Verifying the LTL to Biichi Automata
Translation via Very Weak Alternating
Automata

Simon Jantsch! and Michael Norrish?

! TU Dresden
2 Data61, CSIRO and Australian National University

Abstract. We present a formalization of a translation from LTL formu-
lae to generalized Biichi automata in the HOL4 theorem prover. Transla-
tions from temporal logics to automata are at the core of model checking
algorithms based on automata-theoretic techniques. The translation we
verify proceeds in two steps: it produces very weak alternating automata
at an intermediate stage, and then ultimately produces a generalized
Biichi automaton. After verifying both transformations, we also encode
both of these automata models using a generic, functional graph type,
and use the CakeML compiler to generate fully verified machine code
implementing the translation.

1 Introduction

As the goal of verification techniques is to give the user of a system guarantees
about its behaviour, bugs in verification tools can potentially have severe conse-
quences and considerably reduce the trust of users in the techniques. While new
verification algorithms are usually proven correct on paper, the gap between the
abstract proof and any actual implementation can be large. Many times different
representations are used and optimizations are added that are not considered in
the proofs.

Our aim is to bridge this gap for one standard algorithm used for automata-
based LTL model checking. The algorithm, by Gastin and Oddoux [7] (G&O
henceforth), improves on the efficiency of the translation of LTL formulae into au-
tomata. Rather than moving directly from such formulae into generalized Biichi
automata (GBA), it introduces an intermediate step, the rather complicated al-
ternating automata. Whereas the efficient translation from LTL to alternating
automata was known before, G&O showed that a property, namely very weak-
ness, of the resulting automata can be exploited for the translation to GBA.

This new step represents an advantage on earlier techniques in part because
automata-optimizations can be applied in both phases. Optimizing the alternat-
ing automaton is especially interesting as it is linear in the size of the formula,

! The author was supported by the European Master’s Program in Computational
Logic (EMCL).

2 Simon Jantsch and Michael Norrish

even though the final GBA may still be of exponential size. As noted in Schimpf
et al. [15], the original tool implementing this algorithm contained a bug that
went unnoticed for several years despite widespread use.

Translations of LTL formulae to automata play a core role in LTL model
checking. In the usual approach, an LTL formula ¢ is given together with a
labeled transition system S, and the questions is whether all executions of &
satisfy the formula . To check this, an automaton is constructed for =, which is
then combined with an automaton describing all executions of S. If the combined
automaton is empty, S indeed satisfies the property specified by ¢, otherwise a
counterexample to this claim can be given.

To obtain a formally verified implementation of the algorithm in G&O, we
proceed as follows: first we formalize the procedure in an abstract way, using
set notation and mathematical functions. We prove correctness of this function,
which is a mechanization of the proof given in G&O. Then we implement another
version of the algorithm, now defined on concrete data structures that represent
the automata in a compact way. In contrast to the first function, this second
version describes an algorithm: a step-by-step expansion of a graph.

The relation between our two versions is established by defining abstraction
functions from our concrete automata to their abstract counterparts. Using these
functions, we show that the automata we obtain in our concrete algorithm coin-
cide with the abstract automata, for which we have proved the desired property.
One strength of this approach is that it lets us separate the correctness proofs of
the main function and the restriction to reachable states on the abstract level,
while still combining the two functions on the concrete level in a single expansion
algorithm. We believe that this idea can be extended to add optimizations to the
translation in a manageable way by defining them as seperate transformation
steps on the abstract level, and efficiently embedding them into the expansion
algorithm on the concrete level.

Finally, we compile our function into machine code using the CakeML com-
piler. This adds another guarantee to our implementation, as we do not have
to trust the translation of the algorithm as expressed in HOL4 into SML, nor
the correctness of an SML compiler. The proof scripts and definitions for our
translation are available as part of the HOL4 system, and the scripts to compile
the algorithm with CakeML are available on Gitlab.?

The paper is structured as follows: Section 2 introduces LTL and the au-
tomata models we consider. Section 3 recalls the algorithm in G&O, and Sec-
tion 4 discusses our formalization in HOL4. Section 5 gives an overview of related
work, and we conclude in Section 6.

3 For the abstract and concrete algorithms, see the examples/logic/1tl directory
in HOL4 after commit b4576ed, and see https://gitlab.com/simon-jantsch/
1t1l2baHol-paper/tree/master/cmlltl for our CakeML translations, which in turn
depend on CakeML commit 891cbf4a.

Verifying LTL Translation via Very Weak Alternating Automata 3

2 Preliminaries

2.1 Linear Temporal Logic

Linear Temporal Logic (LTL) is a logic that extends propositional logic with
temporal operators. We define it using unary X (“next”) and binary U (“until”).

Definition 1 (Syntax of LTL) Given a set of atomic propositions AP, the
set of LTL formulae over AP is defined with the following grammar:

pu=p |0 pAp| Xp | eUp
where p € AP

An interpretation of an LTL formula is a sequence of propositional valuations
over AP, one for each point in time. This sequence is viewed as an infinite word
over P (AP) (we write P (S) to mean the powerset of S). The symbol of w at
position ¢ is denoted by w[i] and the suffix of w starting at position ¢ by wl[i..].
Given w € (?(AP))¥, we define

Definition 2 (Semantics of LTL)

wkp iff p € wl0], for allp € AP

wE-e iffwiEe

wE o1 Ap2 iff wE 1 and w E @2

wEXe iffwlll]Ee

wE 1 Uy iff Ji. wli..] |E g2 and V5 < i. wlj..] E ¢1

As we want to use a negation normal form we introduce the dual operators VvV
and 1Ry = (=91 U—gy). An LTL formula ¢ is in negation normal form if
all occurrences of — are directly in front of an atomic proposition. We call a
formula a temporal formula if it is a (possibly negated) atomic proposition or if
its outermost operator is X, U or R. We use L(p) = {w € (P (AP))¥ | w E ¢}
to denote the language of an LTL formula.

As the semantics of LTL is defined using infinite words, questions about LTL
formulae can often be formulated as word problems. This is where automata, in
our case recognizing languages of infinite words, come into play. In the following
sections we introduce the two automata types used in G&O, beginning with
alternating automata.

2.2 Co-Biichi alternating automata

In an alternating automaton, each state nondeterministically chooses between
sets of successor states. Intuitively, a word w = agay . .. is accepted from a state
q if there exists a successor set S reachable via the symbol ag such that aqas ...
is accepted from all states in S.

4 Simon Jantsch and Michael Norrish

Definition 3 A co-Biichi alternating automaton is a tuple A = (Q,X,4,1, F),
where Q is a finite set of states, X is a finite alphabet, § : Q — P (P (X)xP(Q)),
I CP(Q) is the set of initial sets and F C Q is the set of final states.

Alternating automata can be defined with different acceptance conditions but
we will always mean co-Biichi alternating automata in what follows. In HOL4
we use the following datatype for abstract alternating automata:

(a, 0) ALTER_A = <|
states : o set;
alphabet : « set;
trans : 0 — (aset X o set) set;
initial : o set set;
final : o set
| >

The transition function § assigns to each state in the automaton a set of pairs
(A, S), where A C ¥ and S C Q. Such a pair stands for a transition that is active
for every symbol in A and has successor set S. This definition of alternating
automata was introduced in G&O and differs from the more usual definition,
where the transition function is defined using positive boolean formulae over the
states (e.g. Loding [11] or Vardi [17]). As noted in G&O, the two can easily be
transformed into each other: the presented definition corresponds closely to the
disjunctive normal form of the positive boolean formula.

Following Loding [11] we define a run of an alternating automaton A on
a word w € X% as a directed acyclic graph p = (V,E), where V C @ x N,
ECUj»o(@Q x {i}) x (@ x {i +1}) and

~{al(g,0)eV}iel

— for all (g,7) € V there exists (A, 5) € §(q) such that w[i] € A and
{¢" [((¢,9),(¢";i+ 1)) € E} = S; and

— for all (¢,4) € V where i > 0, there exists some (g,,% — 1) € V such that
((gpsi—1),(q,9)) € E

For co-Biichi automata, acceptance is defined as follows: a run p is accepting
if there is no path through p that visits a state in F' infinitely often. The lan-
guage of a co-Biichi alternating automaton is defined as £(A) = {w € X |
there exists an accepting run of A on w}.

Note that the transition function allows empty successor sets. Such a transi-
tion corresponds to the empty conjunction (i.e. true) and leads to direct accep-
tance of any suffix word for which it is active.

An alternating automaton is very weak if there is a partial order R on @,
such that whenever (4,S) € d(q) and ¢’ € S then Rq q. As Q is finite, this
implies that all loops in the automaton are self-loops and every path in a run p
ultimately stabilizes on some state.

Verifying LTL Translation via Very Weak Alternating Automata 5

2.3 Generalized Biichi automata

The algorithm we consider produces generalized Biichi automata (GBA), where
the acceptance condition is defined using the edges, rather than the states, of
the automaton.

Definition 4 A generalized Biichi automaton is a tuple G = (Q,X,0,1,T),
where Q is a finite set of states, X is a finite alphabet, 6 : Q — P (P (X) x Q) is
the transition function, I C Q is the set of initial states and T = {T1,Ts, ...},
with T; C Q x P (X)) x Q, is a set of sets of accepting edges.

Arunr = quqi... € Q¥ of a GBA G on a word w € X is a sequence of
states such that gg € I and for all ¢ there exists a pair (4, ¢;+1) € §(g;) such that
wli] € A. Tt is accepting if for all T € T there exist infinitely many positions
i such that for some A: (A4,¢;11) € §(¢;), wli] € A and (g, 4,¢i+1) € T. The
language of a GBA is defined accordingly: £(G) = {w € X% | there exists an
accepting run of G on w}.

GBA can be transformed into ordinary Biichi automata via a standard linear
transformation called degeneralization. The emptiness check, which is required
for LTL model checking, can be done on Biichi automata efficiently [2]. However,
approaches have been developed to use the GBA directly to check emptiness,
thereby omitting degeneralization [3].

3 Translating LTL to GBA

We now recall the translation presented in G&O. The algorithm proceeds in two
steps: it first translates an LTL formula into an equivalent very weak alternating
automaton (VWAA), and then translates that VWAA into a GBA. By “equiv-
alent”, we mean that the words accepted by the VWAA are exactly the words
that satisfy the formula, as per Definition 2.

We introduce two functions that we need for the definition, i gives an ap-
proximation of the DNF of ¢ without simplifying temporal subformulae. ® is
an operation on the transitions of the VWAA that corresponds to conjunction
on the formula level. From now on we consider all formulae to be in negation
normal form.

Definition 5 Let ¢ be an LTL formula. = {{¢}} if ¢ is a temporal formula,
oA ={S1USy | S1 €P and Sy €Y} and oV =B U Y.

Let Dl,DQ S @(@(E) X@(Q) Di®Dy = {(AlﬂAQ, S1USQ) ‘ (Al,Sl) € Dy
and (AQ,SQ) € D2}

Now we can define the first step of the translation. It models the boolean struc-
ture of the formulae with the transitions of the VWAA and makes use of the

equalities Uy = V (p A X(eU)) and Ry = ¢ A (p V X(pRa))).

6 Simon Jantsch and Michael Norrish

Definition 6 Let ¢ be an LTL formula over AP. We define A, = (Q, X,0,1, F),
where @ 1is the set of temporal subformulae of p, ¥ = %P (AP), I =, F is the
set of subformulae of @ of the type 1 Uthy and § is defined by:

5(p) = {(2,0)}, where X, ={Ae€ X |pe A}
6(-p) = {(X,0)}, where X = X'\ X,
(¢0:K35H5€E}
6(1U¢2) = A(Y2) U (A(v1) @ {(Z, {1 U2 })})
6(1Rp2) = A(v2) @ (A(¥1) U{(X, {v1Ry2})})
A(Y) = 5(v), if ¥ is a temporal formula
A1 A o) = A1) @ A(tp2)
A1 Vabe) = A1) U A(y2)

As every transition contains only subformulae of the considered formula, we see
that A, is very weak. In G&O the following theorem is stated without a complete
proof. We discuss our proof and its mechanization in Section 4. A proof for the
standard setting, which simplifies the proof, can be found in Vardi [17].

Theorem 1 L(A,) = L(p)

The second step of the algorithm is a translation of a VWAA into a GBA. We
first define a relation < on transitions that we use in the later definition. Let
t1 = (S, A1, S]) and t2 = (S, Ag, S) be transitions of the GBA. Then t; < ty if
Ay C A, SiCShandforall TeT:to €T =1t €T.

Definition 7 Let A = (Q,X,0,1,F) be a VIWAA. We defineGa = (P (Q), X, 8 ,1,T),
where

— 8 ({q0,q1,---,qn}) is the set of <-minimal transitions in @, 6(q;)
— T ={Ty | f € F}, where
Ty = {(S,A,S") | f ¢S or there is (B,X) € 6(f) such that A C B and
f¢eXxcsy
An example of the translations to VWAA and GBA is given in Figure 1.
Theorem 2 L(G4) = L(A)

Proof. See G&O for a proof.

4 Verifying the algorithm

Note that the way the translation is presented is far from an actual implementa-
tion. In particular the worst case complexity is always exhibited as nonreachable
states are not excluded. Also the way the transitions are defined, where the first

Verifying LTL Translation via Very Weak Alternating Automata 7

Fig. 1: Translation of the formula GFa into a VWAA (left) and a GBA (right).
Here F ¢ (eventually) and G ¢ (always) abbreviate trueUg and —F - respec-
tively. Transitions conjoined with e are conjunctive transitions to multiple suc-
cessors. Recall that X, is the set of all elements in X that contain a. Arrows
with no successor node indicate transitions to the empty set. Final states in the
VWAA are indicated by doubled circles and accepting transitions (of the single
acceptance set) in the GBA are indicated by a dotted line.

component is a set of subsets of AP, is prohibitively inefficient. These repre-
sentations are convenient for the proofs, but the question is how exactly any
concrete algorithm relates to this abstract description. We introduce a more
compact representation and define its relation to the abstract one.

Figure 2 visualizes our approach. As in G&O, we do not worry about reach-
able states in our main correctness proof; rather we implement the restriction
on the reachable states as a separate function (restr_states in Figure 2).

L8 concrAA A,
Itl2vwaa
concr_ltl2vwaa l concr_vwaa2gba J vwaa2gba
A conchB.A Ga,
concrAA J l restr_states
..... restr_states ..
........... abstr_GBA A
abstr_AA > .AT rA,

Fig. 2: Dividing the formalization into abstract and concrete parts. Thick arrows
represent concrete functions, thin arrows represent abstract functions, and dot-
ted arrows are abstractions from concrete to abstract automata. An r in the
subscript stands for a restriction to reachable states.

4.1 Mechanizing the abstract proofs

Our abstract formalizations in HOL4 are basically identical to the mathemat-
ical definitions given in Section 2. This allows us to closely follow the proof of

8 Simon Jantsch and Michael Norrish

Theorem 2 from G&O. First, we discuss the proof of Theorem 1, which is not
presented in G&O:

FLY = Laa (Itl2vwaa @)

In the proof we fix a formula ¢ and with it the alphabet we are considering,
namely 9 (props ¢), where props is the function that collects all atomic proposi-
tions that occur in a formula. Then we show the claim for all subformulae of ¢
by structural induction on LTL formulae.

The base case is the translation of an atomic proposition p € props ¢. The
corresponding automaton A, has one state with transitions to the empty set for
all elements in % (props ¢) that contain p. Thus the automaton accepts exactly
the words w for which such a transition is active, which is the case exactly if
p € wl0].

In the other cases, we show how accepting runs of the sub-automata can
be used to build accepting runs of the automata of the current case. Consider
the case X. For any word w such that w = Xt we get w[l..] |E ¢ and by
induction hypothesis an accepting run of A, on w[l..]. By shifting this run by
one and adding the vertex (X1,0), we get an accepting run of Ax,. For the
other direction we start with an accepting run of Ax, on w. By the structure
of Ax, we can extract a run of A, on the word wll..]. This is done by again
shifting the run by one, but now in the other direction. Applying the induction
hypothesis yields w[l..] = 4, from which we can conclude w = X1).

The existence of these two runs is shown in the proofs for the following
lemmata:*

F runOfAA (Itl2vwaag) 7 w[l..] A word_range w C 9 (props ¢) =
37’. runOfAA (Itl2vwaay (X ¥)) " w

F runOfAA (Itl2vwaay, (X 90)) 7w = 3 7’. runOfAA (Itl2vwaay ¥) 7’ w(l..]

The expression Itl2vwaag ¢ denotes the automaton for ¢, as defined by Def-
inition 6, with respect to the alphabet 2 (props ¢). (In particular, Itl2vwaa ¢ =
ltl2vwaag ¢.) The condition runOfAA aut r w states that r is a run of aut on w.

To show acceptance of the runs we construct in this case we use the fact that
the final states of the automata Ay, and Ax,, are the same, as no “until”-formula
is added to the automaton in the X case. So it is enough if we can map every
path in the run we construct to some path in the old run that visits the same set
of nodes infinitely often. This is clearly possible as the only way we transformed
the runs was to shift them by one.

The most interesting cases are the temporal operators U and R, where the
acceptance conditions become important. In U4, for example, we first show
that the automaton cannot stay in the state U forever, as this would lead to
a rejecting path in the corresponding run. This is because all “until”’-formulae

4 We need the precondition word_range w C 9P (props ¢) to make sure that w is a
word over the alphabet & (props ¢) as we have no restriction on w[0] otherwise.

Verifying LTL Translation via Very Weak Alternating Automata 9

are final states in our automata, and the co-Biichi condition requires an accept-
ing run to have no paths visiting infinitely many final states. At the position
where U1 no longer loops, its next transition needs to be a transition of v,
by Definition 6. Thus we can extract an accepting run of Ay for the suffix word
starting at that position. For all positions until that point we can extract runs
of A, and thus, via induction hypothesis, show that the word satisfies ¢U1.

The correctness of the second part, from VWAA to GBA, is captured in the
following theorem.

F isVeryWeakAA aaa A FINITE a4.alphabet A FINITE aa4.states A
isValidAA aap =
Lap (vwaa2gba aqa) = Laa aan

We have to show that for every accepting run of the VWAA on a word w,
there exists an accepting run of the GBA on w, and vice versa. By the way
the GBA transitions are defined it can be seen that the sequence of layers in a
run of the VWAA corresponds to a run of the GBA. The two main difficulties
are to cope with the reduction of transitions by =< in Definition 7 and to show
acceptance of the runs. As our formalization follows the proof in G&O closely,
we omit the details here.

Finally we show that we can restrict our automata to reachable states, by
proving that no state that is not reachable can appear in any run of the corre-
sponding automaton. We define a function for each automata model, with the
overloaded name restr_states, that implements this restriction.

F Laa aaa = Laa (restrstates asa)

F isValidGBA agp = Lcp agp = Lap (restrstates agp)

4.2 Concrete data structures

We use the following generic finite graph type to implement concrete represen-
tations of our automata in HOL4:

(a, €) gfg = <
node_info : « spt;
followers : (e x num) list spt;
preds : (e x num) list spt;
next : num

| >

The « spt type implements a dictionary with keys that are natural numbers
and values of type «. Thus, a graph contains a set of nodes uniquely labeled
with natural numbers. Each node is associated with “node information” (the «
type parameter). In addition, dictionaries map each node label to outgoing and
incoming edges, where each edge connects to another node (identified by the
num), and “edge information” (the e parameter). Finally, the next field tracks

10 Simon Jantsch and Michael Norrish

the next node label, to be used when a node is inserted. This representation is
inspired by Erwig [4], and is readily translated into CakeML.

The types used to capture node and edge information are given in Figure 3. As
the transition structure of alternating automata allows conjunctive transitions
to several successors we cannot directly map it into the transition structure of
the graph. To solve this we extend the edge labels by a field called edge_grp.
Multiple edges with the same value of edge_grp are meant to belong to the same
conjunctive edge of the alternating automaton. The set of symbols of X' for which
the transition is active is represented using two lists of atomic propositions, one
for positive and one for negative occurrences. This is possible because the first
component of any transition is always the result of intersecting sets X',%), and
2 _p, by Definition 6, which was observed in G&O. This explains the type of our
edge labels « edge_labelAA as defined in Figure 3.

o edge_labelAA = <| edge_grp : num; pos_lab : «list; neg_lab : « list |>
a node_labelAA =

<| frml : « ltl_frml; is_final : bool; true_labels : « edge_ labelAA list |>
o concrAA = <|

graph : (anode_labelAA, « edge labelAA) gfg;

init : num list list;

atomic_prop : « list
1>

Fig. 3: Encoding the concrete representation of alternating automata.

Another aspect of alternating automata that cannot be captured immedi-
ately in the graph are transitions to an empty set of successors. One way to
handle them is to add a state representing true from which any suffix word is
accepted. As we do not have this state in our abstract automata in general, this
would break the direct correspondence of states in our abstract and concrete
models. We encode this information in the node labels of our concrete structure
(o node_labelAA). Any edge label that appears in the field true_labels corresponds
to an edge with the empty successor set in our abstract model.

Using these two types we define our concrete alternating automata by com-
bining the graph with a list of atomic propositions and an init field corresponding
to the set of sets given by I in the abstract automaton.

As the GBA transition structure corresponds to an ordinary graph, we can
define it in the natural way (see Figure 4). By Definition 7, the states of the GBA
are sets of states of the VWAA, which are LTL formulae in our case, so we label
the GBA states by lists of LTL formulae. The acc_set field is a list of formulae for
which the edge is accepting. So rather than grouping all the accepting edges in
a set Ty, every edge that is accepting for f should contain f in the field acc_set.
Additionally the field all_acc_frmls declares all acceptance sets that exist in the
GBA.

Verifying LTL Translation via Very Weak Alternating Automata 11

a edge_labelGBA = <| pos_lab : «list; neg_lab : « list; accset : « ltl frmllist |>
a node_labelGBA = <| frmls : « ltl frml list |>
o concrGBA = <|
graph : (a node_labelGBA, « edge labelGBA) gfg;
init : num list;
all_acc_frmls : o ltl_frml list;
atomic_prop : « list
1>

Fig.4: The types used to encode the concrete representation of GBAs.

4.3 Abstraction functions

To establish the correspondence between our concrete and abstract automata
we define abstraction functions that take a concrete automaton and return its
abstract counterpart. These abstraction functions can be seen as defining the
semantics of the concrete structure.

To abstract the states of the automaton we visit all nodes in the graph and
read their labels. For the transitions we introduce the following function:

transform_label AP pos neqg =
FOLDR (A a sofar. char (2 (AP)) a N sofar)
(FOLDR (A a sofar. charneg (2 (AP)) a N sofar) (P (AP))

neg) pos

The functions char and char_neg are defined exactly as the sets X, and X,
in Definition 6, where X = % (AP) in this case. The function transform_label
defines how the fields pos_lab and neg_lab of the concrete edge labels should be
interpreted. It computes all subsets of X' that contain all atomic propositions in
pos and do not contain any atomic proposition in neg.

Note that different values of pos and meg can lead to the same abstract
interpretation by transform_label. One reason is that the order of the lists does
not matter, the other is that whenever some atomic proposition appears in both
lists, the value of transform_label is the empty set.

To abstract the transition function we have to compute a set of abstract
transitions given a formula ¢. We do this by finding the node labeled by ¢ in
the graph, grouping its outgoing edges by the value of edge_grp, looking up all
the identifiers of the successor states and computing the first components of
the transitions using transform_label. If there is no such node in the graph, the
function returns the empty set. We call this function abstr_transAA. The procedure
for the abstract GBA follows the same idea but does not have to bother with
conjunctive edges.

The final states are abstracted by collecting all states of the concrete VWAA
that have is_final set to true. From the concrete GBA we get the sets T by

12 Simon Jantsch and Michael Norrish

collecting all transitions where the acc_set field in the edge label contains the
formula f.

4.4 Concrete translations

Concrete LTL to VWAA First we describe our concrete algorithm for the
first part of the translation, from LTL formulae to VWAA, now encoded with
the concrete graph types described in Section 4.2. We reimplement the core
functions ¥ and ® and a concrete version of §, called concr_trans, using lists, and
show that when abstracted with transform_label, concr_trans corresponds to .

Theorem 3

F set (MAP (abstr_edge AP) (concr_trans ¢)) = trans (P (AP)) ¢

Here trans is §, computed for a specific alphabet, and abstr_edge applies
transform_label to the lists of positive and negative atomic propositions of a con-
crete edge, and transforms the list of successors into a set.

Additionally we specify functions for adding nodes and edges to the graph
representing the alternating automaton, add_state and add_edge. The function
add_state is a wrapper around the generic function of the graph type for adding
nodes that additionally decides whether or not a state should be final by checking
if the formula is an “until”’-formula. The function add_edge decides whether to
add the edge to the true_labels field of the node, which it does if the set of
successors is empty, or by using real edges in the graph. Because add_edge may
be called for a node that is not in the graph, its return value uses the option
type.

Using these auxiliaries, we define a recursive function called expand_graph (see
Figure 5). It maintains a list of nodes to process and the current state of the
graph. In every iteration the first element of the list is processed by computing
its outgoing transitions with concr_trans and adding the successors and the edges
to the graph. The list of nodes that still need to be processed is extended by
the new successors if they have not been processed already. For a given formula
, expand_graph is initially called with the list of formulae in @ (the set of initial
states by Definition 6), and, as its first parameter, the graph containing only
these formulae and no edges.

To show termination of expand_graph we use the fact that in the list of nodes
to be processed we always remove one element f and replace it with its sucessors,
all of which are subformulae of f. As the “subformulae of” relation is a partial
order, this lets us use the multiset ordering to define a wellfounded order on the
second argument of expand_graph that decreases in every iteration.

Concrete VWA A to GBA The second part of the concrete translation, from
VWAA to GBA, takes a concrete alternating automaton as input and computes a

Verifying LTL Translation via Very Weak Alternating Automata 13

expand_graph g [| = SOME ¢
expand_graph g1 (f :: fs) =
(let
trans = concr_trans f ;

sucs = nub (FOLDR (A e pr. e.sucs 4+ pr) [] trans) ;
g2 = FOLDR (A p g. add_state g p) g1 sucs ;

g3 =
FOLDR (X e g». monad_bind g» (add_edge f e))
(SOME g2) trans ;
new_to_process =
FILTER
(As. =MEM s (graph_states ¢g1) A s # f A -MEM s fs)
sucs
in
case g3 of
| NONE = NONE
| SOME g = expand_graph g (new_to_process + fs))

Fig.5: Concrete function implementing LTL to VWAA. The first argument is
the graph of an alternating automaton and the second argument is the list of
nodes that still need to be processed.

concrete GBA. The states of the GBA are labeled by lists of states of the VWAA.
As the set of outgoing transitions of a GBA state depends on the transitions of
the VWAA states in its label, we need to compute these from the input VWAA.
We do this by defining a concrete version of the function abstr_transAA called
get_concr_transAA.

To compute the transition of a GBA state labeled by a list of VWAA states
L, we compute get_concr_transAA for every ¢ in L and then apply a fold with our
concrete version of ® to the list of transitions. For every edge we then need to
check for which of the final states f of the VWAA the conditions of T, given
in Definition 7, apply. Remember that this includes a check whether there is a
transition in §(f) that does not contain f in its successor set. To perform these
checks more efficiently, we precompute the transitions for all final states of the
VWAA.

Finally we need to remove all transitions that are not <-minimal. To do this
we define a concrete counterpart of <. Having defined this relation, we find the
minimal elements by comparing all the computed transitions of a state pairwise.
We then add the successor states and the edges to the graph and extend the list
of nodes to be processed by the new nodes.

Showing termination of this function is more involved than for the first part.
The reason is that there is no partial order on the states of the GBA in general,
indeed it can have non trivial cycles. To show termination we use the following
insight: either the statespace of the graph grows, or it stays the same and the
list of nodes to be processed becomes shorter. The first part is a wellfounded
relation, as there is an upper bound on the total number of possible states,

14 Simon Jantsch and Michael Norrish

namely the powerset of the states of the alternating automaton, % (@Q). Here we
need to show that all new states computed by concr_trans are really in %2 (Q).
If the statespace of the graph does not grow in some iteration of expand_graph,
we know that all successors of the currently processed node must already have
been processed. Thus the list of nodes to be processed gets shorter by one, as
the current node is removed. Combining these two orders lexicographically leads
to a wellfounded relation. The same approach to prove termination of a graph
expansion algorithm was adopted in Schimpf et al. [15].

4.5 Verifying the concrete functions

After having defined our concrete automata types and concrete functions that
implement the translations we show two things. First, they never return NONE
on any reasonable input. For the VWAA to GBA translation we require a con-
crete alternating automaton as produced by the concrete LTL to VWAA trans-
lation. Second, applying the abstraction functions gives us exactly the abstract
automata that we get by chaining the abstract translation function with the
restriction to reachable states. For the LTL to VWAA translation we prove the
following theorem, which essentially corresponds to the left hand side of Fig-
ure 2. The function concr_Itl2vwaa computes the list of initial states and calls
expand_graph.

F V.
dcaa.
concr_ltl2vwaa ¢ = SOME cga A
abstr_AA caa4 = restr_states (Itl2vwaa @)

To show the first part we need to show that we do not call add_edge for a
node that is not in the graph, since this is the only possibility for expand_graph
to return NONE (see Figure 5). We do this by showing that all nodes in the list
that still have to be processed must have been added to the graph already.

The second part amounts to showing that, after applying the abstraction
functions, the states, the transition function, the initial and the final states are
equal to the corresponding fields in the result of the abstract translation.

Using Theorem 3 we show that for every state ¢ that has already been pro-
cessed it holds that all states that are one step reachable from g are either already
in the graph, or in the list of nodes to be processed. Reachability here means
the reflexive and transitive closure of ¢. From this lemma follows that we will
eventually include all reachable states of the abstract automaton. To show that
only such states are included we again use Theorem 3 and show the invariant
that every state in the graph is indeed reachable. In these two steps we use
the assumption that the initial states are computed correctly, which we prove
independently.

For the transition function we need to show that add_edge adds the edges
computed by concr_trans in the intended way. To show this we show that for all
nodes in the graph g that have been processed already, abstr_transAA ¢ q is equal
to 6(q).

Verifying LTL Translation via Very Weak Alternating Automata 15

The proofs for the abstractions of final and initial states amount to showing
that the concrete computation of ¥ corresponds to the abstract function, and
that exactly the nodes labeled by an “until” formula have is_final set to true.

For the second part of the translation, from concrete VWAA to concrete
GBA, we prove the following theorem, which corresponds to the right hand side
of Figure 2:

F concrItl2vwaa ¢ = SOME cq4 A aga = abstrAA cpyq =
= CGB-
concr.vwaa2gba cap = SOME cgp A
abstr GBA c¢gp = restr_states (vwaa2gba a4 4)

We have similar proof obligations here as in the previous case, we need to
show that states, transition function and initial states are correctly abstracted.
For the acceptance condition we show that for all f in all_acc_frml of the concrete
automaton: if we collect all transitions in the concrete graph labeled by f, we get
exactly the set Ty. Additionally, for every f in all_acc_frml we show that Ty € T,
and for the other direction if Ty € T', then f is in all_acc_frml.

The states are handled by showing that the concrete computation of the
transition function corresponds to the abstract definition and then using the
same ideas as in the first translation step. For the transition function we have
the advantage that it is more directly encoded in the edges of the graph. On the
other hand we need to compute the transition functions of the VWAA states,
that the GBA state is labeled by, correctly, and handle the minimization by <.
For the minimization we need to show that two concrete transitions are related
by our concrete version of < if and only if their abstract counterparts are related
by =. This implies that we are removing the right transitions in the concrete
function.

Translation to CakeML The CakeML ecosystem includes a general mechanism
for translating (a subset of) HOL functions into provably equivalent CakeML
ASTs (Myreen and Owens [13]). We use this technology to transform our con-
crete algorithm into CakeML syntax, to which we can then apply the CakeML
compiler, generating assembly code. Under minimal assumptions (including:
CakeML’s model of the hardware corresponds to that of the chip that actu-
ally executes the code, and the correctness of the assembler and linker used to
generate the final executable), the correctness of the CakeML compiler lets us
conclude that this machine code will implement the algorithm exactly as written
in the HOL formulation. In turn, the abstraction proofs described earlier then
give us a high-assurance connection between the machine code that executes and
the mathematical results of G&O.

At this stage, we embody our algorithms in a simple tool that parses an
LTL formula on standard input, and prints out the two translated automata as
(typically rather large) S-expressions. We have not benchmarked our executable’s
performance to any degree. Certainly, we are confident that CakeML-compiled
code and a naive representation of graphs/automata will not perform as well as

16 Simon Jantsch and Michael Norrish

hand-tuned C tools that have had extensive development. On the other hand,
the development in HOL4 and CakeML gives us extremely high assurance that
our tool is correct.

5 Related Work

The most complete verification effort of algorithms in the context of LTL model
checking was done by Esparza et al. [6]. They describe a fully verified implemen-
tation of an LTL model checker in the Isabelle theorem prover. The work builds
on a previously described verification [15] of the LTL to generalized Biichi au-
tomata translation which was introduced by Gerth et al. [8]. The algorithm uses
a tableau construction and is more amenable to a direct verification as it does
not include the intermediate step of alternating automata. The work has been
extended to use Promela as input language to describe systems [14] and to use
partial order reductions [1]. Additional optimization techniques for Biichi au-
tomata have been verified as independent functions in Schimpf and Smaus [16].
Another mechanization of a translation algorithm from LTL to automata was re-
ported on in Esparza et al. [5]. The authors introduce a new algorithm targeting
deterministic automata and emphasize the importance of interactive theorem
provers, which allowed them to uncover errors in their original proofs.

One approach that has been developed to refine abstract definitions into
efficient code is the Isabelle Refinement Framework [9, 10]. Both powerful and
generic, it allows the refinement of abstract types into more efficient data struc-
tures. We believe that our rather custom abstraction would have been hard to
achieve in this framework, as the structure of the abstract automata are quite
different to the concrete ones, and multiple abstract details are encoded in the
same concrete types. For example, consider the accepting edges of the GBA.
While the abstract automaton provides all these edges in a set of sets, in the
concrete world they are embedded in the graph using the edge labels.

Alternating automata in the context of interactive theorem proving were pre-
viously addressed by Merz [12]. This work mechanizes a proof of the closure of
weak alternating automata under complementation, using winning strategies of
logical games. As an application, Merz presents a translation from LTL into very
weak alternating automata. The translation mechanized by Merz generates more
states than G&O (all sub-formulae and negations vs. only temporal subformu-
lae), and he does not address the second, exponential, translation to GBAs. This
work also remains completely abstract, without mentioning concrete algorithms.

6 Conclusion

In this paper we have presented a formalization of the algorithm for translating
LTL formulae into generalized Biichi automata presented in G&O, which uses
very weak alternating automata as an intermediate representation.

We introduce an encoding of both alternating automata and generalized
Biichi automata in a compilable, generic graph type that uses an efficient lookup

Verifying LTL Translation via Very Weak Alternating Automata 17

structure. This is especially interesting for alternating automata, as they are a
powerful computational model leading to elegant algorithms, e.g., Vardi [18].

To cope with the complexity of the algorithm, we divide the formalization
into an abstract and a concrete part. In the abstract part we mechanize the proofs
and show correctness of the translation as it is presented in G&O. The correspon-
dence between the abstract and concrete models is established using abstraction
functions that map concrete automata to abstract ones. We implement the al-
gorithm on our concrete types and show that applying the abstractions to the
resulting automata leads to the automata given by the abstract translation.

This approach turned out to be fruitful: we were able to reproduce the ab-
stract correctness results fairly quickly. Not having to additionally cope with
arguments about concrete data structures, termination and details concerning
our graph type, made a big difference. We would like to extend our ideas to in-
clude optimization steps in the translation, by showing independent correctness
in the abstract world and efficiently embedding them in the expansion algorithm.
So far, efficiency has not been a big concern for us; rather we have focused on
producing verified code for the algorithm in G&O. In future work we would like
to optimize the code and provide an empirical comparison to existing tools.

Finally we use the CakeML compiler to produce fully verified code imple-
menting our concrete functions. This step significantly strengthens the confidence
we can have in the machine code, as we do not have to trust a standard compiler.
Translation of LTL formulae into automata is only one part of a complete model
checker, but our experience suggests that an extremely high assurance model
checker embodying sophisticated optimizations is entirely feasible.

18 Simon Jantsch and Michael Norrish
References
1. Julian Brunner and Peter Lammich. Formal verification of an executable LTL

10.

11.

12.

model checker with partial order reduction. In Sanjai Rayadurgam and Oksana
Tkachuk, editors, NASA Formal Methods, pages 307-321, Cham, 2016. Springer
International Publishing.

C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient al-
gorithms for the verification of temporal properties. Formal Methods in System
Design, 1(2):275-288, Oct 1992.

Jean-Michel Couvreur, Alexandre Duret-Lutz, and Denis Poitrenaud. On-the-fly
emptiness checks for generalized Biichi automata. In Patrice Godefroid, editor,
Model Checking Software, pages 169—184, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg.

Martin Erwig. Functional programming with graphs. In Simon L. Peyton Jones,
Mads Tofte, and A. Michael Berman, editors, Proceedings of the 1997 ACM SIG-
PLAN International Conference on Functional Programming (ICFP ’97), Amster-
dam, The Netherlands, June 9-11, 1997., pages 52-65. ACM, 1997.

Javier Esparza, Jan Kretinsky, and Salomon Sickert. From LTL to deterministic
automata - A safraless compositional approach. Formal Methods in System Design,
49(3):219-271, 2016.

Javier Esparza, Peter Lammich, René Neumann, Tobias Nipkow, Alexander
Schimpf, and Jan-Georg Smaus. A fully verified executable LTL model checker. In
Natasha Sharygina and Helmut Veith, editors, Computer Aided Verification: 25th
International Conference, CAV 2013, Saint Petersburg, Russia, July 18-19, 2013.
Proceedings, pages 463—-478, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.
Paul Gastin and Denis Oddoux. Fast LTL to Biichi automata translation. In
Gérard Berry, Hubert Comon, and Alain Finkel, editors, Computer Aided Verifi-
cation: 13th International Conference, CAV 2001 Paris, France, July 18-22, 2001
Proceedings, pages 53—-65, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.
Rob Gerth, Doron Peled, Moshe Y. Vardi, and Pierre Wolper. Simple on-the-fly
automatic verification of linear temporal logic. In Proceedings of the Fifteenth IFIP
WG@G6.1 International Symposium on Protocol Specification, Testing and Verifica-
tion XV, pages 3-18, London, UK, UK, 1996. Chapman & Hall, Ltd.

Peter Lammich. Automatic Data Refinement. In Sandrine Blazy, Christine Paulin-
Mohring, and David Pichardie, editors, Interactive Theorem Proving, pages 84-99,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

Peter Lammich and Thomas Tuerk. Applying Data Refinement for Monadic Pro-
grams to Hopcroft’s Algorithm. In Lennart Beringer and Amy Felty, editors, Inter-
active Theorem Proving, pages 166—182, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

Christof Loding and Wolfgang Thomas. Alternating automata and logics over
infinite words. In Jan van Leeuwen, Osamu Watanabe, Masami Hagiya, Pe-
ter D. Mosses, and Takayasu Ito, editors, Theoretical Computer Science: Exploring
New Frontiers of Theoretical Informatics, pages 521-535, Berlin, Heidelberg, 2000.
Springer Berlin Heidelberg.

Stephan Merz. Weak alternating automata in Isabelle/HOL. In Mark Aagaard
and John Harrison, editors, Theorem Proving in Higher Order Logics: 13th In-
ternational Conference, TPHOLs 2000 Portland, OR, USA, August 14—18, 2000
Proceedings, pages 424-441, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

13.

14.

15.

16.

17.

18.

Verifying LTL Translation via Very Weak Alternating Automata 19

Magnus O. Myreen and Scott Owens. Proof-producing synthesis of ML from higher-
order logic. In Peter Thiemann and Robby Bruce Findler, editors, ACM SIG-
PLAN International Conference on Functional Programming, ICFP’12, Copen-
hagen, Denmark, September 9-15, 2012, pages 115-126. ACM, 2012.

René Neumann. Using Promela in a fully verified executable LTL model checker.
In Dimitra Giannakopoulou and Daniel Kroening, editors, Verified Software: The-
ories, Tools and Experiments, pages 105-114, Cham, 2014. Springer International
Publishing.

Alexander Schimpf, Stephan Merz, and Jan-Georg Smaus. Construction of Biichi
automata for LTL model checking verified in Isabelle/HOL. In Stefan Berghofer,
Tobias Nipkow, Christian Urban, and Makarius Wenzel, editors, Theorem Proving
in Higher Order Logics: 22nd International Conference, TPHOLs 2009, Munich,
Germany, August 17-20, 2009. Proceedings, pages 424-439, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg.

Alexander Schimpf and Jan-Georg Smaus. Biichi automata optimisations for-
malised in Isabelle/HOL. In Mohua Banerjee and Shankara Narayanan Krishna,
editors, Logic and Its Applications: 6th Indian Conference, ICLA 2015, Mumbai,
India, January 8-10, 2015. Proceedings, pages 158-169, Berlin, Heidelberg, 2015.
Springer Berlin Heidelberg.

Moshe Y. Vardi. Nontraditional applications of automata theory. In Masami
Hagiya and John C. Mitchell, editors, Theoretical Aspects of Computer Software,
pages 575-597, Berlin, Heidelberg, 1994. Springer Berlin Heidelberg.

Moshe Y. Vardi. Alternating automata: Unifying truth and validity checking for
temporal logics. In William McCune, editor, Automated Deduction—CADE-1},
pages 191-206, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

