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Abstract. As formal verification of software systems is a complex task
comprising many algorithms and heuristics, modern theorem provers offer
numerous parameters that are to be selected by a user to control how a
piece of software is verified. Evidently, the number of parameters even
increases with each new release. One challenge is that default parameters
are often insufficient to close proofs automatically and are not optimal
in terms of verification effort. The verification phase becomes hardly
accessible for non-experts, who typically must follow a time-consuming
trial-and-error strategy to choose the right parameters for even trivial
pieces of software. To aid users of deductive verification, we apply ma-
chine learning techniques to empirically investigate which parameters
and combinations thereof impair or improve provability and verification
effort. We exemplify our procedure on the deductive verification system
KeY 2.6.1 and specified extracts of OpenJDK, and formulate 53 hypothe-
ses of which only three have been rejected. We identified parameters that
represent a trade-off between high provability and low verification effort,
enabling the possibility to prioritize the selection of a parameter for either
direction. Our insights give tool builders a better understanding of their
control parameters and constitute a stepping stone towards automated
deductive verification and better applicability of verification tools for
non-experts.

Keywords: Deductive verification, Design by contract, Formal methods,
Theorem proving, KeY, Control parameters, Automated reasoning

1 Introduction

Formal methods are intended to provide adequate solutions for software develop-
ers to rigorously prove that a piece of software is in line with a given specifica-
tion [6, 9, 40, 41]. Besides light-weight methods intended to uncover the majority
of defects early, such as code reviews and testing, there is need for advanced
strategies to find the last defects. For instance, model checking is an automatic
technique verifying that a given formal model (e.g., state machines) adheres to
its specification [8, 39]. Although we expect our considerations to be more gen-
erally applicable to other formal verification techniques, we focus on deductive
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verification, which is another technique that targets program verification directly
on source code [1, 7, 2, 21, 43]. Essentially, an implementation together with its
formal specification is translated into a logical formula and validity is proved by
a theorem prover [43].

Despite considerable advances over the last decades and the advantage to
be directly applied to source code, deductive verification is still only hesitantly
applied in industrial software projects. Reasons are manifold. For example, there
are doubts about the the cost-effectiveness of formal methods [29]. In particular,
most legacy systems are not designed with formal verification in mind, which
makes post-hoc specification and verification expensive for indutrial projects [4].
Moreover, developing sufficient formal specifications is error-prone and tedious [3,
2], and typically requires high expertise of the underlying proof theory. Even
worse, full automation is not always possible because of the undecidability of the
halting problem.

However, when full automation is feasible, a subsequent and often overlooked
hurdle for inexperienced users is to parameterize the verification tool. Different
implementations and specifications have different needs and modern verification
tools provide parameters that are set by a user to control the verification process.
For example, the parameter loop treatment can be used to decide whether loops
are always unrolled or specified loop invariants are used. Consequently, successful
verification often depends on those parameters.

Understanding all parameters requires a considerable amount of knowledge.
Non-expert users may face problems when a piece of software cannot be verified
even when implementation and specification are seemly correct. Furthermore,
minimizing verification effort is important for industrial software. Complex soft-
ware systems are frequently changed and formal specifications are adapted ac-
cordingly. In this process, past proof results may become invalid. A naive solution
is then to follow a trial-and-error strategy by applying different parameter con-
figurations, after which verification is restarted. This strategy, however, wastes a
considerable amount of resources, making it less applied in industry.

We argue that a better understanding of parameterization allows tool builders
to better support users of deductive verification. In particular, we investigate
whether specific parameters have a larger influence on automated provability
and whether specific options increase or decrease the verification effort. We
focus on deductive verification following the Design by Contract paradigm [35].
Contracts are an extension to Hoare triples [23] and constitute a methodology to
specify methods of imperative languages (i.e., Java or C) with preconditions and
postconditions, and classes with class invariants. Callers of a contract-specified
method have the obligation to fulfill the precondition and may therefore rely
on the postcondition. Class invariants have to hold before and after method
execution.

There exist numerous languages with support for contracts, such as Eiffel [36],
Spec# [2], and the Java modeling language (JML) [31]. For the purpose of
this paper, we analyze parameters of the state-of-the-art verification system
KeY 2.6.1 [1]. KeY is a modern theorem prover with a large community intended
to verify JML-specified Java programs. To empricially investigate KeY’s parame-
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ters, we formulate a total of 53 hypotheses in terms of provability and verification
effort derived from the literature and documentation of KeY. Morever, we con-
struct parameter-influence models based on our measurements to reason about
which options influence the verification effort the most. To this end, we employ
SPLConqueror [45], a framework which incorporates machine-learning techniques
to measure the influence of parameters on non-functional properties. In summary,
our contributions are the following.

– We formulate and empirically validate 53 hypotheses about parameterization
in KeY, which provide clear recommendations for users who aim to verify
pieces of software automatically.

– We empirically evaluate the influence of KeY’s parameters with respect to
provability and verification effort with machine learning.

– We identify parameters that depict a trade-off between higher provability and
lower verification effort and discuss consequences for users and tool builders.

2 Problem Statement

With formal verification, our goal is to identify the last remaining defects. When
automatic software verification fails, users are confronted with a diverse set of
reasons. Typically, most common reasons consist of (a) a wrong implementation,
(b) a wrong or insufficient specification (e.g., loop invariants are missing or too
weak), (c) insufficient heuristics of the verification tool (e.g., when automatically
inferring loop invariants or instantiating quantifiers), or (d) the verification task
times out after the maximum number of proof steps or heap memory is exceeded.

As if these hurdles are not enough, a subsequent challenge is that parameteri-
zation has also a great effect on the outcome and the default values are oftentimes
not sufficient. Getting the parameters right from the beginning makes deductive
verification significantly more successful and cost-effective.

We divide parameters of deductive verification broadly into two categories.
The first category describes qualitative parameters that explicitly change what
to prove. For instance, there is an option in KeY to ignore integer overflows.
Consequently, implementations that cause an integer overflow are not verifiable
with this setting. Depending on the context and how the implementation is
facilitated, however, verifying the absence of integer overflows is crucial. Those
parameters must be set by users or have at least a well-chosen default value.

The second category describes parameters that only influence provability and
verification effort (i.e., how to prove). For instance, there is a parameter in KeY
for method call treatment; a method call is either always replaced with an existing
contract (i.e., contracting), or its implementation is always inlined (i.e., method
expand). Typically, contracting is faster and results in lower verification effort.
However, in case of missing or insufficient contracts, a method can only be proved
correct with method inlining.

To verify a piece of software automatically, a user must first identify what to
prove and has to set respective parameters accordingly (e.g., enabling detection of
integer overflows). In a second step, a user typically starts the verification process
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/∗@ public normal behavior
@ requires T > 0;
@ ensures \result < T;
@∗/

public /∗@ pure @∗/ int modT(int input, int T) {
return input % T;
}

Listing 1. Method Computing the Modulo of Integer Values

/∗@ public normal behavior
@ requires e != null;
@ ensures contains(e);
@ ensures collectionSize == \old(collectionSize) + 1;
@ ensures \result;
@ assignable elements;
@∗/

boolean add(/∗@nullable@∗/ Object e);

Listing 2. Method ArrayList.add(Object) Specified with Contracts in JML

with default parameters or the last used configuration to check whether they
suffice. In case of failure, oftentimes parameterization is changed and verification
is restarted in a trial-and-error manner. Moreover, as frequent changes to software
systems are the common case, reducing the verification effort is another important
requirement. Hence, having a better understanding of the control parameters
and providing better tool support would tremendously help inexperienced users
to apply deductive verification more successfully.

In the following, we depict two examples, where default parameters are either
insufficient or result in an increased verification effort. In Listing 1, we illustrate a
small example of a formally specified method modT(int, int) that gets two integer
values as input and computes the modulo between both. The precondition is
denoted by keyword requires and states that input parameter T must be greater
than 0. The postcondition is denoted by keyword ensures and states that the
return value will always be less than T given the precondition. Keyword \result
represents the return value. Notably, method modT(int, int) is not automatically
verifiable with KeY’s default parameters. As the example is small, implemen-
tation and specification are readily comprehensible and seemly fit together. In
particular, the reason is a parameter called Arithmetic treatment. The set of pos-
sible options is {Basic, DefOps, Model Search}, where Basic is the default value.
However, unlike DefOps, Basic is incapable of evaluating the modulo operator.
Starting from the default parameters, choosing DefOps as value for Arithmetic
treatment suffices to verify method modT(int, int). Although it is possible to
modify the postcondition to \result== input%T and verify it indeed with the
default parameters, such modifications are hard to find for real-world software
systems.

In Listing 2, we depict another example, where we specified method add(Object)
of class ArrayList in JML. Class ArrayList is part of the Collection-API and imple-
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ments the interface Collection. The precondition states that callers of add(Object)
can only rely on the postcondition when they provide an instantiated object.
The postcondition states that (a) the input object is indeed part of the list after
successful method execution, (b) the list’s size is incremented by one, and (c) the
return value is true. In a postcondition, keyword \old evaluates the expression
before method execution. Keyword assignable represents the framing condition
(i.e., a set of locations). Implicitly, locations excluded from the frame are not
allowed to be modified. The example also contains queries, which are side-effect
free methods that can be called in specifications (e.g., method contains(Object)).
Internally, method add(Object) calls method ensureCapacity(Object), which in-
creases the capacity of the respective list by one, if necessary. While the example
depicts a trivial contract, the verification effort with KeY’s default parameters
can be reduced from 33,748 proof steps to 13,328 proof steps when changing the
parameter Quantifier treatment from No Splits with Progs to No Splits.

Ideally, with assistance of extended tooling, a developer is capable of under-
standing the influence of various control parameters on provability and verifica-
tion effort. For instance, a recommendation system may suggest to change the
option of parameter Arithmetic treatment for the example depicted in Listing 1,
as only after carefully studying the tool tips in KeY it becomes apparent that
Arithmetic treatment ::Basic cannot evaluate the modulo operator.

3 Parameters of Deductive Verification with KeY

As already mentioned, KeY provides numerous parameters to control what and
how a piece of software is verified. In particular, there exist three categories of
parameters in KeY, namely search strategy options, taclet options, and general
options. Search strategy options control to what extent and in which order KeY
applies inference rules to automatically verify a method. Taclet options control
rather what to prove (e.g., integer overflow) and, thus, are typically fixed for a
verification target. General options enable the employment of an SMT solver or
allow for one step simplification, which combines single inference rules into one.

Although KeY’s automated proof strategy algorithm is configurable, the dif-
ficulty here is that it has grown over many years, with participation of many
different researchers and universities. The effect of some parameters on provabil-
ity and verification effort is therefore challenging to anticipate. We aim to provide
a better understanding on how specific parameters improve or impair provability
and verification effort. Based on our experience and observations combined with
studying the online documentation1, numerous publications [13, 15, 17, 18, 26, 27,
32, 42], all tool tips in KeY, and the KeY book [1], we formulated a total of 38
assumptions that we empirically evaluate by deriving 51 statistical hypotheses
in the next section. Related to Listing 1 and Listing 2, two examples for assump-
tions about the parameters Arithmetic treatment and Quantifier treatment with
respect to provability and verification effort are the following.

1 https://www.key-project.org/applications/program-verification/ and
http://i12www.ira.uka.de/key/download/quicktour/quicktour-2.0.zip
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Assumption 19 (Arithmetic Treatment - Basic and DefOps) If a specifica-
tion case is provable with option Basic, it is also provable with option DefOps.

Assumption 23 (Quantifier Treatment - Verification Effort) The verifi-
cation effort with option Free is at least as great as with option No Splits with Progs.
The verification effort with option No Splits with Progs is at least as great as with
option No Splits. The verification effort with option No Splits is at least as great
as with option None.

In Table 1, we give an overview on all our assumptions in a short from. The
first column denoted by Assumption represents an identifier for the respective
assumption and the second column denoted by Parameter represents the param-
eter which is subject to the assumption. For our significance tests, we only relate
two values of a parameter with each other (i.e., fourth and fifth column). That
is why there exist more experiments (i.e., third column) than assumptions. For
instance, Asumption 23 relates four values with each other in terms of verifica-
tion effort. The type of the depended variable is represented in the sixth column,
where provability is denoted by P and verification effort is denoted by VE. In
particular, for reasoning about the verification effort we always assume that a
verification target is provable with both subjected options. The last column rep-
resents whether one option improves, impairs, or does not influence the outcome.
For provability, Oa ≤ Ob means that Ob provides a higher chance of provability
that Oa. For verification effort, Oa ≤ Ob means than Ob leads to a greater effort
than Oa. The opposite meaning for each depended variable is denoted by ≥ and
no significant influence is denoted by <>.
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1 Stop At 1 Default Unclosable P <>

2 Stop At 2 Default Unclosable VE <>

3 One Step Simplification 3 Enabled Disabled P <>

4 One Step Simplification 4 Enabled Disabled VE ≤
5 Proof Splitting 5 Delayed Free P ≤
6 Proof Splitting 6 Delayed Free VE ≤

7 Proof Splitting
7 Off Free P ≤
8 Off Delayed P ≤

8 Proof Splitting
9 Off Free VE ≤
10 Off Delayed VE ≤

9 Loop Treatment 11 Invariant Loop Scope
Invariant

P ≤

10 Loop Treatment 12 Invariant Loop Scope
Invariant

VE ≥

11 Dependency Contracts without
accessible-Clauses

13 On Off P <>

12 Dependency Contracts without
accessible-Clauses

14 On Off VE <>

13 Query Treatment without queries
15 On Restricted P <>

16 On Off P <>

14 Query Treatment without queries
17 On Restricted VE <>

18 On Off VE <>

15 Query Treatment
19 Off Restricted P ≤
20 Resticted On P ≤
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16 Query Treatment 21 Restricted On VE <>

17 Expand Local Queries 22 On Off VE ≥
18 Expand Local Queries 23 On Off P ≥
19 Arithmetic Treatment 24 Basic DefOps P ≤
20 Arithmetic Treatment 25 DefOps ModelSearch P <>

21 Quantifier Treatment without
Quantifiers

26 None No Splits P <>

27 None No Splits
With Progs

P <>

28 None Free P <>

22 Quantifier Treatment without
Quantifiers

29 None No Splits VE <>

30 None No Splits
With Progs

VE <>

31 None Free VE <>

23 Quantifier Treatment

32 None No Splits P ≤
33 No Splits No Splits

With Progs
P ≤

34 No Splits
With Progs

Free P ≤

24 Quantifier Treatment

35 Free No Splits
With Progs

VE ≥

36 No Splits
With Progs

No Splits VE ≥

37 No Splits None VE ≥

25 Class Axiom Rule without Axioms
38 Free Delayed P <>

39 Free Off P <>

26 Class Axiom Rule without Axioms
40 Free Delayed VE <>

41 Free Off VE <>

27 Class Axiom Rule 52 Considered separately

28 Class Axiom Rule 53 Off Delayed P <>

29 Strings 42 On Off P ≥
30 Strings 43 On Off VE <>

31 BigInt 44 On Off P ≥
32 BigInt 45 On Off VE <>

33 IntegerSimplificationRules 46 Full Minimal P ≥
34 IntegerSimplificationRules 47 Full Minimal VE <>

35 Sequences 48 On Off P ≥
36 Sequences 49 On Off VE <>

37 MoreSeqRules 50 On Off P ≥
38 MoreSeqRules 51 On Off VE <>

Table 1: Investigated Parameters and Formulated Hypotheses

We considered Assumption 27 separately. The reason is that this assumption
does not compare options, but states that specification cases are not provable
based on particular conditions:

Assumption 27 (Class Axiom Rule) If a method writes onto a location on
the heap and there exists at least one class invariant that refers to this location,
then option Off is not sufficient to verify this method.

To summarize, we formulated a total of 38 assumptions on 47% of all available
parameters in KeY. In Figure 1, we depict all assumptions about parameters for
which we identified an order of their options with respect to higher and lower
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Asm. 4: One Step Simplification
Enabled Disabled

Asm. 6: Proof Splitting

Delayed Free

Asm. 8: Proof Splitting
Off Delayed / 

Free

Asm. 10: Loop Treatment
Loop Scope Invariant Invariant

Asm. 17: Expand local queries
On Off

Asm. 24: Quantifier Treatment

Fig. 1. Overview on Assumptions for Provability and Verification Effort

provability and verification effort. Confirmation of these assumptions helps in
prioritizing parameters for fine-tuning in terms of provability and verification
effort.

4 Empirical Evaluation of KeY’s Parameters

In a series of experiments, we evaluate the assumptions that we formulated in
the last section. All formulated assumptions, evaluation artifacts, results, and
the verification target can be found online.2

4.1 Experimental Setup

For our verification target, we formally specified parts of OpenJDK’s Collection-
API with JML. Reasons to focus on OpenJDK are threefold, namely (a) it
represents a widespread and highly applied real-world software, (b) there exists
already an informal specification in the JavaDocs comments that we utilize for
our formal specification, and (c) it is open-source and the only Java distribution
that allows us to add contracts and freely distribute it. A method can have more
than one contract (e.g., when different preconditions are connected with distinct
postconditions), which we refer to as specification cases in the following. In total,
our test study comprises 27 specification cases distributed over the interface
Collection and classes ArrayList, LinkList, Arrays, and Math, which we specified in

2 http://github.com/AlexanderKnueppel/UnderstandingParametersInKeY
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a complementary study [30]. To reduce bias in our experiments, we only included
specification cases that can be verified automatically with at least one parameter
configuration.

All assumptions refer either to provability or verification effort. For provabil-
ity, the dependent variable is whether a proof can be found automatically or
not. For verification effort, the dependent variable is the number of proof steps.
Independent variables are in both cases the current parameterization and the
specification cases.

While evaluating our assumptions on all possible parameter configurations
yields the most accurate result, it is impractical due to the combinatorial explo-
sion in the number of options. In total, there exist 1,990,656 valid parameter
configurations. To find a reasonable and meaningful number of configurations,
we apply pairwise interaction sampling [11], which requires that every pair of
options of different parameters is present at least once in the set of parameter
configurations. In essence, 1,084 configurations suffice. For assumptions that
compare at least two options related to the verification effort, we apply the non-
parametric paired Wilcoxon-Test [50]. The rationale for a non-parametric test
is that we cannot expect the distribution of the proof effort to be normal. For
assumptions that only consider one option (i.e., Assumption 27), we apply a
1-sample Wilcoxon-Test [50]. For assumptions that compare at least two values
related to provability, we apply a McNemar-Test [34]. For each experiment, we
define a significance level of 5% and we set the the maximal number of proof
nodes to 500,000, after which a verification task times out.

4.2 Empricial Evaluation of Assumptions

In Table 2, we summarize all experiments together with their statistical hy-
potheses, respective p-value, and outcome. Depending on the statistical test and
formulation of the assumption, we need to define and evaluate different kind
of statistical hypotheses. If the assumption states that there is no significant
difference, we cannot formulate a null hypothesis H0 that we would like to reject
in favor of the assumption. In this case, we use the assumption itself as the null
hypothesis and denote the hypothesis type as H0. The consequence is that we
can only reject or not reject our assumption, but never accept it. The preferred
outcome is not rejected, as otherwise our assumption would be indeed wrong. If
we can formulate a null hypothesis, we use the hypothesis type H≤ and H≥ for
assumptions that paraphrase at least or at most relationships between options
(e.g., Assumption 23) or simply HA otherwise. In this case, the preferred out-
come is accepted. The result is always not rejected, if we could not reject the null
hypothesis.

Parameter Assumption Experiment Hypothesis Type p-value Result

Stop At
1 1 H0 NA not rejected

2 2 H0 2, 488 ∗ 10−2 rejected

One Step Simplification
3 3 H0 NA not rejected

4 4 HA < 2, 2 ∗ 10−16 accepted

Proof Splitting
5 5 H≤ NA not rejected

6 6 HA 7, 7 ∗ 10−9 accepted
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Proof Splitting

7 H≤ 3, 252 ∗ 10−9 accepted*
7

8 H≤ 3, 252 ∗ 10−9 accepted*

9 HA 4, 147 ∗ 10−2 accepted
8

10 HA 6, 063 ∗ 10−1 not rejected

Loop Treatment
9 11 H0 NA not rejected

10 12 HA 9, 186 ∗ 10−3 accepted

Dependency Contracts
11 13 H0 NA not rejected

12 14 H0 1 not rejected

Query Treatment

13
15 H0 NA not rejected

16 H0 NA not rejected

14
17 H0 1, 422 ∗ 10−1 not rejected

18 H0 1 not rejected

15
19 H≤ 1, 573 ∗ 10−1 not rejected

20 H≤ NA not rejected

16 21 HA 1, 706 ∗ 10−1 not rejected

Expand Local Queries
17 22 HA 6, 601 ∗ 10−2 not rejected

18 23 H≤ 4, 55 ∗ 10−2 accepted*

Arithmetic Treatment
19 24 H≥ 9, 237 ∗ 10−13 accepted*

20 25 HA 3, 173 ∗ 10−1 not rejected

Quantifier Treatment

21 26–28 - - rejected

22 29–31 - - rejected

23

32 H≤ 4, 55 ∗ 10−2 accepted*

33 H≤ 1, 573 ∗ 10−1 not rejected

34 H≤ NA not rejected

35 HA 7, 186 ∗ 10−1 not rejected

24 36 HA 2, 869 ∗ 10−1 not rejected

37 HA 1, 562 ∗ 10−1 not rejected

Class Axiom Rules

25
38 H0 NA not rejected

39 H0 NA not rejected

26
40 H0 NA not rejected

41 H0 NA not rejected

27 52 H0 NA not rejected

28 53 H0 NA not rejected

Strings
29 42 H≥ NA not rejected

30 43 H0 1 not rejected

BigInt
31 44 H≥ NA not rejected

32 45 H0 1 not rejected

IntegerSimplificationRules
33 46 H≥ 5, 32 ∗ 10−4 accepted*

34 47 H0 8, 783 ∗ 10−1 not rejected

Sequences
35 48 H≥ NA not rejected

36 49 H0 2, 61 ∗ 10−1 not rejected

MoreSeqRules
37 50 H≥ NA accepted*

38 51 H0 3, 458 ∗ 10−1 not rejected

* after manual inspection

Table 2: Experimental Results with Accepted and Rejected Assumptions

Based on our results, we had to neglect two hypotheses, namely Assumption 21
and Assumption 22 stating that Quantifier treatment does not effect provability
and verification effort if the logical formula under verification is quantifier-free. We
discovered that each verification of a program in KeY works with quantification
internally as soon as assignable-clauses are used, even when no quantifiers are
used in the contracts. Furthermore, we had to reject Assumption 2 (i.e., parameter
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Hypothesis 7 Off
Proof Splitting Closed Open

Free
Closed 114 37
Open 0 142

Hypothesis 8 Off
Proof Splitting Closed Open

Delayed
Closed 116 37
Open 0 143

Hypothesis 23 On
Expand local queries Closed Open

Off
Closed 82 0
Open 4 105

Hypothesis 24 Basic
Query Treatment Closed Open

DefOps
Closed 119 51
Open 0 164

Hypothesis 32 None
Quantifier Treatment Closed Open

No Splits
Closed 132 4
Open 0 107

Hypothesis 46 Full
IntegerSimplificationRules Closed Open

Minimal
Closed 122 0
Open 12 151

Table 3. Contingency Tables of Manually Inspected Assumptions

Stop at does not influence the verification effort), as the statistical result was
significant (p-value: 2, 488 ∗ 10−2).

Four hypotheses about how the verification effort is influenced were accepted
(i.e., Hypothesis 4, 6, 9, and 12). Six additional assumptions about how provability
is influenced were accepted after an additional manual inspection (Hypothesis 7, 8,
23, 24, 32, 46). The reason for manual inspection is that the employed McNemar-
Test is always two-sided. This means that the direction of difference (i.e., positive
or negative) is not directly apparent. For the manual inspection, we use contin-
gency tables to decide whether the null hypothesis can indeed be rejected. In
Table 3, we depict the significant hypotheses, which were tested in the McNemar-
Test, with their contingency tables. A hypothesis can be accepted if the sum of
the first row is unequal to the sum of the first column, and analogously for the
second row and second column. Closed and Open refer to whether a verification
task was solved automatically or not. For instance, for Hypothesis 7, a total of
114 verification tasks of all verification tasks performed were solved automatically
with Proof splitting ::Free and Proof splitting ::Off, whereas 142 verification tasks
could not be solved automatically with either option.

One oddity is Assumption 37. 100% of the data correlates with its statement,
which is why we could not compute the p-value but accepted the hypothesis
nonetheless. In summary, three hypotheses were rejected and eleven hypotheses
were accepted. The remaining hypotheses could neither be rejected nor confirmed
and may have to be investigated in more detail and with additional verification
targets in future studies.

4.3 Learning a Parameter-Influence Model

Our assumptions only state which options do have or do not have an effect on
provability or verification effort. However, in terms of verification effort, it is also
interesting to know which options have a larger effect than others. While previous
assumptions help to exclude some options when optimizing the verification effort,
we are even interested in prioritizing options according to their impact.
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Fig. 2. Influence of Various Options on Verification Effort

Based on our experiments, we collected a considerable amount of data points,
which depict the verification effort with respect to different options. In a nutshell,
we decided to learn a parameter-influence model based on our data to draw these
relevant conclusions about which options have a larger impact on the verification
effort. To derive a general model, we use all of our specification cases as input
for machine-learning techniques. To this end, we employ SPLConqueror [45],
a framework which incorporates machine-learning techniques to measure the
influence of parameters on non-functional properties.

Our samples comprise only specification cases that are automatically verified,
as the number of proof steps in unclosed proofs is not meaningful. Moreover,
to increase our confidence in the performance-influence model, we applied cross-
validation to learn a total of ten models. To this end, we partitioned all verified
specification cases into ten subsets and used nine randomly chosen subsets to
train each of the ten models.

In Figure 2, we depict the results of our ten prediction models using boxplots
that relate numerous options with verification effort. Each boxplot presents a
factor that indicates whether an option improves (negative value) or impairs
(positive value) the verification effort. Notably, there exist numerous options that
were discarded in the training process of all ten models, as too few verification
tasks could be closed with them automatically. Therefore, we also omitted them
in Figure 2.

For most options, the median is close to zero, which is why we cannot rea-
son about their influence. Exceptions are Arithmetic treatment ::Basic, Class ax-
iom::Delayed, One Step Simplification::Disabled, Proof splitting ::Delayed, Proof
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splitting ::Free, Proof splitting ::Off, and Query treatment ::Restricted. With respect
to the median, we achieve the largest improvement with Proof splitting ::Off fol-
lowed by Arithmetic treatment ::Basic. Class axiom::Delayed leads to the largest
deterioration of the verification effort.

While we did not make any assumptions about options Arithmetic treat-
ment ::Basic and Class axiom::Delayed with respect to verification effort, Figure 2
reveals that Arithmetic treatment ::Basic almost always reduces the effort, whereas
Class axiom::Delayed always and significantly impairs it. Hence, we can derive
two new assumptions from our parameter-influence models. Nonetheless, these
assumptions are not derived from the literature, but based on our exploratory
study and have to be evaluated in future studies.

To briefly summarize, we identified seven options that reasonably impact the
verification effort. Our results allow us to prioritize these options when provability
is already ensured. However, we also discovered that Arithmetic treatment ::Basic
only insignificantly reduces the verification effort based on our specified extract
of OpenJDK and we previously confirmed that what is provable with Arith-
metic treatment ::Basic is also provable with Arithmetic treatment ::DefOps (cf.
Assumption 19). Hence, Arithmetic treatment ::DefOps may be the better choice
for all verification tasks. Notably, numerous of our assumptions coincides with
the models’ predictions (i.e., Assumption 4, 6, 8, and 16).

4.4 Threats to Validity

The measured verification effort may not be representative, as we decided to count
the proof nodes that KeY produces internally, which may vary in complexity
and execution time. One alternative is to measure the overall execution time
needed to verify a method. We decided against it, as execution timing depends
on numerous external factors, such as computing power, parallel processes, and
even the currently active virtual machine, whereas the number of proof nodes is
a reproducible measurement.

Our verification target (i.e., OpenJDK’s Collection API) may not comprise
enough representative specification cases, as we did not specify many loop in-
variants or complex algorithms. Nevertheless, we specified real-world Java code,
for which the specification effort was already tremendously high (i.e., it took us
numerous iterations and months to be amenable for automatic verification). For
all employed specification cases there exist at least one parameter configuration,
which suffices to automatically verify it. Moreover, we computed all results on
high-end servers over a period of two months. Specifying and verifying more
specification cases would take considerably longer.

We only formulated assumptions about parameters that are used in KeY
2.6.1. It is thus questionable whether our considerations can be generalized to
other verification systems. However, parameterization for non-expert users is also
challenging for other techniques and tools, such as model checking with Java
Pathfinder [46]. Furthermore, the chosen dependent variables (i.e., provability
and verification effort) are typically most meaningful for users and tool builders
of other verification systems, too.
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Fig. 3. Trade-off between Lower Verification Effort and Higher Provability

5 Suggestions for Users and Tool Builders

Our assumptions depict numerous options that a user should prioritize for tuning
to increase provability and verification effort. For instance, parameters that need
to be changed (i.e., differ from the default option) are Quantifier Treatment and
Proof splitting, which can be set to Free, and Arithmetic Treatment, which can
be set to DefOps. Moreover, Stop At should stay at Default and Expand Local
Queries should stay at On.

If provability is ensured, verification effort can be tweaked. Our hypotheses
state that One Step Simplification should be set to free,

Proof Splitting should be set to off, and Loop Treatment to Loop Scope Invariant.
In particular, the parameter-influence models illustrated that Proof Splitting::Off
decreases verification effort the most compared to all options. Moreover, the mod-
els revealed that Arithmetic Treatment and Class Axiom Rule have also an im-
pact. Arithmetic Treatment::Basic is preferred to Arithmetic Treatment::DefOps,
whereas Class Axiom Rule::Delayed should be avoided when possible. Neverthe-
less, our suggestion is to always start with Arithmetic Treatment::DefOps, as it
is often needed for provability and the gain in terms of verification effort seems
to be insignificant.

Based on our results, we can also identify parameters, whose options represent
a trade-off between higher provability and lower verification effort. In essence,
these parameters are Quantifier treatment, Proof splitting, and Arithmetic treat-
ment, which are illustrated in Figure 3. Whenever provability is ensured, these
options allow a user to decrease the verification effort.

Derived from our assumptions, some options have no measured impact on the
verification effort but influence provability. It is thus questionable why a user is
confronted with these options. A solution would be to provide different modes
for different requirements, such as a simple view for inexperienced users that
hides specific options. In particular, such a view may discard parameters BigInt,
IntegerSimplificationRules, Sequences, MoreSeqRules, One Step Simplification,
and Stop At for the mentioned reason.

Another suggestion for tool builders is to implement a recommendation sys-
tem for parameterization, which enhances user experience. KeY could provide
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hints to users to increase provability if a method cannot be verified. For in-
stance, option Proof Splitting::Off may replace option Proof Splitting::Free or
option IntegerSimplificationRules::Minimal may replace option IntegerSimplifica-
tionRules::Full. Moreover, KeY could try to automatically fine-tune parameters
during verification based on the very same technique.

6 Related Work

A survey on different languages for behavioral contracts was done by Hatcliff
et al. [21]. Besides KeY with its specialization on Java source code, there exist
alternative tools for deductive program verification of other languages, such as
Spec# [2], VCC [10] for verifying concurrent C, and the Why platform [49],
which comprises tools for the verification of WhyML, Java, and C programs [33,
16, 12]. For the purpose of this paper, we concentrated on KeY, as (a) it provides
numerous parameters, (b) it has an active community, and (c) we already gained
ample and practical experiences with it [24, 46–48].

Gouw et al. [14] investigated the correctness of OpenJDK’s TimSort with
KeY and discovered an exploitable bug in its implementation. They changed
parameterization even during the search for proofs, which is difficult as it requires
to find meaningful interruption points. This is an indicator that an advanced
understanding of the parameters is indispensable to verify real-world software
with deductive verification.

Another formal verification technique requiring an understanding about its
parameters is model checking. SPIN [25] is a software model checker that fo-
cuses on finite state machines and provides numerous configurable options and
optimizations, such as partial order reduction, state compressions, and bitstate
hashing. Java Pathfinder (JPF) [22] is a software model checker focusing on Java
source code. JPF can be parameterized and extended in a variety of ways and is
build upon a general and uniform configuration management. Configuring JPF
for efficiently finding defects for a given verification task needs a considerable
amount of knowledge about model checking.

Optimizing the selection of parameters of configurable programs is a widely
researched area. Benavides et al. [5] analyzed the performance of CSP, SAT, and
BDD solvers in finding a valid configuration. Ochoa et al. [37] transform a set
of configurations into a CSP solver to find a non-conflicting set of configurations
that adhere to particular business objectives, such as costs, time, and human
resources, of multiple stakeholders. Siegmund et al. [45] proposed SPL Conqueror,
which we used to learn our prediction models. Despite its initial connection to
software product lines, SPL Conqueror is used by various researchers to learn
models that predict the influence of non-functional properties in configurable
software [19, 20, 28, 38, 44]. We provide an additional use case for SPL Conqueror,
as we learned parameter-influence models to argue about how the selection of
particular options influence the verification effort.
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7 Conclusion

Our long-term goal is to make deductive verification accessible for mainstream
software developers. Although formal methods improved significantly over the
last decades, software developers still struggle to specify and verify even trivial
pieces of software. One often overlooked hurdle that inexperienced users face is
parameterization. While parameterization of formal method tools comes with the
promise to ease the process of automatic verification, we exhibited that setting
the right values for the ever growing amount of parameters is challenging.

In particular, our focus is on parameters of deductive verification, where we
used the verification system KeY 2.6.1 as an example.

We formulated a total of 38 assumptions how options in KeY improve or impair
provability and verification effort. We derived a total of 51 statistical hypotheses
and empirically measured the effect of different parameter configurations by
employing significance tests and machine-learning techniques.

Our empirical investigation is a stepping stone towards automated deductive
verification and better applicability for non-experts. Only three of our initial as-
sumptions had been invalidated. We identified options that should be prioritized
according to their impact on verification effort when provability is ensured. More-
over, we identified three parameters (i.e., Quantifier Treatment, Proof Splitting,
and Arithmetic Treatment), whose options represent a trade-off between prov-
ability and verification effort. Our insights provide valuable recommendations to
users on which parameters to prioritize given a verification requirement. More-
over, tool builders can utilize our insights to improve on the user experience. For
instance, implementing a recommendation system for parameters based on our
investigation would help users to verify software more easily. Furthermore, KeY
may hide insignificant parameters in specific verification scenarios or fine-tune
parameters automatically during proofs.

For future work, it is necessary to employ more verification targets to in-
vestigate the assumptions that could not be accepted. Moreover, it would be
interesting to implement a system for parameter recommendations that provides
even more fine-grained recommendations based on contracts and methods. Fur-
thermore, we only measured the effect of single values of parameters on provability
and verification effort. However, specific values of different parameters may in-
teract with each other and therefore have a larger or even reversed effect when
used in combination. Finally, investigating parameterization of other verification
tools is indispensable to help more industrial software developers to integrate
formal methods in their everyday software development tasks.
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for Highly Configurable Systems. In Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, pages 284–294. ACM, 2015.

45. N. Siegmund, M. Rosenmüller, M. Kuhlemann, C. Kästner, S. Apel, and G. Saake.
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