Tdec : ∀x, {T x}+ {¬T x}).
Variable (P : X → Type).
Hypothesis (HT : ∀x, T x→ P x) (Hbar : ∀x, (∀y,R x y→ P y)→ P x).



where HT gives the value for terminated points and Hbar combines the values
of the recursive sub-calls into a value for the call itself. With these assumptions,
we get the following dependently typed induction principle:

Fixpoint bar_rect x (H : bar x) {struct H} : P x :=
match Tdec x with

| left Hx 7→ HT _ Hx

| right Hx 7→ Hbar _ (fun y Hy 7→ bar_rect y G?
1)

end.

where G?
1 is a proof term for a logical obligation:

G?
1 // . . . , x : X,H : bar x,Hx : ¬T x, y : X,Hy : R x y ` bar y

Notice that for Coq to accept such a Fixpoint definition as well-typed, one
must ensure that the given proof of goal G?

1 is a sub-term of the term H : bar x
because H is declared as the structurally decreasing argument of this fixpoint.
Hence, the first step in the proof of G?

1 is destruct H.
The above implementation of bar_rect expects the proof term of G?

1 to be
given before the actual Fixpoint definition of bar_rect. This can be mitigated
with the use of the very handy refine tactic that can delay the proof obliga-
tions after the incomplete proof term is given (see bar.v for details). As a final
remark concerning the term bar_rect, there are two ways of stopping a chain
of recursive sub-calls: the first is obviously to reach a terminated point (i.e. T x)
but the chain can also stop when there is zero recursive sub-calls (i.e. R x y holds
for no y). While the first condition of terminated points is decidable, the sec-
ond condition of the nonexistence of recursive sub-calls is usually not decidable.
Hence when using the accessibility predicate Acc (fun u v 7→ R v u ∧ ¬T v) x
which mixes both T and R (see Theorem bar_Acc_eq_dec below), detecting
the first termination condition is less natural.

3.2 Accessibility vs. bar inductive predicates

We show that bar inductive predicates generalize accessibility predicates defined
in the Coq standard library module Wf,

Theorem bar_empty_Acc_eq (X : Type) (R : X →X → Prop) (x : X) :

bar (fun _ 7→ False) R x⇐⇒ Acc R−1 x

which is obvious from the rules of Fig. 1 because when T = fun _ 7→ False is
empty, one cannot use rule in_bar_0. Then, we show that when T : X→Prop is
(logically) decidable, then bar T R can be encoded as an accessibility predicate:

Theorem bar_Acc_eq_dec X (T : X → Prop) (R : X →X → Prop) :

(∀x, T x ∨ ¬T x)→∀x, bar T R x⇐⇒ Acc (fun u v 7→ R v u ∧ ¬T v) x

From our point of view, the advantage of bar over Acc is that they keep the two
forms of termination separate (x is terminated by T vs. x generates no recur-
sive sub-call), making them easier to reason or compute with. Moreover, using
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Acc incites at using only well-founded relations (or even decreasing measures)
whereas bar focuses on terminated points/recursive calls and thus can be used
more freely as exemplified in Sections 4 and 5.

3.3 Constructive epsilon via bar inductive predicates

As a first illustration of using bar inductive predicates, we show how to imple-
ment Constructive Indefinite Ground Description defined in the standard library
module ConstructiveEpsilon.

Theorem Constructive_Epsilon (Q : nat→ Prop) :(
∀n, {Qn}+ {¬Qn}

)
→ (∃n,Q n)→{n : nat | Q n}.

We instantiate bar_rect with (T := Q), (Rxy := Sx = y) and (P _ :=
{x | Q x}). We only have to transform the termination certificate ∃n,Qn into
a bar inductive predicate at the purely logical/Prop level. For this, we show
(∃n,Qn)→ bar Q R 0: from Qn deduce bar Q R n using in_bar_0 and then
barQ R (n−1),... down to barQ R 0 by descending induction3 using in_bar_1.

Notice that using the previous development, we can already implement the
functional specification of the T&H algorithm:

th_min : (∃τ, 0 < τ ∧ f τ x0 = f 2τ x0)→{τ | 0 < τ ∧ f τ x0 = f 2τ x0}

by application of Constructive_Epsilon with (Q n := 0 < n ∧ f n x0 = f 2n x0).
Indeed, such Q : nat→ Prop is computationally decidable as both < : nat→
nat→ Prop and =X : X →X → Prop are computationally decidable.4

let th_min f x0 =
let rec µmin n =

if (n = 0) or (f n x0 6= f 2n x0)
then µmin (1 + n)
else n

in µmin 0

However, this approach will not give
us the operational specification of T&H
because this implementation of th_min
using Constructive_Epsilon extracts
into the inefficient unbounded minimiza-
tion algorithm on the right-hand side
(see also th_min.v). There, µmin corre-
sponds to unbounded minimization. This th_min program recomputes f n x0 and
f 2n x0 for each value of n before a cycle is detected, making it really inefficient.

4 The Tortoise and the Hare via Bar Inductive Predicates

In this section, we use the methodology of Section 3 (i.e. termination via bar
inductive predicates) to design a fully specified implementation of the T&H al-
gorithm that satisfies Goals 1 and 2 of Section 2.2. We could use bar_rect
to implement this algorithm but we do not use it directly. Indeed, we want to
finely control the computational content of our terms so that we can extract the
3 descending induction is implemented by nat_rev_ind in file utils.v.
4 for =X , this is precisely the assumption of the =?

X equality decider.
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x = y

barth x y

barth (f x) (f (f y))

barth x y

x = y

bartl i x y

bartl (S i) (f x) (f (f y))

bartl i x y

Fig. 2. Inductive rules for barth : X→X→ Prop and bartl : nat→X→X→ Prop.

expected OCaml code accurately. However, we will mimic the implementation of
bar_rect several times. The corresponding file for this section is tortoise_hare.v.

The T&H detects potential cycles in the iterated values of an endo-function
f : X → X. As explained in Section 2.2, for the remaining of this section, we
assume the following pre-conditions for the hare to recapture the tortoise:

Variables (X : Type) (=?
X : ∀x y : X, {x = y}+ {x 6= y})

(f : X →X) (x0 : X) (H0 : ∃τ, 0 < τ ∧ f τ x0 = f 2τ x0).

that is a type X with an equality decider =?
X , a sequence f starting at point x0

satisfying a cyclicity assumption H0 (see Proposition 1). These pre-conditions
are not minimal for establishing the correctness of T&H5 but we do think they
are general enough to accommodate most use cases of T&H.

4.1 A non-tail recursive implementation

Let us start with the non-tail recursive implementation of T&H, as is done
in the OCaml code of tortoise_hare (see Section 2.1). We define a bar in-
ductive predicate which will be used as termination certificate for the main
loop tort_hare_rec. Compared to the generic inductive definition of bar of
Section 3, barth is a binary (instead of unary) bar predicate specialized with
(T x y := x = y) and (Rxy u v := u = f x ∧ v = f (f y)):

Inductive barth (x y : X) : Prop :=
| in_bar_th_0 : x = y → barth x y
| in_bar_th_1 : barth (f x) (f (f y)) → barth x y

This definition matches the inductive rules of Fig. 2 (left part). We define a
fully specified Coq term tort_hare_rec mimicking both the OCaml code of
Section 2.1 (with the addition of a termination certificate of type barth x y) and
the code of bar_rect of Section 3:

Fixpoint tort_hare_rec x y (H : barth x y) : {k | f k x = f 2k y} :=
match x =?

X y with

| left E 7→ exist _ 0 G?
1

| right C 7→ match tort_hare_rec (f x) (f (f y)) G?
2 with

| exist _ k Hk 7→ exist _ (S k) G?
3

end

end.
5 see th_rel.v where an arbitrary decidable relation R : X→X→ Prop replaces =X .
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where G?
1, G?

2 and G?
3 are three proof terms of the following types:

G?
1 // . . . , E : x = y ` f 0 x = f 2.0 y

G?
2 // . . . , C : x 6= y,H : barth x y ` barth (f x) (f (f y))

G?
3 // . . . ,Hk : f k (f x) = f 2k (f (f y)) ` f S k x = f 2(S k) y

These can be established before the Fixpoint definition of tort_hare_rec
or else (preferably), using the Coq refine tactic, after the statement of the
computational part of tort_hare_rec, as remaining logical obligations (see
tortoise_hare.v for exact Coq code). Recall that the termination certificate H
must structurally decrease, i.e. the proof term for G?

2 must be a sub-term of H.
We can now define tortoise_hare by calling tort_hare_rec but we need

to provide a termination certificate:

Definition tortoise_hare : {τ | 0 < τ ∧ f τ x0 = f 2τ x0} :=
match tort_hare_rec (f x0) (f (f x0)) G?

1 with

| exist _ k Hk 7→ exist _ (S k) G?
2

end.

There are two remaining logical obligations, G?
1 being the termination certificate:

G?
1 // . . . ,H0 : ∃τ, 0 < τ ∧ f τ x0 = f 2τ x0 ` bar_th (f x0) (f (f x0))

G?
2 // . . . ,Hk : f k (f x0) = f 2k (f (f x0)) ` 0 < S k ∧ f S k x0 = f 2(S k) x0

We prove G?
1 as follows: from H0, we (non-computationally) deduce m such

that 0 < m and fm x0 = f 2m x0. Using in_bar_th_0 we immediately get
barth (f

m x0) (f
2m x0). Then using in_bar_th_1 repeatedly from m, m−1, ...

down to 1 we get barth (f 1 x0) (f 2 x0). G?
2 is obtained by trivial computations

over nat using the f_equal/omega tactics.
The Coq command Recursive Extraction tortoise_hare produces the

corresponding OCaml code of Section 2.1 except that the OCaml type int is
replaced with nat and the OCaml built-in equality decider is replaced with (a
to be provided implementation of) =?

X .

4.2 A tail-recursive implementation

Now we proceed with the tail-recursive implementation of T&H. We define a
ternary bar inductive predicate corresponding to the recursive call of the loop

in the OCaml code of tort_hare_tail in Section 2.1:

Inductive bartl (i : nat) (x y : X) : Prop :=
| in_bar_tl_0 : x = y → bartl i x y
| in_bar_tl_1 : bartl (S i) (f x) (f (f y)) → bartl i x y

the corresponding inductive rules being described in Fig. 2 (right part). Then
we can define the internal loop of tort_hare_tail by a (local) fixpoint over

https://github.com/DmxLarchey/The-Tortoise-and-the-Hare/blob/master/tortoise_hare.v


the fourth argument of type bartl i x y:

Fixpoint loop i x y (H : bartl i x y) : {k | i 6 k ∧ f k−i x = f 2(k−i) y} :=
match x =?

X y with

| left E 7→ exist _ i G?
1

| right C 7→ match loop (S i) (f x) (f (f y)) G?
2 with

| exist _ k Hk 7→ exist _ k G?
3

end

end.

where G?
1, G?

2 and G?
3 are three proof terms of the following types:

G?
1 // . . . , E : x = y ` i 6 i ∧ f i−i x = f 2(i−i) y

G?
2 // . . . , C : x 6= y,H : bartl i x y ` bartl (S i) (f x) (f (f y))

G?
3 // . . . ,Hk : S i 6 k ∧ f (k−S i) (f x) = f 2(k−S i) (f 2 y) ` i 6 k ∧ f k−i x = f 2(k−i) y

and G?
2 is the termination certificate and must be a sub-term of H. Then we

proceed with the implementation of tortoise_hare_tail which calls loop:

Definition tortoise_hare_tail : {τ | 0 < τ ∧ f τ x0 = f 2τ x0} :=
match loop 1 (f x0) (f (f x0)) G?

1 with

| exist _ k Hk 7→ exist _ k G?
2

end.

We must provide a termination certificate G?
1 and establish the specification G?

2:

G?
1 // . . . ,H0 : ∃τ, 0 < τ ∧ f τ x0 = f 2τ x0 ` bartl 1 (f x0) (f (f x0))

G?
2 // . . . ,Hk : 1 6 k ∧ f k−1 (f x0) = f 2(k−1) (f (f x0)) ` 0 < k ∧ f k x0 = f 2k x0

G?
1 is proved by descending induction much like what is done in the non-tail

recursive case and G?
2 is quite trivial to obtain using the f_equal/omega tactics.

The extracted OCaml code corresponds to the tortoise_hare_tail imple-
mentation of Section 2.1. The file th_alone.v contains a standalone implementa-
tion of tortoise_hare_tail in less than 80 lines, not counting comments.

5 Floyd’s Cycle Finding Algorithm in Coq

In this section, we give an overview of Floyd’s index and period finding algorithm
as implemented in the file floyd.v. It has the same pre-conditions as the T&H
algorithms of Section 4:

Variables (X : Type) (=?
X : ∀x y : X, {x = y}+ {x 6= y})

(f : X →X) (x0 : X) (H0 : ∃τ, 0 < τ ∧ f τ x0 = f 2τ x0).

It does not only finds a meeting point for the tortoise and the hare but computes
the characteristic pair of values (λ, µ) of the cycle which satisfy the predicate
cycle_spec with the following body:

Definition cycle_spec (λ µ : nat) : Prop :=

0 < µ ∧ f λ x0 = f λ+µ x0 ∧ ∀i j, i < j→ f i x0 = f j x0→ λ 6 i ∧ µ div (j − i).

https://github.com/DmxLarchey/The-Tortoise-and-the-Hare/blob/master/th_alone.v
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where div represents the divisibility order over nat (i.e. d div n means ∃q, n =
qd). The index λ is such that fλ(x0) is the entry point of the cycle and µ > 0 is
the period (or length) of the cycle. The third conjunct (∀i j, i < j→ . . .) states
that any (non-empty) cycle i j occurs after λ and has a length divisible by µ.

Hence under the above pre-conditions, Floyd’s algorithm has the functional
specification floyd_find_cycle :

{
λ : nat & {µ : nat | cycle_spec λ µ}

}
.

The operational specification is simply that the Coq term extracts to a standard
OCaml implementation derived from [1]. floyd_find_cycle is implemented as
the combination of three sub-terms, floyd_meeting_pt which first computes
a meeting point for the tortoise and the hare, then floyd_index that computes
the index and finally floyd_period that computes the period. We describe
these three sub-terms in specific sub-sections, each sub-section potentially having
its own set of additional pre-conditions, mimicking Coq sectioning mechanism.
For each of these terms, we use a tailored bar inductive predicate to ensure
termination under the corresponding pre-conditions.

5.1 Computing a meeting point

The term floyd_meeting_pt needs no further pre-conditions. We use the in-
ductive barth : X→X→Prop of Fig. 2 as termination certificate, the same that
we used for the non-tail recursive tortoise_hare implementation. However, we
do get a tail-recursive term here because we only compute a meeting point, not
its index in the sequence as in the bartl/tortoise_hare_tail case.

Let bar_th_meet : ∀x y, barth x y→{c : X | ∃k, c = f k x ∧ c = f 2k y}.
Definition floyd_meeting_pt : {c | ∃τ, 0 < τ ∧ c = f τ x0 ∧ c = f 2τ x0}.

We define bar_th_meet as a local fixpoint using the same technique as in
the barth/tortoise_hare case. Then, we show H ′0 : barth (f x0) (f (f x0))
as a consequence of H0 and we derive floyd_meeting_pt from the following
instance bar_th_meet (f x0) (f (f x0)) H

′
0.

5.2 Computing the index

The term floyd_index uses the post-condition of floyd_meeting_pt as a
further pre-condition, i.e. a meeting point c for the tortoise and the hare. We
use the predicate barin : nat→X→X→Prop of Fig. 3 as termination certificate.

Variables (c : X) (Hc : ∃τ, 0 < τ ∧ c = f τ x0 ∧ c = f 2τ x0).
Let bar_in_inv (i : nat) (x y : X) :

barin i x y→ least_le (fun n 7→ i 6 n ∧ f n−i x = f n−i y).
Definition floyd_index : least_le (fun l 7→ ∃k, 0 < k ∧ f l x0 = f k+l x0).

We define bar_in_inv as a local fixpoint where least_le P is the least6
n : nat which satisfies P n. We show H ′c : barin 0 x0 c as a consequence of Hc

and we derive floyd_index from the following instance bar_in_inv 0 x0 c H
′
c.

6 least for the natural order 6 over nat.



x = y

barin i x y

barin (S i) (f x) (f y)

barin i x y

c = y

barpe i y

barpe (S i) (f y)

barpe i y

Fig. 3. Inductive rules for barin : nat→X→X→ Prop and barpe : nat→X→ Prop.

5.3 Computing the period

The further pre-condition of floyd_period is a point c which belongs to a (non-
empty) cycle, a direct consequence of the post-condition of floyd_meeting_pt.
Termination is certified by the predicate barpe : nat→X → Prop of Fig. 3.

Variables (c : X) (Hc : ∃k, 0 < k ∧ c = f k c).
Let bar_pe_inv i x : barpe i x→ least_le (fun n 7→ i 6 n ∧ x = f n−i y).
Definition floyd_period : least_div (fun n 7→ 0 < n ∧ c = f n c).

We define bar_pe_inv as a local fixpoint. We prove H ′c : barpe 1 (f c) using Hc

and we get floyd_period from the following instance bar_pe_inv 1 (f c) H ′c.
Here, least_div P is the least n s.t. P n for the divisibility order div.

5.4 Gluing all together

We finish with the term floyd_find_cycle:

Definition floyd_find_cycle :
{
λ : nat & {µ : nat | cycle_spec λ µ}

}
.

It needs no further pre-conditions than those given at the beginning Section 5. It
is composed of the successive applications of floyd_meeting_pt, floyd_index
and floyd_period where the post-condition of floyd_meeting_pt serves as
input for the extra pre-conditions of floyd_index and floyd_period. We con-
clude with a short proof that the computed index and period satisfy cycle_spec.
The extracted OCaml program corresponds to the following code with the same
remarks regarding =?

X and nat/int as with tortoise_hare from Section 4.1.

let floyd_meeting_pt f x0 =
let rec loop x y = if x = y then x else loop (f x) (f2 y) in loop (f x0) (f

2 x0)
let floyd_index f x0 c =

let rec loop i x y = if x = y then i else loop (1 + i) (f x) (f y) in loop 0 x0 c
let floyd_period f c =

let rec loop i y = if c = y then i else loop (1 + i) (f y) in loop 1 (f c)
let floyd_find_cycle f x0 =

let c = floyd_meeting_pt f x0 in (floyd_index f x0 c, floyd_period f c)

6 Brent’s Period Finding Algorithm

In the file brent_bin.v, we propose a correctness proof of Brent’s algorithm in the
same spirit as what was done for Floyd’s cycle finding algorithm of Section 5.
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Brent’s algorithm [6] only computes the period µ of the cycle. The index λ can
be computed afterwards by using two tortoises separated by µ steps. Brent’s
algorithm is more efficient than T&H: it can be proved that a run of Brent’s
algorithm on (f, x0) always generates less calls to f than a run of the T&H (or
Floyd’s cycle finding) algorithm on the same input (see [14], Sect. 7.1.2).

In this section, we just describe the functional specification and the opera-
tional specification (i.e. the extracted OCaml code) of Brent’s algorithm of which
we propose two implementations. The first one in file brent_bin.v is suited for
a binary representation of natural numbers, but it is not efficient with unary
natural numbers. The other implementation in file brent_una.v is also efficient
on unary natural numbers such as those of type nat.

Given a type X : Type, an equality decider =?
X : ∀x y : X, {x = y} +

{x 6= y}, input values f : X → X and x0 : X, and a cycle existence certificate
(see Proposition 1), Brent’s algorithm computes a µ satisfying the specification
period_spec : ∀µ : nat, Prop with the following body

0 < µ ∧ (∃λ, f λ x0 = f λ+µ x0) ∧ ∀i j, i < j→ f i x0 = f j x0→ µ div (j − i)

that is, it computes the period of the cycle. The term brent_bin extracts to
something close to the following OCaml code:

let brent_bin f x0 =
let rec loop p l x y =

if x = y then l
else if p = l then loop 2p 1 y (f y)
else loop p (1 + l) x (f y)

in loop 1 1 x0 (f x0)

where int is replaced with nat, (x = y) with (x =?
X y) and (p = l) with

(eq_nat_dec x y). However this code is not optimal with a unary representation
of numbers such as nat: in particular 2p and p = l are slow (linear) to compute.

To get a more efficient implementation, one should either use a binary repre-
sentation of numbers or switch to brent_una which has the same specification
as the binary version but extracts to the following OCaml code:

let brent_una f x0 =
let rec loop l p m x y =

if x = y then l
else if m = 0 then loop 1 (1 + p) p y (f y)
else loop (1 + l) (1 + p) (m− 1) x (f y)

in loop 1 1 0 x0 (f x0)

This code is much better suited for unary numbers. In particular, m = 0 and
m− 1 are computed via pattern-matching on m in constant time.

7 Correctness by Extraction and Related Works

Correctness is a property of programs with respect to a given specification. As
trivial as this remark may seem, it is important to keep it in mind because the
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purpose of extraction is to erase the logical content of Coq programs and to
keep only their computational content: specifications are erased by extraction.
One cannot claim that a program extract(t) is correct just because it has been
extracted from a Coq term t : T . The correctness property is only ensured with
respect to the particular specification T that (by the way) had just been erased.

7.1 Correctness of the Tortoise and the Hare

We illustrate this critical aspect of extraction on the non-tail recursive OCaml
implementation of T&H. The type of tortoise_hare is

Definition tortoise_hare {X} (=?
X : ∀x y : X, {x = y}+ {x 6= y}) f x0 :

(H0 : ∃τ, 0 < τ ∧ f τ x0 = f 2τ x0)→{τ : nat | 0 < τ ∧ f τ x0 = f 2τ x0}.

as reported from Section 4. The pre-conditions of this specification are all the
logical properties of the input parameters, i.e. the fact that =?

X is an equality
decider for X and the cyclicity property H0. The post-condition is the fact
that τ is a meeting index for the fabulous animals. By extraction, the OCaml
code tortoise_hare of Section 2.1 is correct w.r.t. to this specification. In the
extracted program however, the pre-conditions on =?

X and of cyclicity, and the
post-conditions 0 < τ and f τ x0 = f 2τ x0 have disappeared.

Now consider this “alternative” (and cheating) implementation of T&H:

Variables (X : Type) (=?
X : . . .) (f : X →X) (x0 : X) (H0 : False).

Fixpoint th_false_rec x y (H : False) : nat :=
match x =?

X y with

| left E 7→ 0
| right C 7→ S

(
th_false_rec (f x) (f (f y)) match H with end

)
end.

Definition th_false := S
(
th_false_rec (f x0) (f (f x0)) H0

)
.

The pre-conditions for th_false are the same as those of tortoise_hare ex-
cept that cyclicity has been replaced with absurdity (H0 : False). The post-
condition has been erased. Yet, up to renaming, extraction of OCaml code
from th_false and from tortoise_hare yields the very same program. So the
OCaml program tortoise_hare/th_false is correct w.r.t. two very different
specifications: one is useful (cyclicity) and one is useless (absurdity).

The file infinite_loop.ml contains th_false and gives other illustrations of
abuses of extraction in absurd contexts. As a conclusion, before using or running
an extracted algorithm, one should first check for assumptions in the specifica-
tion using the Coq command Print Assumptions which lists all the potentially
hidden pre-conditions such as axioms or parameters which are usually not dis-
played in the types of terms in Coq to avoid bloating them.

7.2 Comparison with Related Works

Given the stunning simplicity of T&H, our implementation is hardly the first
attempt at certifying this algorithm. As for Coq, may be there are others, but
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we are aware of two previous developments. One (unpublished) proof by J.C. Fil-
liâtre [11] and another, more recent, by J.F. Dufourd [9].

Illustrating how Hilbert’s ε-operator could be used to manage partial func-
tions within Coq was the main goal of his implementation [11] (private com-
munication with J.C. Filliâtre); and the correctness of T&H was not really a
goal of that project. The use of epsilon/epsilon_spec to axiomatize Hilbert’s
ε-operator is, from a constructive point of view, our main criticism against that
implementation. Hence, while it is true that the term find_cycle of fillia_orig.v
extracts to some OCaml code very similar to tortoise_hare_tail of Sec-
tion 2.1, the corresponding specification has stronger pre-conditions than our
own. Following the observations on correctness of Section 7.1, even if erased by
extraction, Hilbert’s ε-operator is still a pre-condition and a particularly strong
form of the axiom of choice. Anything that exists can be reified with this oper-
ator. While not necessarily contradictory in itself, that kind of axiom is incom-
patible with several extensions of Coq [7]. We do not think it can be accepted
from a constructive point of view because admitting the ε-operator allows to
write non-recursive functions in Coq. We suggest the interested reader to con-
sult the file collatz.v to see how the ε-operator “solves” the Halting problem or
the Collatz problem [16]. It is our claim that although find_cycle implements
some correctness property of T&H, the pre-conditions under which this correct-
ness is achieved cannot be constructively or computationally satisfied. In the
file fillia_modif.v, we propose a modified version of [11] where the ε-operator is
replaced with Constructive_Epsilon from Section 3.3. This requires in-depth
changes, in particular, on the induction principle used to ensure termination.
We additionally mention a more recent Isabelle/HOL proof of P. Gammie [13]
which seems to reuse the technique of J.C. Filliâtre.

The work of J.F. Dufourd [9] is based on different assumptions and the cor-
rectness proof of T&H that he obtains derives from a quite large library on
functional orbits over finite domains of around 20 000 lines of code. The pre-
conditions do not assume cyclicity. Instead there is a stronger assumption of
finiteness of the domain, from which cyclicity can be derived using the pigeon
hole principle (PHP). Admittedly, this finiteness assumption is not unreasonable,
even constructively: most use cases of cycle finding algorithms occur over finite
domains. However, it is our understanding that Pollard’s rho algorithm [18]
is run on a finite domain of unkown (i.e. non-informative) cardinality. As far
as we can understand J.F. Dufourd’s code, his inductive proofs are cardinality
based. Hence an informative bound on the cardinal of the domain is likely a pre-
condition for correctness. Thus, we think that his correctness proof might not
be applicable to Pollard’s rho algorithm (non-informative finiteness, see below).

On the other hand, modifying our specification of tortoise_hare_tail
to replace cyclicity by finiteness involves the PHP (see php.v). In that case,
finiteness could be expressed as the predicate (∃l : listX,∀x : X, In x l) which
postulates the non-informative existence of a list covering all the type X. Hence
we would obtain a specification compatible with the context of Pollard’s rho
algorithm. This short development can be found in th_finite.v.
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