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Abstract. We present a new strategy for performing reification in Coq.
That is, we show how to generate first-class abstract syntax trees from
“native” terms of Coq’s logic, suitable as inputs to verified compilers or
procedures in the proof-by-reflection style. Our new strategy, based on
simple generalization of subterms as variables, is straightforward, short,
and fast. In its pure form, it is only complete for constants and function
applications, but “let” binders, eliminators, lambdas, and quantifiers can
be accommodated through lightweight coding conventions or preprocess-
ing.
We survey the existing methods of reification across multiple Coq metapro-
gramming facilities, describing various design choices and tricks that can
be used to speed them up, as well as various limitations. We report
benchmarking results for 18 variants, in addition to our own, finding
that our own reification outperforms 16 of these methods in all cases,
and one additional method in some cases; writing an OCaml plugin is
the only method tested to be faster. Our method is the most concise of
the strategies we considered, reifying terms using only two to four lines
of Ltac—beyond lists of the identifiers to reify and their reified variants.
Additionally, our strategy automatically provides error messages that are
no less helpful than Coq’s own error messages.

1 Introduction

Proof by reflection [2] is an established method for employing verified proof
procedures, within larger proofs. There are a number of benefits to using veri-
fied functional programs written in the proof assistant’s logic, instead of tactic
scripts. We can often prove that procedures always terminate without attempt-
ing fallacious proof steps, and perhaps we can even prove that a procedure gives
logically complete answers, for instance telling us definitively whether a proposi-
tion is true or false. In contrast, tactic-based procedures may encounter runtime
errors or loop forever. As a consequence, those procedures must output proof
terms, justifying their decisions, and these terms can grow large, making for
slower proving and requiring transmission of large proof terms to be checked
slowly by others. A verified procedure need not generate a certificate for each
invocation.

The starting point for proof by reflection is reification: translating a “native”
term of the logic into an explicit abstract syntax tree. We may then feed that tree



to verified procedures or any other functional programs in the logic. The benefits
listed above are particularly appealing in domains where goals are very large.
For instance, consider verification of large software systems, where we might
want to reify thousands of lines of source code. Popular methods turn out to be
surprisingly slow, often to the point where, counter-intuitively, the majority of
proof-execution time is spent in reification – unless the proof engineer invests in
writing a plugin directly in the proof assistant’s metalanguage (e.g., OCaml for
Coq).

In this paper, we show that reification can be both simpler and faster than
with standard methods. Perhaps surprisingly, we demonstrate how to reify terms
almost entirely through reduction in the logic, with a small amount of tactic code
for setup and no ML programming. Though our techniques should be broadly
applicable, especially in proof assistants based on type theory, our experience
is with Coq, and we review the requisite background in the remainder of this
introduction. In section 2, we summarize our survey into prior approaches to reifi-
cation and provide high-quality implementations and documentation for them,
serving a tutorial function independent of our new contributions. Experts on the
subject might want to skip directly to section 3, which explains our alternative
technique. We benchmark our approach against 18 competitors in section 4.

1.1 Proof-Script Primer

Basic Coq proofs are often written as lists of steps such as induction on some
structure, rewrite using a known equivalence, or unfold of a definition. Very
quickly, proofs can become long and tedious, both to write and to read, and hence
Coq provides Ltac, a scripting language for proofs. As theorems and proofs grow
in complexity, users frequently run into performance and maintainability issues
with Ltac. Consider the case where we want to prove that a large algebraic
expression, involving many let ... in ... expressions, is even:

Inductive is_even : nat -> Prop :=

| even_O : is_even O

| even_SS : forall x, is_even x -> is_even (S (S x)).

Goal is_even (let x := 100 * 100 * 100 * 100 in

let y := x * x * x * x in

y * y * y * y).

Coq stack-overflows if we try to reduce this goal. As a workaround, we might
write a lemma that talks about evenness of let ... in ..., plus one about
evenness of multiplication, and we might then write a tactic that composes such
lemmas.

Even on smaller terms, though, proof size can quickly become an issue. If we
give a naive proof that 7000 is even, the proof term will contain all of the even
numbers between 0 and 7000, giving a proof-term-size blow-up at least quadratic
in size (recalling that natural numbers are represented in unary; the challenges
remain for more efficient base encodings). Clever readers will notice that Coq



could share subterms in the proof tree, recovering a term that is linear in the size
of the goal. However, such sharing would have to be preserved very carefully, to
prevent size blow-up from unexpected loss of sharing, and today’s Coq version
does not do that sharing. Even if it did, tactics that rely on assumptions about
Coq’s sharing strategy become harder to debug, rather than easier.

1.2 Reflective-Automation Primer

Enter reflective automation, which simultaneously solves both the problem of
performance and the problem of debuggability. Proof terms, in a sense, are traces
of a proof script. They provide Coq’s kernel with a term that it can check to
verify that no illegal steps were taken. Listing every step results in large traces.

Fixpoint check_is_even

(n : nat) : bool

:= match n with

| 0 => true

| 1 => false

| S (S n)

=> check_is_even n

end.

Fig. 1. Evenness Checking

The idea of reflective automation is that,
if we can get a formal encoding of our goal,
plus an algorithm to check the property we
care about, then we can do much better than
storing the entire trace of the program. We can
prove that our checker is correct once and for
all, removing the need to trace its steps.

A simple evenness checker can just oper-
ate on the unary encoding of natural numbers
(Figure 1). We can use its correctness theorem to prove goals much more quickly:

Theorem soundness : forall n, check_is_even n = true -> is_even n.

Goal is_even 2000.

Time repeat (apply even_SS || apply even_O). (* 1.8 s *)

Undo.

Time apply soundness; vm_compute; reflexivity. (* 0.004 s *)

The tactic vm compute tells Coq to use its virtual machine for reduction, to com-
pute the value of check is even 2000, after which reflexivity proves that
true = true. Note how much faster this method is. In fact, even the asymptotic
complexity is better; this new algorithm is linear rather than quadratic in n.

However, even this procedure takes a bit over three minutes to prove is even

(10 * 10 * 10 * 10 * 10 * 10 * 10 * 10 * 10). To do better, we need a
formal representation of terms or expressions.

1.3 Reflective-Syntax Primer

Sometimes, to achieve faster proofs, we must be able to tell, for example, whether
we got a term by multiplication or by addition, and not merely whether its
normal form is 0 or a successor. Inductive expr :=

| NatO : expr

| NatS (x : expr) : expr

| NatMul (x y : expr) : expr.

Fig. 2. Simple Expressions

A reflective automation procedure gener-
ally has two steps. The first step is to reify
the goal into some abstract syntactic repre-
sentation, which we call the term language or



an expression language. The second step is to run the algorithm on the reified
syntax.

What should our expression language include? At a bare minimum, we must
have multiplication nodes, and we must have nat literals. If we encode S and O

separately, a decision that will become important later in section 3, we get the
inductive type of Figure 2.

Before diving into methods of reification, let us write the evenness checker.

Fixpoint check_is_even_expr (t : expr) : bool

:= match t with

| NatO => true

| NatS x => negb (check_is_even_expr x)

| NatMul x y => orb (check_is_even_expr x) (check_is_even_expr y)

end.

Before we can state the soundness theorem (whenever this checker returns
true, the represented number is even), we must write the function that tells us
what number our expression represents, called denotation or interpretation:

Fixpoint denote (t : expr) : nat

:= match t with

| NatO => O

| NatS x => S (denote x)

| NatMul x y => denote x * denote y

end.

Theorem check_is_even_expr_sound (e : expr)

: check_is_even_expr e = true -> is_even (denote e).

Given a tactic Reify to produce a reified term from a nat, we can time
check_is_even_expr. It is instant on the last example.

Before we proceed to reification, we will introduce one more complexity. If we
want to support our initial example with let ... in ... efficiently, we must
also have let-expressions. Our current procedure that inlines let-expressions
takes 19 seconds, for example, on let x0 := 10 * 10 in let x1 := x0 * x0

in ... let x24 := x23 * x23 in x24. The choices of representation include
higher-order abstract syntax (HOAS) [11], parametric higher-order abstract syn-
tax (PHOAS) [4], and de Bruijn indices [3]. The PHOAS representation is par-
ticularly convenient. In PHOAS, expression binders are represented by binders
in Gallina, the functional language of Coq, and the expression language is pa-
rameterized over the type of the binder. Let us define a constant and notation
for let expressions as definitions (a common choice in real Coq developments,
to block Coq’s default behavior of inlining let binders silently; the same choice
will also turn out to be useful for reification later). We thus have:

Inductive expr {var : Type} :=

| NatO : expr

| NatS : expr -> expr



| NatMul : expr -> expr -> expr

| Var : var -> expr

| LetIn : expr -> (var -> expr) -> expr.

Definition Let_In {A B} (v : A) (f : A -> B) := let x := v in f x.

Notation "'dlet' x := v 'in' f" := (Let_In v (fun x => f)).

Notation "'elet' x := v 'in' f" := (LetIn v (fun x => f)).

Fixpoint denote (t : @expr nat) : nat

:= match t with

| NatO => O

| NatS x => S (denote x)

| NatMul x y => denote x * denote y

| Var v => v

| LetIn v f => dlet x := denote v in denote (f x)

end.

A full treatment of evenness checking for PHOAS would require proving well-
formedness of syntactic expressions; for a more complete discussion of PHOAS,
we refer the reader elsewhere [4]. Using Wf to denote the well-formedness predi-
cate, we could prove a theorem

Theorem check_is_even_expr_sound (e : ∀ var, @expr var) (H : Wf e)

: check_is_even_expr (e bool) = true -> is_even (denote (e nat)).

To complete the picture, we would need a tactic Reify which took in a term
of type nat and gave back a term of type forall var, @expr var, plus a tac-
tic prove wf which solved a goal of the form Wf e by repeated application of
constructors. Given these, we could solve an evenness goal by writing1

match goal with

| [ |- is_even ?v ]

=> let e := Reify v in

refine (check_is_even_expr_sound e _ _);

[ prove_wf | vm_compute; reflexivity ]

end.

2 Methods of Reification

We implemented reification in 18 different ways, using 6 different metaprogram-
ming facilities in the Coq ecosystem: Ltac, Ltac2, Mtac [8], type classes [12],
canonical structures [7], and reification-specific OCaml plugins (quote [5], template-
coq [1], ours). Figure 3 displays the simplest case: an Ltac script to reify a tree
of function applications and constants. Unfortunately, all methods we surveyed
become drastically more complicated or slower (and usually both) when adapted
to reify terms with variable bindings such as let-in or λ nodes.

1 Note that for the refine to be fast, we must issue something like Strategy -10

[denote] to tell Coq to unfold denote before Let In.



Ltac f v x := (* reify var term *)

lazymatch x with

| O => constr:(@NatO v)

| S ?x => let X := f v x in

constr:(@NatS v X)

| ?x*?y => let X := f v x in

let Y := f v y in

constr:(@NatMul v X Y)

end.
Fig. 3. Reification Without Binders in Ltac

We have made detailed walk-
throughs and source code of these
implementations available2 in hope
that they will be useful for oth-
ers considering implementing reifi-
cation using one of these metapro-
gramming mechanisms, instructive
as nontrivial examples of multi-
ple metaprogramming facilities, or
helpful as a case study in Coq per-
formance engineering. However, we do not recommend reading these out of gen-
eral interest: most of the complexity in the described implementations strikes
us as needless, with significant aspects of the design being driven by surpris-
ing behaviors, misfeatures, bugs, and performance bottlenecks of the underlying
machinery as opposed to the task of reification.

3 Reification by Parametricity

We propose factoring reification into two passes, both of which essentially have
robust, built-in implementations in Coq: abstraction or generalization, and sub-
stitution or specialization.
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Fig. 4. Abstraction and Reification

The key insight to this factoring
is that the shape of a reified term is
essentially the same as the shape of
the term that we start with. We can
make precise the way these shapes
are the same by abstracting over
the parts that are different, obtain-
ing a function that can be special-
ized to give either the original term
or the reified term.

That is, we have the commutative triangle in Figure 4.

3.1 Case-By-Case Walkthrough

Function Applications And Constants. Consider the example of reifying
2× 2. In this case, the term is 2× 2 or (mul (S (S O)) (S (S O))).

To reify, we first generalize or abstract the term 2 × 2 over the successor
function S, the zero constructor O, the multiplication function mul, and the
type N of natural numbers. We get a function taking one type argument and
three value arguments:

ΛN. λ(Mul : N → N → N) (O : N) (S : N → N).Mul (S (S O)) (S (S O))

2 https://github.com/mit-plv/reification-by-parametricity

https://github.com/mit-plv/reification-by-parametricity


We can now specialize this term in one of two ways: we may substitute N,
mul, O, and S, to get back the term we started with; or we may substitute expr,
NatMul, NatO, and NatS to get the reified syntax tree

NatMul (NatS (NatS NatO)) (NatS (NatS NatO))

This simple two-step process is the core of our algorithm for reification: ab-
stract over all identifiers (and key parts of their types) and specialize to syntax-
tree constructors for these identifiers.

Wrapped Primitives: “Let” Binders, Eliminators, Quantifiers. The
above procedure can be applied to a term that contains “let” binders to get
a PHOAS syntax tree that represents the original term, but doing so would not
capture sharing. The result would contain native “let” bindings of subexpres-
sions, not PHOAS let expressions. Call-by-value evaluation of any procedure ap-
plied to the reification result would first substitute the let-bound subexpressions
– leading to potentially exponential blowup and, in practice, memory exhaustion.

The abstraction mechanisms in all proof assistants (that we know about)
only allow abstracting over terms, not language primitives. However, primitives
can often be wrapped in explicit definitions, which we can abstract over. For
example, we already used a wrapper for “let” binders, and terms that use it can
be reified by abstracting over that definition. If we start with the expression

dlet a := 1 in a× a
and abstract over (@Let In N N), S, O, mul, and N, we get a function of one
type argument and four value arguments:

ΛN. λ (Mul : N → N → N). λ(O : N). λ(S : N → N).

λ(LetIn : N → (N → N)→ N). LetIn (S O) (λa. Mul a a)

We may once again specialize this term to obtain either our original term or the
reified syntax. Note that to obtain reified PHOAS syntax, we must include a Var

node in the LetIn expression; we substitute (λx f. LetIn x (λv. f (Var v))) for
LetIn to obtain the PHOAS syntax tree

LetIn (NatS NatO) (λv. NatMul (Var v) (Var v))

Wrapping a metalanguage primitive in a definition in the code to be reified is
in general sufficient for reification by parametricity. Pattern matching and recur-
sion cannot be abstracted over directly, but if the same code is expressed using
eliminators, these can be handled like other functions. Similarly, even though
∀/Π cannot be abstracted over, proof automation that itself introduces uni-
versal quantifiers before reification can easily wrap them in a marker definition
( forall T P := forall (x:T), P x) that can be. Existential quantifiers are
not primitive in Coq and can be reified directly.

Lambdas. While it would be sufficient to require that, in code to be reified,
we write all lambdas with a named wrapper function, that would significantly



clutter the code. We can do better by making use of the fact that a PHOAS
object-language lambda (Abs node) consists of a metalanguage lambda that
binds a value of type var, which can be used in expressions through constructor
Var : var → expr. Naive reification by parametricity would turn a lambda
of type N → N into a lambda of type expr → expr. A reification procedure
that explicitly recurses over the metalanguage syntax could just precompose
this recursive-call result with Var to get the desired object-language encoding
of the lambda, but handling lambdas specially does not fit in the framework of
abstraction and specialization.

First, let us handle the common case of lambdas that appear as arguments
to higher-order functions. One easy approach: while the parametricity-based
framework does not allow for special-casing lambdas, it is up to us to choose
how to handle functions that we expect will take lambdas as arguments. We
may replace each higher-order function with a metalanguage lambda that wraps
the higher-order arguments in object-language lambdas, inserting Var nodes as
appropriate. Code calling the function sum upto n f := f(0) + f(1) + · · · +
f(n) can be reified by abstracting over relevant definitions and substituting
(λn f. SumUpTo n (Abs (λv. f (Var v)))) for sum upto. Note that the expression
plugged in for sum upto differs from the one plugged in for Let In only in
the use of a deeply embedded abstraction node. If we wanted to reify LetIn as
just another higher-order function (as opposed to a distinguished wrapper for a
primitive), the code would look identical to that for sum upto.

It would be convenient if abstracting and substituting for functions that take
higher-order arguments were enough to reify lambdas, but here is a counterex-
ample.

λ x y. x× ((λ z. z × z) y)

ΛN. λ(Mul : N → N → N). λ (x y : N). Mul x ((λ (z : N). Mul z z) y)

λ (x y : expr). NatMul x (NatMul y y)

The result is not even a PHOAS expression. We claim a desirable reified form is

Abs(λ x. Abs(λ y. NatMul (Var x) (NatMul (Var y) (Var y))))

Admittedly, even our improved form is not quite precise: λ z. z×z has been lost.
However, as almost all standard Coq tactics silently reduce applications of lamb-
das, working under the assumption that functions not wrapped in definitions will
be arbitrarily evaluated during scripting is already the norm. Accepting that lim-
itation, it remains to consider possible occurrences of metalanguage lambdas in
normal forms of outputs of reification as described so far. As lambdas in expr

nodes that take metalanguage functions as arguments (LetIn, Abs) are handled
by the rules for these nodes, the remaining lambdas must be exactly at the
head of the expression. Manipulating these is outside of the power of abstraction
and specialization; we recommend postprocessing using a simple recursive tactic
script.



3.2 Commuting Abstraction and Reduction

Sometimes, the term we want to reify is the result of reducing another term. For
example, we might have a function that reduces to a term with a variable number
of let binders.3 We might have an inductive type that counts the number of
let ... in ... nodes we want in our output.

Inductive count := none | one_more (how_many : count).

It is important that this type be syntactically distinct from N for reasons we will
see shortly.
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Fig. 5. Abstraction, Reification, Reduction

We can then define a recursive
function that constructs some num-
ber of nested let binders:

Fixpoint big (x:nat) (n:count)

: nat

:= match n with

| none => x

| one_more n'

=> dlet x' := x * x in

big x' n'

end.

Our commutative diagram in Figure 4 now has an additional node, becoming
Figure 5. Since generalization and specialization are proportional in speed to the
size of the term begin handled, we can gain a significant performance boost by
performing generalization before reduction. To explain why, we split apart the
commutative diagram a bit more; in reduction, there is a δ or unfolding step,
followed by a βι step that reduces applications of λs and evaluates recursive
calls. In specialization, there is an application step, where the λ is applied to
arguments, and a β-reduction step, where the arguments are substituted. To
obtain reified syntax, we may perform generalization after δ-reduction (before
βι-reduction), and we are not required to perform the final β-reduction step
of specialization to get a well-typed term. It is important that unfolding big

results in exposing the body for generalization, which we accomplish in Coq by
exposing the anonymous recursive function; in other languages, the result may
be a primitive eliminator applied to the body of the fixpoint. Either way, our

3 More realistically, we might have a function that represents big numbers using mul-
tiple words of a user-specified width. In this case, we may want to specialize the
procedure to a couple of different bitwidths, then reifying the resulting partially
reduced term.



commutative diagram thus becomes
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Let us step through this alternative path of reduction using the example of the
unreduced term big 1 100, where we take 100 to mean the term represented
by (one more · · · (one more︸ ︷︷ ︸

100

none ) · · · )︸ ︷︷ ︸
100

.

Our first step is to unfold big, rendered as the arrow labeled δ in the dia-
gram. In Coq, the result is an anonymous fixpoint; here we will write it using
the recursor count rec of type ∀T. T → (count→ T → T )→ count→ T . Per-
forming δ-reduction, that is, unfolding big, gives us the small partially reduced
term(

λ(x : N). λ(n : count).

count rec (N→ N) (λx. x) (λn′. λbign′ . λx. dlet x′ := x×x in bign′ x′)
)

1 100

We call this term small, because performing βι reduction gives us a much
larger reduced term:

dlet x1 := 1× 1 in · · · dlet x100 := x99 × x99 in x100

Abstracting the small partially reduced term over (@Let In N N), S, O, mul,
and N gives us the abstracted unreduced term

ΛN. λ(Mul : N → N → N)(O : N)(S : N → N)(LetIn : N → (N → N)→ N).(
λ(x : N). λ(n : count). count rec (N → N) (λx. x)

(λn′. λbign′ . λx. LetIn (Mul x x) (λx′. bign′ x′))
)

(S O) 100

Note that it is essential here that count is not syntactically the same as
N; if they were the same, the abstraction would be ill-typed, as we have not
abstracted over count rec. More generally, it is essential that there is a clear
separation between types that we reify and types that we do not, and we must
reify all operations on the types that we reify.

We can now apply this term to expr, NatMul, NatS, NatO, and, finally,
(λv f. LetIn v (λx. f (Var x))). We get an unreduced reified syntax tree of
type expr. If we now perform βι reduction, we get our fully reduced reified
term.



We take a moment to emphasize that this technique is not possible with
any other method of reification. We could just as well have not specialized the
function to the count of 100, yielding a function of type count → expr, despite
the fact that our reflective language knows nothing about count!

This technique is especially useful for terms that will not reduce without
concrete parameters, but which should be reified for many different parameters.
Running reduction once is slightly faster than running OCaml reification once,
and it is more than twice as fast as running reduction followed by OCaml reifi-
cation. For sufficiently large terms and sufficiently many parameter values, this
performance beats even OCaml reification.4

3.3 Implementation in Ltac

ExampleMoreParametricity.v in the code supplement mirrors the development
of reification by parametricity in subsection 3.1.

Unfortunately, Coq does not have a tactic that performs abstraction.5 How-
ever, the pattern tactic suffices; it performs abstraction followed by application,
making it a sort of one-sided inverse to β-reduction. By chaining pattern with
an Ltac-match statement to peel off the application, we can get the abstracted
function.

Ltac Reify x :=

match(eval pattern nat, Nat.mul, S, O, (@Let_In nat nat) in x)with

| ?rx _ _ _ _ _ =>

constr:( fun var => rx (@expr var) NatMul NatS NatO

(fun v f => LetIn v (fun x => f (Var x))) )

end.

Note that if @expr var lives in Type rather than Set, an additional step involv-
ing retyping the term is needed; we refer the reader to Parametricity.v in the
code supplement.

The error messages returned by the pattern tactic can be rather opaque at
times; in ExampleParametricityErrorMessages.v, we provide a procedure for
decoding the error messages.

Open Terms. At some level it is natural to ask about generalizing our method
to reify open terms (i.e., with free variables), but we think such phrasing is a red
herring. Any lemma statement about a procedure that acts on a representation
of open terms would need to talk about how these terms would be closed. For
example, solvers for algebraic goals without quantifiers treat free variables as
implicitly universally quantified. The encodings are invariably ad-hoc: the free

4 We discovered this method in the process of needing to reify implementations of
cryptographic primitives [6] for a couple hundred different choices of numeric pa-
rameters (e.g., prime modulus of arithmetic). A couple hundred is enough to beat
the overhead.

5 The generalize tactic returns ∀ rather than λ, and it only works on types.



variables might be assigned unique numbers during reification, and the lemma
statement would be quantified over a sufficiently long list that these numbers
will be used to index into. Instead, we recommend directly reifying the natural
encoding of the goal as interpreted by the solver, e.g. by adding new explicit
quantifiers. Here is a hypothetical goal and a tactic script for this strategy:

(a b : nat) (H : 0 < b) |- ∃ q r, a = q × b + r ∧ r < b

repeat match goal with

| n : nat |- ?P =>

match eval pattern n in P with

| ?P' _ => revert n; change (_forall nat P')

end

| H : ?A |- ?B => revert H; change (impl A B)

| |- ?G => (* ∀ a b, 0 < b -> ∃ q r, a = q × b + r ∧ r < b *)

let rG := Reify G in

refine (nonlinear_integer_solver_sound rG _ _);

[ prove_wf | vm_compute; reflexivity ]

end.

Briefly, this script replaced the context variables a and b with universal
quantifiers in the conclusion, and it replaced the premise H with an implication
in the conclusion. The syntax-tree datatype used in this example can be found
in ExampleMoreParametricity.v.

3.4 Advantages and Disadvantages

This method is faster than all but Ltac2 and OCaml reification, and commuting
reduction and abstraction makes this method faster even than the low-level
Ltac2 reification in many cases. Additionally, this method is much more concise
than nearly every other method we have examined, and it is very simple to
implement.

We will emphasize here that this strategy shines when the initial term is
small, the partially computed terms are big (and there are many of them), and
the operations to evaluate are mostly well-separated by types (e.g., evaluate all
of the count operations and none of the nat ones).

This strategy is not directly applicable for reification of match (rather than
eliminators) or let ... in ... (rather than a definition that unfolds to let

... in ...), forall (rather than a definition that unfolds to forall), or when
reification should not be modulo βιζ-reduction.

4 Performance Comparison

We have done a performance comparison of the various methods of reification
to the PHOAS language @expr var from Figure 1.3 in Coq 8.7.1. A typical
reification routine will obtain the term to be reified from the goal, reify it,



run transitivity (denote reified term) (possibly after normalizing the rei-
fied term), and solve the side condition with something like lazy [denote];

reflexivity. Our testing on a few samples indicated that using change rather
than transitivity; lazy [denote]; reflexivity can be around 3X slower;
note that we do not test the time of Defined.

There are two interesting metrics to consider: (1) how long does it take to
reify the term? and (2) how long does it take to get a normalized reified term, i.e.,
how long does it take both to reify the term and normalize the reified term? We
have chosen to consider (1), because it provides the most fine-grained analysis
of the actual reification method.

4.1 Without Binders

We look at terms of the form 1 * 1 * 1 * ... where multiplication is associ-
ated to create a balanced binary tree. We say that the size of the term is the
number of 1s. We refer the reader to the attached code for the exact test cases
and the code of each reification method being tested.

We found that the performance of all methods is linear in term size.
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Fig. 6. Performance of Reification without Binders

Sorted from slowest to fastest, most of the labels in Figure 6 should be self-
explanatory and are found in similarly named .v files in the associated code; we
call out a few potentially confusing ones:

– The “Parsing” benchmark is “reification by copy-paste”: a script generates a
.v file with notation for an already-reified term; we benchmark the amount
of time it takes to parse and typecheck that term. The “ParsingElaborated”
benchmark is similar, but instead of giving notation for an already-reified
term, we give the complete syntax tree, including arguments normally left



implicit. Note that these benchmarks cut off at around 5000 rather than at
around 20 000, because on large terms, Coq crashes with a stack overflow in
parsing.

– We have four variants starting with “CanonicalStructures” here. The Flat
variants reify to @expr nat rather than to forall var, @expr var and
benefit from fewer function binders and application nodes. The HOAS vari-
ants do not include a case for let ... in ... nodes, while the PHOAS
variants do. Unlike most other reification methods, there is a significant cost
associated with handling more sorts of identifiers in canonical structures.

We note that on this benchmark our method is slightly faster than template-
coq, which reifies to de Bruijn indices, and slightly slower than the quote plugin
in the standard library and the OCaml plugin we wrote by hand.

4.2 With Binders

We look at terms of the form dlet a1 := 1 * 1 in dlet a2 := a1 * a1 in

... dlet an := an−1 * an−1 in an, where n is the size of the term. The first
graph shown here includes all of the reification variants at linear scale, while the
next step zooms in on the highest-performance variants at log-log scale.

In addition to reification benchmarks, the graph in Figure 7 includes as a
reference (1) the time it takes to run lazy reduction on a reified term already in
normal form (“identity lazy”) and (2) the time it takes to check that the reified
term matches the original native term (“lazy Denote”). The former is just barely
faster than OCaml reification; the latter often takes longer than reification itself.
The line for the template-coq plugin cuts off at around 10 000 rather than around
20 000 because at that point template-coq starts crashing with stack overflows.

A nontrivial portion of the cost of “Parametricity (reduced term)” seems to
be due to the fact that looking up the type of a binder is linear in the number of
binders in the context, thus resulting in quadratic behavior of the retyping step
that comes after abstraction in the pattern tactic. In Coq 8.8, this lookup will
be log n, and so reification will become even faster [10].

5 Future Work, Concluding Remarks

We identify one remaining open question with this method that has the potential
of removing the next largest bottleneck in reification: using reduction to show
that the reified term is correct.

unreduced term
δ��

small partially
reduced term

&&

unreduced
reified syntax

???

xx
unreduced

abstracted term

ff
88

Fig. 8. Completing the commutative triangle

Recall our reification pro-
cedure and the associated di-
agram, from Figure 3.2. We
perform δ on an unreduced
term to obtain a small, par-
tially reduced term; we then
perform abstraction to get
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Fig. 7. Performance of Reification with Binders

an abstracted, unreduced
term, followed by applica-
tion to get unreduced reified syntax. These steps are all fast. Finally, we perform
βι-reduction to get reduced, reified syntax and perform βιδ reduction to get back
a reduced form of our original term. These steps are slow, but we must do them
if we are to have verified reflective automation.

It would be nice if we could prove this equality without ever reducing our
term. That is, it would be nice if we could have the diagram in Figure 8.

The question, then, is how to connect the small partially reduced term with
denote applied to the unreduced reified syntax. That is, letting F denote the
unreduced abstracted term, how can we prove, without reducing F , that

F N Mul O S (@Let In N N) = denote (F expr NatMul NatO NatS LetIn)



We hypothesize that a form of internalized parametricity would suffice for
proving this lemma. In particular, we could specialize F ’s type argument with
N× expr. Then we would need a proof that for any function F of type

∀(T : Type), (T → T → T )→ T → (T → T )→ (T → (T → T )→ T )→ T

and any types A and B, and any terms fA : A → A → A, fB : B → B → B,
a : A, b : B, gA : A → A, gB : B → B, hA : A → (A → A) → A, and
hB : B → (B → B) → B, using f × g to denote lifting a pair of functions to a
function over pairs:

fst (F (A×B) (fA × fB) (a, b) (gA × gB) (hA × hB)) = F A fA a gA hA ∧
snd (F (A×B) (fA × fB) (a, b) (gA × gB) (hA × hB)) = F B fB b gB hB

This theorem is a sort of parametricity theorem.

Despite this remaining open question, we hope that our performance results
make a strong case for our method of reification; it is fast, concise, and robust.
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