CaLcCHeck: A Proof Checker for Teaching the
“Logical Approach to Discrete Math”

Wolfram Kahl

McMaster University, Hamilton, Ontario, Canada, kahl@cas.mcmaster.ca

Abstract. For calculational proofs as they are propagated by Gries and
Schneider’s textbook classic “A Logical Approach to Discrete Math”
(LADM), automated proof checking is feasible, and can provide useful
feedback to students acquiring and practicing basic proof skills. We re-
port on the CALCCHECK system which implements a proof checker for a
mathematical language that resembles the rigorous but informal mathe-
matical style of LADM so closely that students very quickly recognise the
system, which provides them immediate feed-back, as not an obstacle,
but as an aid, and realise that the problem is finding proofs.

Students interact with this proof checker trough the “web application”
front-end CALCCHECKwe1, which provides some assistance for proof entry,
but intentionally no assistance for proof finding. Upon request, the sys-
tem displays, side-by-side with the student input, a version of that input
annotated with the results of checking each step for correctness.
CALCCHECKweb has now been used twice for teaching an LADM-based
second-year discrete mathematics course, and students have been solving
exercises and submitting assignments, midterms, and final exams on the
system — for examinations, there is the option to disable proof checking
and leave only syntax checking enabled. CALCCHECK also performed the
grading, with very limited human overriding necessary.

1 Introduction

The textbook “A Logical Approach to Discrete Math” (referred to as “LADM”)
by |Gries and Schneider| (1993) is a classic introduction to reasoning in the calcu-
lational style, which allows for rigorous-yet-readable proofs. |Gries and Schneider
(1995) establish a precise logical foundation for such calculations in propositional
logic, and |Gries| (1997) expands this also to predicate logic, so that we do not
need to dwell on these aspects in the current paper.

We present a mechanised theory language that has been designed to be as
close to the “informal” but rigorous language of LADM, and the proof checker
CaLcCHEck designed for supporting teaching based on LADM. A predecessor
system (Kahl, 2011) using ITEX-based interaction in the style of fuzz (Spivey,
2008)) only supported checking isolated calculations in a hard-coded LADM-
like expression language, and recognised only hard-coded theorem numbers in
unstructured hints; the current version of CALCCHECK admits user-defined oper-
ators, and has a completely new language for theories, structured proofs, and
structured calculation hints.

Since students still need to learn “what a proof is” and “how different proofs
can be”, we consciously do not offer any assistance in proof finding, but we turned
the proof checker into a web application, so that students can obtain instant
feedback for their proof attempts, all while writing proofs that are recognisably
in the style of the textbook.

For example, on p. 55 of LADM we find the following calculation (with
relatively detailed hints), reproduced here almost exactly (only with slightly
different spacing):

As an example, we prove theorem (3.44a): p A (-pV q) = pA ¢

pA(=pVa)
= (Golden rule (3.35), with ¢g:=-p v q)
p = -pVvVg =pVv-apVvyg
= (Excluded middle (3.28))
p = -pVgqg = trueVv q
= ((3.29), true v p = true)
p = =pVq = true
= (Identity of = (3.3))
P = -p Vv q
= ((332),pv-q =pvyg = p,
with p, ¢ = ¢,p — to eliminate operator -)
p=Epvag =g
= (Golden rule (3.35))
pPAgq

In CaLcCHEck, this theorem together with this proof can be entered as follows in
plain Unicode text:

Theorem (3.44) (3.44a) “Absorption”: p A (- p Vv Q) =pAg

Proof:

pA(=-pva)

(“Golden rule” (3.35) with '"q=-p v q)

pE-pvqg=sEpvVv-pVvag

(“Excluded middle” (3.28))

p=-pvqgq=truevaqg

((3.29) “true v p = true’)

p=-pvVvag=s true

(“Identity of =" (3.3) with '"g=p=-pvqg)

p=-pVvyq

((3.32) ' pvg=pvVv-q=p
with "p, g = q, p° — to eliminate operator =)

p=pvg=q
=(“Golden rule” (3.35))

pAQq
Except for the comment “— to eliminate operator -7, everything here is formal
content, and checked by the system. We will explain some of the details in
Sect. [2} It should however be obvious that the correspondence is very close, with
the small differences mostly due to either the fact that we are using a plain
text format, or to the requirement that the language needs to be unambiguously
parse-able for automatic checking to become feasible.

A student encountering only the theorem statement of this in their homework
might, if allowed to use two theorem references per hint, write the variant shown
below to the left in the CALCCHECKwep, interface in their web browser:

Theorem (3.44) (3.44a) “Absorption”: Theorem (3.44) (3.44a) “Absorption”:p A ("pV q)=p A q
pA(-pVvdg =pAg Proof:
P‘roof: () Proving pA(CpPVqQ=pAq:
pAal=pvag A(—pV
=(“Golden rule”) E(I‘)‘Go(ld&m(l]g”)
p=s-pvg=pvVv-=-pVvq A leChock: T « »
=(“Excluded middle”, “Zero of v”) — CalcCheck: Found (3.35) “Golden rule
p=-puvaq= true — CalcCheck: —OK
=(“Identity of =", (3.30)) p=CpVvq=pVv("pVq)
p=pvg=gq =(“Excluded middle”, “Zero of v*)
=(“Golden rule”) CalcCheck: Found (3.28) “Excluded middle”
pAg — CalcCheck: Found (3.29) “Zero of v

— CalcCheck: — OK
p=("pVq=true)
=(“Identity of =7, (3.30))
CalcCheck: Found (3.3) “Identity of =~
— CalcCheck: Found (3.30) “Identity of v”
— CalcCheck: Could not justify this step!
p=(PVvq=9q
=(“Golden rule”)
— CalcCheck: Found (3.35) “Golden rule”
— CalcCheck: —OK
pAq
— CalcCheck: 1 out of 4 steps not justified
— CalcCheck: Calculation matches goal — OK

After sending this to the server for checking, the box to the right will be filled
in by the system as shown in the screen-shot above, and the student will likely
notice that they mis-typed the number of theorem (3.32), one of the few nameless
theorems in LADM that are emphasised as worth remembering the number of.

We proceed with explaining the basics of the CaLcCHeck theory language in
Sect. 2] In Sect. [3] we strive to give an idea of how interaction with such the-
ories works in practice, before proceeding to more advanced language features:
In Sect. [4] we present the main hard-coded proof structuring principles, and in
Sect. [p| we discuss our treatment of quantification, substitution, and metavari-
ables. More complicated hints are covered in Sect. [6 and mechanisms for se-
lectively making reasoning features available in Sect. [7] Finally, we highlight
some aspects of the implementation in Sect. |8 and discuss some related work
in Sect. [@ Some additional documentation is available at the CALcCHECK home
page at |http://CalcCheck.McMaster.ca/.

2 The Basic CALcCHECK Language

A CaLcCHeck module consists of a sequence of top-level items (TLIs), which in-
clude declarations, axioms, theorems, and several kinds of administrative items,
as for example precedence declarations.

Precedence 40 for: A

Associating to the right: a_

Declaration: A : B - B - B

Axiom (3.35) “Golden rule”: pAg=p=qgq=pVv(q

http://CalcCheck.mcmaster.ca/

The language is layout-sensitive: Everything after the first line in a top-level
item, or inside other high-level syntactic constructs, needs to be indented at
least two spaces farther than the first line. The only exception to this is the
“Proof:” for a theorem, which starts in the same column as the theorem.

Instead of the word Theorem, one may alternatively use Lemma, Corollary,
Proposition, or Fact without any actual differences. (Technically, Axioms are
theorems that are just not allowed to have proof.) A theorem may have any
number of theorem numbers (always in parentheses and without spaces, such as
(3.35) above and (3.44a) in Sect. [1)) and theorem names (always in pretty double
quotes — as opposed to the plain double quotation mark character “"” — such
as ““Absorption”” in Sect. . The same names and numbers may be given to
several theorems, which implements the way LADM uses “Absorption (3.44)”
to refer to uses of either (3.44a) or (3.44b) or both.

A calculation, such as the proof body in Sect. [I} consists of a sequence of
expressions interleaved with calculation operators (in Sect. only “=") attached
to a pair of hint brackets “(...)" enclosing a hint. A hint is a sequence of hint
items separated by commas or “and” or both; so far, we only have seen theorem
references as hint items. (Comments, such as “— to eliminate operator =" in
Sect. |1}, are currently only supported inside hints.)

A theorem reference can be either a theorem name in pretty double quotes,
or a theorem number in parentheses, or an expression in back-ticks (‘...), or
several theorem references separated by white-space. In Sect.[I] we have seen a few
examples of the latter in the LADM calculation; they refer to the intersection of
the sets of theorems referred to by the constituent atomic theorem references. It is
configurable whether theorem references in the shape of expressions can be used
alone; this is forbidden by default: Learning the theorem names is, for the most
part, learning the vocabulary of the language of discrete math, and therefore
part of the learning objectives. (With this setting, a theorem with no names nor
numbers cannot be referred to, but may still be useful for documentation, for
example as a Fact.)

For the expression syntax, almost arbitrary sequences of printable Unicode
characters are legal identifiers, as in Agda (Norell, |2007), so that almost all
lexemes need to be separated by spaces. (Parentheses need no spaces.)

CaLcCHeck follows LADM in supporting conjunctional operators: The expres-
sion 1 <2¢€ S ¢ T is considered shorthand for (1 <2)A(2€ S)A(S c T). The set
of conjunctional operators and their precedence is not hard-coded; for emulating
LADM we write in our “prelude”:

Precedence 50 for:

=, # ., <, >, =, =, t , t , F . F |,

€ , ¢ , >, 3% , c , <, ¢ , ¢& , >, P, 2,2
Conjunctional:

=, # , <, >, =, =, t , £, F , F , |,

€ , ¢ , >3, 3%, c, <, ¢, ¢ > , » , =2 , 2

As could be seen already in the example at the beginning of this section, such
declarations of operator precedence and associating behaviour come before the
actual declarations of the operator: Like LADM, CaLcCHECK supports operator
overloading. Since operator precedence and associating behaviour have to be

declared before the actual Declarations, it is easy to enforce coherent precedences
also in larger developments. (In LADM, this declaration-independent precedence
table can be found on the inside cover.)

Underscores denote argument positions of mixfix operators. Arbitrary binary
infix operators can be used as calculation operators, that is, preceding hint brack-
ets (...). The calculation notation as such is considered conjunctional, which
enables us to use the non-conjunctional associative operator = as calculation
operator in the examples in Sect. [1} or, later, also implication.

Two of the steps in the first calculation specify substitutions to variables in
the referenced theorem with expressions (containing variables of the currently-
proven theorem), for example “with p,q := ¢,p” in the second-last step. This
is also allowed in CALCCHECK, except that the substitution is delimited by back-
ticks. We choose back-ticks because they are also used in MarkDown for embed-
ding code in prose — CALCCHECK allows MarkDown blocks as top-level items for
“literate theories” documentation. We us backticks for embedding expressions,
and other expression-level material such as substitutions, inside “higher-level
structures” in many places. In theorems and proofs, essentially the only places
where backticks are not used are after the colon in the theorem statement, and
outside the hints in calculations.

3 The CALCCHECKwe, Front-End

Since CALcCHEck source files are just plain Unicode text files, editing them using
any editor is certainly possible. However, the preferred way to edit CALcCHECK
source, and the only way currently offered to students, is via the “web applica-
tion” CALCCHECKweb, which can be accessed via websocket-capable web browsers.

A “notebook” style view is presented with a vertical sequence of “cells”.
MarkDown TLIs are shown in cells containing a single box, and “code cells”
with a horizontal split into two boxes (as already shown in the screenshot at the
end of Sect. . The left box is for code entry, and the right box is populated
with feedback from the server, which performs, upon request, syntax checking,
or syntax and proof checking combined. (For exams, proof checking can be dis-
abled.)

For text and code entry, CALCCHECKwep provides symbol input via mostly
ITEX-like escape sequences; typing a backslash triggers a pop-up displaying the
escape sequence typed so far, and the possible next characters. In experienced
use, this pop-up is irrelevant, and disappears when characters beyond the com-
pletion of the escape sequence are entered. Alternatively, upon a TAB key press,
this pop-up also displays a menu, as in the following screenshot:

=(“Definition of =" (3.60))

p A q\la
\la[mn]

Theorem ((g=p) =p

Proof: (\langle
A \lambda

Similar completion is provided for theorem names, after typing a prefix (of at
least length three) of a theorem name preceded by either pretty opening double
quotes ‘"’ or the simple double-quote character ‘"’, hitting the TAB key brings
up a theorem name completion menu containing only theorem names currently
in scope, but intentionally not filtered in any other way.

Support for indentation currently provided includes toggling display of initial
spaces as “visible space” “.”, and key bindings for increasing or decreasing the
indentation of whole blocks.

4 Structured Proofs

Calculations, as shown in Sect. [[] are just one kind of proof supported by
CaLcCHeck. LADM emphasises the use of axioms (and theorems) in calcula-
tions over other inference rules, so not many other proof structures are needed.
Besides calculations, the other options for proof in CALcCHECK (explained in more
detail below) are:

— “By hint” for discharging simple proof obligations,

— “Assuming ‘expression’:” corresponding to implication introduction,

— “By cases: ‘expressiony’,. .., 'expression,'” for proofs by case analysis,

— “By induction on ‘var : type':” for proofs by induction,

— “For any ‘var : type':”

— “Using hint:” for turning theorems into inference rules, see Sect.
With these (nestable) proof structures, we essentially formalise the slightly more
informal practices of LADM, which, in Chapt. 4, introduces what appears to be
formal syntax for proofs by cases, and for proofs of implications by assuming the
antecedents. However, in actual later LADM proofs, this syntax is typically not
used. For example, on p. 305 we find some cases listed in a way that does not
easily correspond to the pattern in LADM Chapt. 4, and the assumption of the
antecedent is almost hidden in the surrounding prose that replaces the explicit
proof structure. We can emulate the calculation there very closely again, and we
embed it into a fully formal proof that is, in our opinion, at least as clear and
readable as the arrangement in LADM:

corresponding to V-introduction,

Theorem (15.34) “Positivity of squares”: b # 0 = pos (b - b)

Proof:
Assuming ‘b = 0':
By cases: "pos b", - pos b’

Completeness: By “Excluded middle”
Case "pos b':

By “Positivity under
Case - pos b':

.

with assumption “pos b"

pos (b - b)
=((15.23) -a - -b=a-b)
pos ((- b) - (- b))

«(“Positivity under -"” (15.31))
pos (- b) A pos (- b)

=(“Idempotency of A", “Double negation”)
- = pos (- b)

=(“Positivity under unary minus” (15.33) with assumption b # 0")
- pos b — This is Assumption "= pos b"

Our syntax for assuming the antecedent should be self-explaining — the keyword
assumption for producing hint items referring to an assumption (which may also
be given a local theorem name in double quotes) may also be written Assumption.
The assumed expression is again delimited by backticks.

For proof by cases, we follow the pattern proposed in LADM Chapt. 4, except
that we insist on a proof of Completeness of the list of patterns to be explicitly
supplied. In the case above, we discharge this proof obligation via By “Excluded
middle” — this is another variant of proofs, where just a hint (that is, a sequence
of hint items) is provided after the keyword By. The expression of the current
Case is available in the proof via the Assumption keyword.

At the end of the calculation above, we have “— This is ...”; this is used in
LADM without the words “This is” as a “formal comment” indicating that the
last expression in the calculation is the indicated assumption, or, more frequently,
an instance of the indicated theorem. Later, (Gries and Schneider| (1995) explain
this via the inference rule “Equanimity”. For CALcCHECK, such “— Thisis ...”
clauses are not considered comments at all, but are part of the calculation syntax,
and require exactly this phrasing. As in LADM, this can be used at either end of
a calculation. Several further details of the above proof of "Positivity of squares”
will be explained below in sections [] and [7}

The first proof structure beyond calculations that is introduced in the course
is actually successor-based natural induction, where natural numbers have been
introduced inductively from zero “0” and the successor operator “S_”, and the
inductive definitions for operations have been provided as sequences of axioms,
as the following for subtraction:

Declaration: - : N->N - N

Axiom “Subtraction from zero”: 0 -n =0
Axiom “Subtraction of zero from successor”: (Sm)y -0 =Sm
Axiom “Subtraction of successor from successor”: (Sm) - (Sn) =m-n

With this, even nested induction proofs such as the following become easy to
produce for the students:

Theorem “Subtraction after addition”: (m + n) - n=m
Proof:
By induction on "m : N':
Base case:
(0 +n) -n
=(“Identity of +")
n-n
=(“Self-cancellation of subtraction”)
0
Induction step "(Sm+n) - n=Sm:
By induction on "n : N':

Base case:
(Sm+0) -0
=(“Identity of +")
Sm-0

=(“Subtraction of zero from successor”)
Sm

Induction step:
(Sm+5Sn)-Sn
=(“Definition of +")
S(m+Sn)-Sn
=(“Subtraction of successor from successor”)
(m+Sn) -n
=(“Adding the successor”, “Definition of +")
(Sm+n) -n
=(Induction hypothesis "(Sm +n) - n=5Sm)
Sm
The proof goals for base case and induction step may optionally be made explicit
— we show this here only for the outer induction step. In nested induction steps
where several induction hypotheses are available, the system currently requires
the keyword phrase Induction hypothesis to be accompanied by the chosen
induction hypothesis, but only for pedagogical reasons.

Currently, besides natural induction, also induction on sequences is supported
by this hard-coded By induction on proof format; the ‘'m : N' after this keyword
phrase above indicates the induction variable and its type, which selects the
induction principle, if one is implemented and activated for that type.

5 Quantification, Substitution, Metavariables

For quantification, CALcCHEck follows the spirit of LADM, but in the concrete
syntax is closer to the Z notation (Spiveyl [1989): The general pattern of quanti-
fied expressions is “bigOp varDecls | rangePredicate o body”, and we have, for
example:

(X i] 0<i<beql) = 0l+11+2!+31+4!
(VE,n:N| k<n<3 e k-n<b) 0-1<5A0-2<5A1-2<5

The range predicate, when omitted together with the , defaults to true.
As in Z, parentheses around quantifications can be omitted, and the scope of
the variable binding then extends “as far as syntactically possible”. (This a a
conscious notational departure from LADM, where parentheses around quantifi-
cations are compulsory, and “” is used instead of “e”.) In another notational
departure, we denote function application by (typically space-separated) juxta-
position, “f z”, instead of “f.z” for atomic arguments in LADM.

The following proof is for a stronger variant of the LADM theorem (8.22)
“Change of dummy”, which both LADM and |Gries| (1997) show without the
range predicate R in the assumption (but when LADM refers to (8.22) later, in
chapters 12 and 17, it actually always would have to use our variant). Here, as
in LADM, “x” is used as a metavariable for a quantification operator, that is, a
symmetric and associative binary operator (usually equipped with an identity).

“ I R

Theorem (8.22a) “Change of restricted dummy”:
(VX TR (Yyex="Ffy = y=gx))
= (*x I R*P)=(xy | Rx=fFfy]ePlx="fyl])

Proof:
Assuming “Inverse” 'Y x | ReVy e x=fy = y=g9gx:
(xy I R[Ix = f y] » P[x
=(“One-point rule for x")
(*xy l RiIx=Ffy] « (x x| x=7Ffy«P))
=(“Nesting for x")
(» y, x I R[x fylax=f~FfyeP)
=(Substitution
(» y, x I R[x
=(“Replacement”)
(xy, X | RiIx = z][z=x] A x =Ty « P)
=(Substitution)
(xy, x l RaAx="FfyP)
=(“Dummy list permutation for x")
(* X, Yyl Rax="FfyeP)
=(“Nesting for x”)
(x X IR (xy |l x=fFfy-eP))
=(“Range replacement in nested x” with assumption “Inverse”)
(* X TR (xyly=gx-=«P))
=(“One-point rule for x")
(x x I R+ P[y =g x])
=(Substitution)
(* x 1 R« P)

1
-
< <
=

i~ i *

z]l[z fylanx="Ffy«P)

LADM and |Gries (1997 both refrain from formalising the assumption “f has an
inverse” as part of the theorem statement, since they present all general quan-
tification theorems before introducing universal quantification. With a different
theory organisation, we introduce universal quantification as instance of a re-
stricted theory of general quantification, and then use universal quantification
to state and prove theorems like this about general quantification which mention
universal quantification.

This “Change of restricted dummy” theorem is really a metatheorem: Its state-
ment contains metavariables z and y for different variables, and P and R for
expressions that may have free occurrences of z, and it also contains explicit sub-
stitutions. |Gries| (1997) calls such proofs of metatheorems using metatheorems
“schematic proofs” E| The fact that P and R must not have free occurrences of y
is expressed by Gries and Schneider as the proviso “=occurs(‘y’, ‘P, R’)” in the
metalanguage.

CaLcCHeck takes a slightly different approach to metavariables: For consis-
tency with LADM, we keep the inference rule substitution, and use only the
substitution notation E[v := G]. Once quantification is introduced, we empha-
sise that substitution binds variables, too (where only occurrences of v in E are
bound in E[v := G]), and application of substitution may need to rename bound

!Gries| (1997) restricts metavariables to be named by single upper-case letters, (non-
meta-)variables by single lower-case letters. |Gries| (1997) then distinguishes between
“uniform substitution” written E[V := G] for metavariables V, and “textual sub-
stitution” written Eg for variables v, where only the latter renames variable binders
to avoid capture of free variables of G. However, the use of “R[z := f y]” in the
statement and proof of (8.22) there is then unclear — it will have to be understood
as “textual substitution” since otherwise y might be captured by binders in R.

variables (in F) to avoid capture of free (in G) variables. Expression equality in
CaLcCHECK is only up to renaming of bound variables; students are encouraged
to use “Reflexivity of =" calculation steps to document such renaming.

When introducing quantification and variable binding, we (re-)explain ax-
iom schemas, and emphasise that metavariables are instantiated (and not sub-
stituted), but do not provide notation for that. (Instantiation of metavariables
does not rename binders and therefore can capture variables that are free in the
instantiating expression. Such capture is the point of metavariables — in (8.22a)
above, R is meant to be instantiated with expression containing free occurences
of x.)

In a theorem statement, metavariables for expressions are defined (and recog-
nised by CALcCHECK) as looking like free variables in the scope of a variable
binder. Metavariables with occurrences in scope of different sets of variable
binders may only be instantiated with expressions in which only the intersection
of all these binders occurs free. Bound variables that are allowed to occur in
metavariables for expressions have to be considered metavariables for variables,
and matched consistently. Thus, the “-occurs” provisos can be derived from
the theorem statement; for the theorem above, if metavariable reporting (by de-
fault disabled) and proviso reporting are both enabled, CALCCHECK generates the
following output:

Theorem (8.22a) “Change of restricted dummy”: (Vx | Re(Vyex=fy=y=gx)
)= (kx| ReP)=(ky | Rlx=fy]*P[x=1y])

— CalcCheck: Metavariables: P=P[[x)] ,R=R[x] ,f=f[y] ,g=¢gl x,y)

— CalcCheck: Proviso: ~occurs('x", "), ~occurs('y", 'P,R")

The proof above contains three steps where the hint is the keyword Substitution;
this hint item is used for performing substitutions. For both Substitution steps
here, it is necessary that —~occurs(‘z’, ‘R’); for such new variable binders, this is
handled automatically by remembering also which variables are allowed to occur
in R, as shown in the “Metavariables” information report above.

Above we used “Replacement” (3.84a): e=f AP[z:=¢€e] = e=f AP[z:=f]
(called “Substitution” in LADM). This is another example for a metatheorem;
its statement involves substitution, and the metavariables z for variables and P
for expressions that may have free occurrences of z. Since CALcCHECK currently
does not use second-order matching, the reverse Substitution step preceding the
application of “Replacement” (3.84a) is necessary for establishing the matching
of the metavariables z and P, here to the variable z and the expression R[z := z]
respectively. The second Substitution could be merged with the “Replacement”
(3.84a) step, but has been left separate here for readability.

Note that “Dummy list permutation” is a quantification axiom missing from
LADM and also not mentioned by |Gries| (1997)), but used implicitly in the proof
of (8.22) in both places.

The proof above is almost identical to the proof for (8.22) of LADM, except
for the step using the assumption “Inverse”, where the proof for (8.22) only has
to invoke that assumption. In the proof above, we use the following lemma:

Theorem “Range replacement in nested x":
(VX1 R=< (Vy -« Q =Q2))
= (xXx 1R (xy1Q *P))=(xx1R=e(xy]Q *P))
Proof:
VX|Re (Vy-«Q =Q2)
=(“Nesting for V")
VXxeVy]|]R-e*Q1 =Q2
(“Trading for V")
VXxeVYye*sR= (0 =0Q2)
=((3.62))
VXxeVye*RAQ =RANQ2
={ Subproof:
Assuming “A” 'V x * Vy « RA Q1 =R AQ2":
(*x x I Re (xy |l Q «P))
=(“Nesting for ")
(X, Y1 RAQ1 = P)
=(Assumption “A")
(x X, Y1 RAnQz2 * P)
=(“Nesting for x")
(xx 1R (xy |l Q «P))

)

(X IR (xy 1 Q *P))=(xx]Re(xylQ*P))
In the first step here, two different rules that are both called “Nesting for V"
are applied in sequence, and in opposite directions. The last hint here contains
a single Subproof hint item; inside such a subproof, any kind of proof can be
written.

The necessity to distinguish metavariables for variables becomes most obvious
from considering theorem (11.7) of LADM (Gries| (1997) does not cover set
comprehension):

Theorem (11.7) (11.7x) “Simple Membership”: x €{x | P} =P
— CalcCheck: Metavariables: P =P[x)

If one were to consider the left-most x here as a normal free variable, then the
rule for deriving provisos given above would imply that x must not occur free in
P, since the right-most P does not occur in the scope of a binder for x.

It is useful to consider (11.7) in the context of metatheorem (9.16) of LADM
and [Gries| (1997): “P is a theorem iff (Vz o P) is a theorem.” In the universally
quantified version, both occurrences of P are within scope of a binder for x, so
no proviso is derived:

Theorem (11.7) (11.7V) “Simple Membership”: (Vx *xE {x | P} =P)

— CalcCheck: Metavariables: P =P[x)
This is really a theorem — in our development, we actually prove this version
first, and then obtain (11.7x) via instantiation.

By classifying x in (11.7x) as a metavariable for variables, we identify the
“free-looking” occurrence of x as a binder in the scope of which the right-
most P occurs. The effect of this approach is to let CaLcCHECK derive the same
metavariable occurrence and -occurs provisos for (11.7x) as for (11.7V), com-
patible with (9.16).

Note, however, that (9.16) talks about theorems, not metatheorems (or the-
orem schemas). A version that would make sense for metatheorems would need

to add the meta-proviso that the same provisos are derived. As a case in point,
consider the one-point rule:
Axiom (8.14) “One-point rule” “One-point rule for V”: (V x | x=E +P)=P[x := E]
— CalcCheck: Metavariables: E=E[)] ,P=P[x)
— CalcCheck: Proviso: —~occurs('x", 'E")

Naively applying (9.16) to that would yield the following, where E always occurs
in scope of a binder for x:
Axiom “Spuriously-quantified one-point rule for V”: (V x * (Vx | x=E*P)=P[x =E])
— CalcCheck: Metavariables: E=E[x)] ,P=P[x]

This “axiom”-schema however is invalid for instantiations where x occurs free
in E — just try to instantiate P with (z <4) and E with (5-).

6 Combined Hint Items

While in Sect. the keyword “with” appeared followed by substitutions, in
“Positivity of squares” in Sect. [] as well as in “Change of restricted dummy” in
Sect. |5 there are occurrences of the shape “hi; with hiy” for two hint items hi;
and hiy. This is the simplest case of the following pattern:

hiy with hiy and ... and hi,
In CaLcCHEeck, this pattern has the two formal interpretations explained in sec-
tions and together covering probably most of the informal uses of the
word “with” in LADM.

6.1 Conditional Rewriting

If among the theorems, assumptions, and induction hypotheses referred to by hi;
there is one that can be seen as an implication with an equality (or equivalence)
as consequent,
Ay == A, = L=R,
then this is used as a conditional rewrite rule: If rewriting using L — R succeeds
with substitution o, then CALCCHECK attempts to prove the antecedents A;o, ...,
Ao using the hint items hiz, ..., hi,.
The with uses in sections [and [B] all are of this kind.

6.2 Rule Transformation

A different way the hint item construct above can be used is by extracting
rewriting rules from hiy to hi, and using these to rewrite the theorems referenced
by hii. The results of that rewriting are then used to prove the goal of the hint.
The following proof contains two such cases:
Theorem “Positivity”: pos a=a # 0 A - pos (- a)
Proof:
a#0A-pos (-a)
=(“Positivity under unary minus” (15.33) with (3.62))
a#0 A pos a
=(“Positive implies non-zero” with (3.60))
pos a

The two instances of hi; here are:

Axiom (15.33) “Positivity under unary minus”:
b#0 = (posb=-pos (-Db))

Theorem “Positive implies non-zero”: pos a = a # 0
These are rewritten using:

Theorem (3.60) “Definition of =”": p=qg=pAq=p

Theorem (3.62): p=(qQ=r) =pAq=pATr

In both cases, this rewriting produces precisely what is needed for the respective
calculation step.

6.3 Theorems as Proof Methods — “Using”

LADM contains, on p. 80, an example for the “proof method” proof by contrapos-
itive, almost completely in prose, with only a two-step calculation corresponding
to the third and fourth steps in the calculation part of our fully formal proof:

Theorem “Example for use of Contrapositive”:
X+y=2 = xzlvy=1
Proof:
Using “Contrapositive”:
Subproof for "= (x 21vy=1) = = (x+y=2)":
- (xzlvy=1)
=(“De Morgan”)
- (x=1) A= (y=1)
=(“Complement of <” with (3.14))
Xx<lay<l
=(“<-Monotonicity of +")
XxX+y<1l+1
=(Evaluation)
X+y<2
=(“Complement of <” with (3.14))
- (x+y=2)

The general pattern for keyword Using is with a hint item and followed by an
indented sequence of subproofs:
Using hiy:
sp1
SPn
Technically, this is considered as syntactic sugar for a single-hint-item proof
using a combined hint item in the pattern explained above:
By hiy with sp; and ... and sp,

However, using the By shape would be quite awkward to write for larger sub-

proofs.
Pragmatically, one rather tends to consider “Using” as a proof method gen-
erator — mutual implication, antisymmetry laws, set extensionality, indirect

equality, etc. all are frequently used to produce readable proofs in this way.
Since hi; can again be a combined hint item, the “Using” proof pattern intro-
duces considerable flexibility.

“Using” also liberates the user from the restriction to the induction principles
hard-coded for “By induction on”: Given, for example the induction principle for
sequences with empty sequence ¢ and list “cons” operator —*_ (as in LADM):

Axiom “Induction over sequences”:
P[xs = ¢]
> (V xs : Seq A| P+ (Vx : A< P[xs =x <« xs]))
= (V xs : Seq A * P)

The example proof below Using this induction principle also is the first proof
we show containing our construct for V-introduction: “For any ‘vs': proof-for-P”
proves V vs @ P and “For any ‘vs' satisfying ‘R': proof-for-P” provesVvs | Re P
while proof-for-P may use assumption R.

Theorem (13.7) “Tail is different”:
VXxs :SeqAe*VXxX:Ae* X < XS #XS
Proof:
Using “Induction over sequences”:
Subproof for 'V x : A * X <« ¢ # ¢ :
For any “x : A': By “Cons is not empty”
Subproof for 'V xs : Seq Al (V x : A ¢ X « XS # XS)
e (Vz:Ae (VX:AeX<2Z<XS#Z<XS)) :
For any “xs : Seq A°
satisfying “Ind. Hyp.” “(V x : A * X <« XS # XS) :
NN A

For any "z : A", "X :
X 9« Z < XS #2Z <« XS
=(“Definition of #”, “Injectivity of <")
- (X =2 N 2Z <« XS = XS)
<(“De Morgan”, “Weakening”, “Definition of =")
Z « Xs # Xs — This is Assumption “Ind. Hyp.”

7 Activation of Features

The CaLcCHEck language has actually no hard-coded operators — everything
can be introduced by the user via “Declaration” TLIs.

To make available functionality of the proof checker that depends on certain
language elements, it is necessary to “Register” operators for built-in operators,
and to “Activate” theorems on which built-in functionality relies. For example:

— Equality _=_ and equivalence _=_ need to be registered to become available
for extraction of equations for rewriting.

— true needs to be registered in particular for making it possible to omit
“— This is (3.4)” at the end of an equivalence calculation ending in true.

— Activation of associativity and symmetry (commutativity) properties is nec-
essary for using the internal AC representation and AC matching for the
respective operators, which enables the reasoning up to symmetry and asso-

ciativity that LADM also adapts throughout.

These first three items are already required for LADM Chapter 3, but only these
— to force students to produce proofs conforming to the setting of Chapter 3,
the remaining features need to be turned off.

LADM Chapter 4 “Relaxing the Proof Style” introduces the structured proof

mechanisms described in Sect. [] together with a number of other relaxations,
that are all justified in terms of Chapter-3-style proofs. Correspondingly,
CALcCHECK needs to be made aware of these justifications:

Implication needs to be registered for Assuming and conditional rewriting
(Sect. to become available.

Registration of conjunction is required in particular for implicit use of "Shunt-
ing” in conditional rewriting, and, as the operator underlying universal quan-
tification, also for implicit use of “Instantiation” (i.e., V-elimination) in rule
extraction from hint items.

Transitivity of equality and equivalence is built-in, and also transitivity of
equality with other operators, as an instance of Leibniz. For two or more
non-equality operators to be accepted as calculation operators in the same
calculation, the corresponding transitivity law needs to be activated.

For equality (or equivalence) calculations to be accepted for example when
proving an implication, the relevant reflexivity law needs to be activated.
Activation of converse laws, such as (3.58) “Consequence”: p<gq = p=gq,
makes mentioning their use superfluous.

Activation of monotonicity and antitonicity laws makes it possible to use a
style similar to that explained by (Gries, 1997, Sect. 4.1), but not restricted
to formulae: Writing “Monotonicity with ...” respectively “Antitonicity with
...”7 then replaces the deeply-nested with-cascades of monotonicity laws that
otherwise are frequently necessary.

Beyond LADM Chapter 4, some further features also depend on declared corre-
spondence of user-defined operators with built-in constructors:

8

Disjunction is required for representing set enumerations {1,2} as set com-
prehensions {z | z=1 v z=2}.

Arithmetic operators like _+_, -, - and Boolean operators including
also —_ need to be registered for the keyword hint item Evaluation, seen in
the first proof in Sect. [6.3] to be able to evaluate ground expressions.

The built-in induction mechanisms also require registration of the respective
operators.

Implementation Aspects

CaALcCHECK is implemented in Haskell, with CALCCHECKwe}, using Haste by |[Ekblad
(2016) to compile the client part from Haskell to JavaScript running in the user’s
web browser, and to generate the client server communication.

The core of proof checking in CaLcCHECK consists in translating hints into

rewrite rules, and attempting to confirm the correctness of individual proof steps

by

rewriting. For a calculation step “e; op(hint) ey”, the system will use the

rewriting rules derived from hint to search for a common reduct of e; and ey
if op is an equality operator, and otherwise (respectively alternatively) attempt

to rewrite “e; op e” to true. Rewriting is mainly performed in depth-limited
breadth-first search.

Since the previous, ITEX-based version of CaLcCHeck (Kahll [2011)), the term
datastructure used in the AC-enabled rewriting engine has seen the addition of
binding structures essentially along the lines of |Talcott| (1993)), and also a sepa-
rate representation of metavariables. As mentioned before, both syntax checking
and proof checking run on the server; each time a user triggers checking from a
cell, all preceding cells are sent along, since they might contain changes that af-
fect even parsing, and also changes in the theorem names they provide. For each
code cell, the theorem names it provides are sent back to the client in addition
to the visible feedback, and used for theorem name completion.

For typical use, in particular in the teaching context, CALcCHECK “notebooks”
consist of two parts: A “prefix” that is preloaded once by the server process,
and contains all the theory imports, declarations, local theorems, activations,
etc., that should be available everywhere in the user view, and a “suffix” that
is displayed in the user’s browser as described in Sect. In suffixes, import
declarations and certain other features (configurable) are not available, so that
the only interaction with the server file system is saving the user state of the suffix
into files with server-generated names; saving is restricted to users registered via
the local learning management system.

Each attempt to use a hint for justifying some goal (in particular calcula-
tion steps) is guarded by a time-out, and for grading, longer time-outs are used.
During the recent final exam written on 12 CALCCHECKwe, notebook server pro-
cesses by 199 students, the 6-core machine acting as server has been observed
to occasionally reach loads beyond the equivalent of one core being 100% busy,
peaking at 1.4 cores.

9 Discussion of Related Work

A system with apparently quite similar goals is Lurch (Carter and Monks) 2017)),
which lets users use conventional mathematical prose for the top-level structure
of proofs, with embedded mathematical formulae marked up (unobtrusively for
the prose reader) with their roles in the mathematical development. Although
this may in a certain sense be perceived to be “nicer”, it is mainly nicer in the
sense of supporting students of mathematics who will be expected to confidently
write mathematical prose that will not normally be expected to be subjected to
mechanised checking. The goal of CALcCHECk however is different: It is targeting
future computer scientists and software professionals, who will need to be ready
to productively use formal specification languages and automated proof systems
of many different kinds, whether these are full-fledged proof assistants like Coq or
Isabelle, or model checkers or automated provers like Spin or Prover9, or “mod-
elling languages” like JML. For use of all these systems, precise understanding of
issues of scope and variable binding is needed; this is frequently “hand-waived”
in conventional mathematical prose. By offering a precise concept of what a
proof is, and by being able to force students to produce proofs with varying

levels of detail, CALcCHECK also strives to equip students with a mindset from
which understanding the limitations of other verification systems will be easier,
so that they will be better positioned to use them productively.

A flavour of calculational proof presentation that is slightly different from
LADM are the “structured derivations” of |Backl (2010). These share with
CaLcCHEck the goal of readable fully formal, mechanically checkable proofs;
MathEdit by [Back et al.| (2007) appears to have been a first attempt to pro-
vide tool support for this.

10 Conclusion

The proofs we arrive at are perhaps not always the ultimate in the elegance
the calculational style is famous for, but they are coming close, and by virtue
of providing formal syntax for useful kinds of structured proofs, frequently it is
actually easier to achieve elegance in CALCCHEcCK than in the calculational style
embedded in conventional mathematical prose for larger-scale proof structure.
Many students showed significant skills in finding quite elegant and widely dif-
ferent proofs even in exam settings, and student feedback about CALcCHECK has
been almost unanimously positive.

References

R.-J. Back. Structured derivations: A unified proof style for teaching mathe-
matics. Formal Aspects of Computing, 22(5):629-661, 2010. doi: 10.1007/
s00165-009-0136-5.

R.-J. Back, V. Bos, J. Eriksson. MathEdit: Tool support for structured calcula-
tional proofs. TUCS Tech. Rep. 854, Turku Centre for Comp. Sci., 2007.

N. C. Carter, K. G. Monks. A web-based toolkit for mathematical word pro-
cessing applications with semantics. In H. Geuvers et al. (eds.), Intelligent
Computer Mathematics, CICM 2017, pp. 272-291, Cham, 2017. Springer Intl.
doi: 10.1007/978-3-319-62075-6_19.

A. Ekblad. High-performance client-side web applications through Haskell
EDSLs. In G. Mainland (ed.), Proc. 9th Intl. Symp. on Haskell, Haskell 2016,
pp. 62-73. ACM, 2016. doi: 10.1145/2976002.2976015.

D. Gries. Foundations for calculational logic. In M. Broy, B. Schieder (eds.),
Mathematical Methods in Program Development, pp. 83—-126, Berlin, Heidel-
berg, 1997. Springer Berlin Heidelberg. doi: 10.1007/978-3-642-60858-2_16.

D. Gries, F. B. Schneider. A Logical Approach to Discrete Math. Monographs
in Computer Science. Springer, 1993. doi: 10.1007/978-1-4757-3837-7.

D. Gries, F. B. Schneider. Equational propositional logic. Inform. Process. Lett.,
53:145-152, 1995. |doi: 10.1016,/0020-0190(94)00198-8.

W. Kahl. The teaching tool CALcCHEck: A proof-checker for Gries and Schneider’s
“Logical Approach to Discrete Math”. In J.-P. Jouannaud, Z. Shao (eds.),
Certified Programs and Proofs, CPP 2011, LNCS, vol. 7086, pp. 216-230.
Springer, 2011. doi: 10.1007/978-3-642-25379-9_17.

https://doi.org/10.1007/s00165-009-0136-5
https://doi.org/10.1007/s00165-009-0136-5
https://doi.org/10.1007/978-3-319-62075-6_19
https://doi.org/10.1145/2976002.2976015
https://doi.org/10.1007/978-3-642-60858-2_16
https://doi.org/10.1007/978-1-4757-3837-7
https://doi.org/10.1016/0020-0190(94)00198-8
https://doi.org/10.1007/978-3-642-25379-9_17

U. Norell. Towards a Practical Programming Language Based on Dependent
Type Theory. PhD thesis, Dept. Comp. Sci. and Eng., Chalmers Univ. of
Technology, 2007. See also http://wiki.portal.chalmers.se/agda/pmwiki.php.

J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International
Series in Computer Science. Prentice Hall, 1989.

M. Spivey. The fuzz type-checker for Z, Version 3.4.1, and The fuzz Manual,
Second Edition, 2008. Available from http://spivey.oriel.ox.ac.uk/corner/Fuzz
(last accessed 2018-04-15).

C. L. Talcott. A theory of binding structures and applications to rewriting.
Theoret. Comput. Sci., 112:68-81, 1993. doi: 10.1016/0304-3975(93)90240- T\

http://wiki.portal.chalmers.se/agda/pmwiki.php
http://spivey.oriel.ox.ac.uk/corner/Fuzz
https://doi.org/10.1016/0304-3975(93)90240-T

	CALCCHECK: A Proof Checker for Teaching the ``Logical Approach to Discrete Math''

