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Abstract. Tactics are often featured in proof assistants to simplify the
interactive development of proofs by allowing domain-speci�c automa-
tion. Moreover, tactics are also helpful to check the output of automatic
theorem provers because they can rebuild details that the provers omit.
We use meta-programming to de�ne a tactic language for the Dedukti
logical framework which can be used both for checking certi�cates pro-
duced by automatic provers and for developing proofs interactively.
More precisely, we propose a dependently-typed tactic language for �rst-
order logic in Meta Dedukti and an untyped tactic language built on top
of the typed one. We show the expressivity of these languages on two
applications: a transfer tactic and a resolution certi�cate checker.

1 Introduction

Dedukti[23] is a logical framework implementing the λΠ-calculus modulo theo-
ries. It has been proposed as a universal proof checker[7]. In the tradition of the
Edinburgh Logical Framework, Dedukti is based on the Curry-Howard isomor-
phism: it reduces the problem of checking proofs in an embedded logic to the
problem of type-checking terms in a given signature. In order to express com-
plex logical systems such as the Calculus of Inductive Constructions, Dedukti
features rewriting: the user can declare rewrite rules handling the computational
part of the system.

Proof translators from the proof assistants HOL Light, Coq, Matita, FoCaL-
iZe, and PVS to Dedukti have been developed and used to recheck proofs of
these systems[1,2,10,16]. Moreover, Zenon Modulo[12] and iProver Modulo[9],
two automatic theorem provers for an extension of classical �rst-order logic with
rewriting known as Deduction modulo, are able to output proofs in Dedukti.

These proof-producing provers are helpful in the context of proof interoper-
ability between proof assistants. Independently developed formal libraries often
use equivalent but non identical de�nitions and these equivalences can often be
proved by automatic theorem provers[11]. Hence the stronger proof automation
in Dedukti is, the easiest it is to exchange a proof between proof assistants.

Dedukti is a mere type checker and it is intended to check machine-generated
proofs, not to assist human users in the formalisation of mathematics. It lacks
many features found in proof assistants to help the human user such as meta
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variables, implicit arguments, and a tactic language. However these features,
especially tactics implementing decision procedures for some fragments of the
considered logic, can be very helpful to check less detailed proof certi�cates

produced by automatic theorem provers and SMT solvers.

Fortunately, Dedukti already has all the features required to turn it into a
powerful meta-programming language in which tactics and certi�cates can be
transformed into proof objects. In this article, we propose a dependently typed
monadic tactic language similar to Mtac[25]. This tactic language can be used
for interactive proof development and certi�cate checking but because of the lack
of implicit arguments in Dedukti, it is still very verbose. For this reason, we also
introduce an untyped tactic language on top of the typed one to ease the writing
of tactics.

Since our goal is to check certi�cates from automatic theorem provers and
to construct proof object out of them, we focus in this article on the Dedukti
encoding of classical �rst-order logic. In section 2, we present Dedukti and the
encoding of classical �rst-order logic. The typed and untyped tactic languages
are respectively presented in section 3 and section 4. Their applications to inter-
active proof development, theorem transfer, and certi�cate checking are shown
in section 5, section 6, and section 7.

2 First-Order Logic in Dedukti

In this section, we present Dedukti by taking as example the encoding of �rst-
order logic. We consider a multisorted �rst-order logic similar to the logics of
the TPTP-TFF1[5] and SMTLIB[3] problem formats; its syntax of terms, and
formulae is given in �g. 1. The logic is parameterized by a possibly in�nite set of
sorts S. Each function symbol f has to be declared with a domain � a list of sorts
[A1, . . . , An] � and with a codomain A ∈ S. A term of sort A is either a variable of
sort A or a function symbol f of domain [A1, . . . , An] and codomain A applied to
terms t1, . . . , tn such that each ti has sort Ai. Similarly, each predicate symbol P
has to be declared with a domain [A1, . . . , An]. A formula is either an atom, that
is a predicate symbol P of domain [A1, . . . , An] applied to terms t1, . . . , tn such
that each ti has sort Ai or is obtained from the �rst-order logical connectives ⊥
(falsehood), ∧ (conjunction), ∨ (disjunction),⇒ (implication) and the quanti�ers
∀ (universal) and ∃ (existential). As usual, we de�ne negation by ¬ϕ := ϕ⇒ ⊥,
truth by > := ¬⊥, and equivalence by ϕ1 ⇔ ϕ2 := (ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1).

Terms t := x | f(t1, . . . , tn)
Formulae ϕ := P (t1, . . . , tn)

| ⊥ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 ⇒ ϕ2 | ∀x : A. ϕ | ∃x : A. ϕ

Fig. 1. Syntax of multisorted �rst-order logic



In Dedukti, we declare symbols for each syntactic class to represent: sorts,
lists of sorts, terms, lists of terms, function symbols, predicate symbols, and
formulae.

sort : Type.

sorts : Type.

term : sort -> Type.

terms : sorts -> Type.

function : Type.

predicate : Type.

prop : Type.

Type is Dedukti's builtin kind of types so the declaration sort : Type. means
that sort is a Dedukti type and the declaration term : sort -> Type.means that
term is a type family indexed by a sort.

Then we require domain and codomains for the symbols.

def fun_domain : function -> sorts.

def fun_codomain : function -> sort.

def pred_domain : predicate -> sorts.

The def keyword is used in Dedukti to indicate that the declared symbol
is de�nable: this means that it is allowed to appear as head symbol in rewrite
rules. In the case of the fun_domain, fun_codomain, and pred_domain functions,
we do not give any rewrite rule now but each theory declaring new symbols is
in charge of extending the de�nitions of these functions for the new symbols by
adding the appropriate rewrite rules.

We then provide all the syntactic constructs, binding is represented using
higher-order abstract syntax:

nil_sort : sorts.

cons_sort : sort -> sorts -> sorts.

nil_term : terms nil_sort.

cons_term : A : sort -> term A -> As : sorts -> terms As ->

terms (cons_sort A As).

fun_apply : f : function -> terms (fun_domain f) -> term (fun_codomain f).

pred_apply : p : predicate -> terms (pred_domain p) -> prop.

false : prop.

and : prop -> prop -> prop.

or : prop -> prop -> prop.

imp : prop -> prop -> prop.

all : A : sort -> (term A -> prop) -> prop.

ex : A : sort -> (term A -> prop) -> prop.

def not (a : prop) := imp a false.

def eqv (a : prop) (b : prop) := and (imp a b) (imp b a).



The types of cons_term, fun_apply, pred_apply, all, and ex use the dependent
productΠx : A. B where xmight occur in B; it is written x : A -> B in Dedukti.

Finally, we de�ne what it means to be a proof of some proposition. For this
we could declare symbols corresponding to the derivation rules of some proof
system such as natural deduction or sequent calculus. However, the standard
way to do this for �rst-order logic in Dedukti is to use the second-order de�nition
of connectives and then derive the rules of natural deduction.

def proof : prop -> Type.

[] proof false --> a : prop -> proof a

[a,b] proof (and a b) -->

c : prop -> (proof a -> proof b -> proof c) -> proof c

[a,b] proof (or a b) -->

c : prop -> (proof a -> proof c) -> (proof b -> proof c) -> proof c

[a,b] proof (imp a b) --> proof a -> proof b

[A,p] proof (all A p) --> x : term A -> proof (p x)

[A,p] proof (ex A p) -->

c: prop -> (x : term A -> proof (p x) -> proof c) -> proof c.

Each rewrite rule in this de�nition of proof has the form [context] lhs --> rhs.
The context lists the free variables appearing in the left-hand side, the left-hand
side is a pattern (a �rst-order pattern in this case but higher-order patterns in
the sense of Miller[21] are also supported by Dedukti) and the right-hand side
is a term whose free variables are contained in the context.

All the rules of natural deduction can now be proved, here is for example,
the introduction rule for conjunction:

def and_intro (a : prop) (b : prop) (Ha : proof a) (Hb : proof b)

: proof (and a b) :=

c : prop => f : (proof a -> proof b -> proof c) => f Ha Hb.

The syntax x : A => b is used in Dedukti for the λ-abstraction λx : A. b.
To check the certi�cates found by automatic theorem provers for classical

logic, we need two axiom schemes: the law of excluded middle and the assumption
that all sorts are inhabited.

excluded_middle : a : prop -> proof (or a (not a)).

default_value : A : sort -> term A.

The Dedukti signature that we have described in this section is a faithful
encoding of classical �rst-order logic[14]: a �rst-order formula ϕ is provable in
classical natural deduction if and only if the Dedukti type proof ϕ is inhabited.

3 A Typed Tactic Language for Meta Dedukti

Unfortunately, writing Dedukti terms in the signature of the previous section is
tedious not only for human users but also for automated tools which typically



reason at a higher level than natural deduction proofs. In this section, we propose
a �rst tactic language to ease the creation of terms in this signature.

Since Dedukti does not check for termination, it is very easy to encode
a Turing-complete language in Dedukti. For example, the untyped λ-calculus
can be encoded with only one declaration def A : Type. and one rewrite rule
[ ] A --> A -> A.

Thanks to Turing-completeness, we can use Dedukti as a dependently-typed
programming language based on rewriting. The results of these programs are
Dedukti terms that need to be checked in a trusted Dedukti signature such as
the one of section 2 if we want to interpret them as proofs. We distinguish two
di�erent Dedukti signatures: the trusted signature of section 2 and an untrusted
signature extending the one of section 2 and used to elaborate terms to be
checked in the trusted one. Unless otherwise precised, all the Dedukti excerpts
from now on are part of this second, untrusted signature.

When using Dedukti as a meta-programming language, we are not so much
interested in the type-checking problem than in the normal forms (with respect
to the untrusted system) of some terms. For this reason, we use a fork of Dedukti
called Meta Dedukti[13] that we developed with Thiré. This tool outputs a copy
of its input Dedukti �le in which each term is replaced by its normal form. The
produced �le can then be sent to Dedukti to be checked in the trusted signature.

exc : Type.

mtactic : prop -> Type.

mret : A : prop -> proof A -> mtactic A.

mraise : A : prop -> exc -> mtactic A.

def mrun : A : prop -> mtactic A -> proof A.

def mbind : A : prop -> B : prop ->

mtactic A -> (proof A -> mtactic B) -> mtactic B.

def mtry : A : prop -> mtactic A -> (exc -> mtactic A) -> mtactic A.

def mintro_term : A : sort -> B : (term A -> prop) ->

(x : term A -> mtactic (B x)) -> mtactic (all A B).

def mintro_proof : A : prop -> B : prop ->

(proof A -> mtactic B) -> mtactic (imp A B).

Fig. 2. The typed tactic language: declarations

In �g. 2 and �g. 3 we de�ne our typed tactic language for Meta Dedukti
inspired by the MTac tactic language for Coq[25]. The main type of this devel-
opment is the type mtactic a (for monadic tactic) where a is a proposition. We
call tactical any function returning a term of type mtactic a for some a. A term
t of type mtactic a contains instructions to attempt a proof of the proposition
a. Each tactic can either fail, in which case its normal form is mraise a e where
e is of type exc, an extensible type of exceptions or succeed in which case its
normal form is mret a p where p is a proof of a. The tacticals mret and mraise



can be seen as the two constructors of the inductive type family mtactic. When
evaluating a tactic is successful, we can extract the produced proof using the
mrun partial function which is unde�ned in the case of the mraise constructor.
Tactics can be chained using the mbind tactical and backtracking points can be
set using the mtry tactical.

[a] mrun _ (mret _ a) --> a.

[f,t] mbind _ _ (mret _ t) f --> f t

[B,t] mbind _ B (mraise _ t) _ --> mraise B t.

[A,t] mtry A (mret _ t) _ --> mret A t

[t,f] mtry _ (mraise _ t) f --> f t.

[A,B,b] mintro_term A B (x => mret (B x) (b x)) -->

mret (all A B) (all_intro A B (x => b x))

[A,B,e] mintro_term A B (x => mraise (B x) e) --> mraise (all A B) e.

[A,B,b] mintro_proof A B (x => mret B (b x)) -->

mret (imp A B) (imp_intro A B (x => b x))

[A,B,e] mintro_proof A B (x => mraise _ e) --> mraise (imp A B) e.

Fig. 3. The typed tactic language: rewrite rules

The mbind tactical is enough to de�ne tactics corresponding to all the rules
of natural deduction that do not change the proof context. As a simple example,
we can de�ne a msplit tactical attempting to prove goals of the form and a b

from tactics t1 and t2 attempting to prove a and b respectively.

def msplit (a : prop) (b : prop) (t1 : mtactic a) (t2 : mtactic b)

: mtactic (and a b) :=

mbind a (and a b) t1 (Ha =>

mbind b (and a b) t2 (Hb =>

mret (and a b) (and_intro a b Ha Hb))).

To handle the natural deduction rules that do modify the rule context such as
the introduction rules for implication and universal quanti�cation, we add two
new tacticals mintro_term and mintro_proof. These tacticals are partial func-
tions only de�ned if their argument is a tactical that uniformly succeed on all
arguments or uniformly fail on all arguments.

4 An Untyped Tactic Language for Meta Dedukti

The main limitation of the typed tactic language presented in section 3 is its
verbosity. Since Dedukti does not feature implicit arguments, each time the user



applies the msplit tactical, she has to provide propositions a and b such that
the goal to be proved is convertible with and a b. Another issue is that this
tactic language does not permit to automate search among assumptions; new
assumptions can be introduced by the mintro_proof tactical but the user of the
typed tactic language then has to refer explicitly to the introduced assumption.

The untyped1 tactic language that we now consider solves both issues. Tactics
are interpreted in a proof context, a list of terms and proofs, by the eval function
returning a typed tactic. For the common case of evaluating a tactic in the empty
context, we de�ne the prove function.

context : Type.

nil_ctx : context.

cons_ctx_var : A : sort -> term A -> context -> context.

cons_ctx_proof : A : prop -> proof A -> context -> context.

tactic : Type.

def eval : context -> goal : prop -> tactic -> mtactic goal.

def prove (a : prop) (t : tactic) : proof a :=

mrun a (eval nil_ctx a t).

Some of the most fundamental tacticals of the untyped language are de-
�ned in �g. 4 by the way eval behaves on them. The with_goal tactical is
used to get access to the current goal, it takes another tactical as argument
and evaluates it on the goal. The with_assumption tactical tries a tactical on
each assumption of the context until one succeeds. The exact, raise, try,
bind and intro tacticals are wrapper around the constructs of the typed lan-
guage. The full de�nitions of these tacticals and many other are available in the
�le https://gitlab.math.univ-paris-diderot.fr/cauderlier/dktactics/
blob/master/meta/tactic.dk

On top of these basic tacticals, we have implemented tacticals corresponding
to the rules of intuitionistic sequent calculus. For example, �g. 5 presents the
de�nitions of the tacticals about conjunction: match_and deconstructs formulae
of the form and a b, split performs the right rule of conjunction in sequent
calculus and is de�ned very similarly to msplit, its typed variant of section 3.
The tactical destruct_and implements the following generalisation of the left rule
for conjunction:

Γ ` A ∧B Γ,A,B ` C
Γ ` C

The axiom rule of sequent calculus is implemented by the assumption tactic
de�ned as with_assumption exact.

1 By "untyped" we do not mean that no type is assigned to the Dedukti terms of the
language but that typing is trivial: all the tactics have the same type (tactic).

https://gitlab.math.univ-paris-diderot.fr/cauderlier/dktactics/blob/master/meta/tactic.dk
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with_goal : (prop -> tactic) -> tactic.

[ctx,goal,F] eval ctx goal (with_goal F) --> eval ctx goal (F goal).

with_assumption : (A : prop -> proof A -> tactic) -> tactic.

[ctx,goal,F] eval ctx goal (with_assumption F) --> ...

exact_mismatch : exc.

exact : a : prop -> proof a -> tactic.

[a,H] eval _ a (exact a H) --> mret a H

[a] eval _ a (exact _ _) --> mraise a exact_mismatch.

raise : exc -> tactic.

[a,e] eval _ a (raise e) --> mraise a e.

try : tactic -> (exc -> tactic) -> tactic.

[ctx,goal,t,f] eval ctx goal (try t f) --> mtry ...

bind : A : prop -> tactic -> (proof A -> tactic) -> tactic.

[ctx,goal,A,t,f] eval ctx goal (bind A t f) --> mbind ...

intro_failure : exc.

intro : tactic -> tactic.

[ctx,a,b,t] eval ctx (imp a b) (intro t) --> mintro_proof ...

[ctx,A,p,t] eval ctx (all A p) (intro t) --> mintro_term ...

[goal] eval _ goal (intro _) --> mraise goal intro_failure.

Fig. 4. Low-level untyped tacticals

matching_failure : exc.

def match_and : prop -> (prop -> prop -> tactic) -> tactic.

[a,b,t] match_and (and a b) t --> t a b

[] match_and _ _ --> raise matching_failure.

def split (t1 : tactic) (t2 : tactic) :=

with_goal (goal => match_and goal

(a => b => bind a t1 (Ha =>

bind b t2 (Hb =>

exact (and a b) (and_intro a b Ha Hb))))).

def destruct_and (a : prop) (b : prop) (tab : tactic) (t : tactic) :=

with_goal (goal => bind (and a b) tab (Hab =>

bind (imp a (imp b goal)) (intro (intro t)) (Hf =>

exact goal (Hf (and_elim_1 a b Hab) (and_elim_2 a b Hab))))).

Fig. 5. Conjunction tacticals



5 Example of Interactive Proof Development

Before considering sophisticated applications of our tactic languages in section 6
and section 7, we illustrate the interactive use of our untyped tactic language on
a simple example: commutativity of conjunction.

We start with the following Dedukti �le:

def t0 : tactic.

def and_commutes (a : prop) (b : prop) : proof (imp (and a b) (and b a))

:= prove (imp (and a b) (and b a)) t0.

The unde�ned constant t0 is a placeholder for an unsolved goal. The inter-
active process consists in looking into the normal form of this �le for blocked
applications of the eval function, adding some lines after the declaration of t0,
and repeating until the de�nition of and_commutes is a term of the encoding of
section 2.

At the �rst iteration, Meta Dedukti answers

def t0 : tactic.

def and_commutes : a:prop -> b:prop ->

(c:prop -> ((proof a) -> (proof b) -> proof c) -> proof c) ->

c:prop -> ((proof b) -> (proof a) -> proof c) -> proof c

:= a:prop => b:prop =>

mrun (imp (and a b) (and b a))

(eval nil_ctx (imp (and a b) (and b a)) t0).

We have one blocked call to eval on the last line:
eval nil_ctx (imp (and a b) (and b a)) t0; this means we have to prove ` (a∧
b)⇒ (b∧ a). To apply the intro tactical, we introduce a new unde�ned subgoal
t1 and de�ne t0 as intro t1 by adding the following line in the middle of our
�le.

def t1 : tactic. [ ] t0 --> intro t1.

Normalising again produces a �le containing the term
eval (cons_ctx_proof (and a b) a0 nil_ctx) (and b a) t1 which means we now
have to prove a ∧ b ` b ∧ a. To do this we add the following lines right after the
previously added line:

def t2 : tactic.

def t3 : tactic.

[t1] t1 --> with_assumption (c => H => match_and c

(a => b => destruct_and a b t2 t3)).

In other words we try to apply the destruct_and tactical successively to
all assumptions of the proof context. Since we have only one assumption and
it is indeed a conjunction, the call reduces and Meta Dedukti tells us that



we are left with eval (cons_ctx_proof (and a b) a0 nil_ctx) (and a b) t2 and
eval (cons_ctx_proof b a3 (cons_ctx_proof a a2 (cons_ctx_proof (and a b) a0

nil_ctx))) (and b a) t3 corresponding respectively to a∧b ` a∧b and b, a, a∧b `
b ∧ a. The �rst subgoal is trivial and can be solved with the assumption tactic
that succeeds when the goal matches one of the assumptions. For the second
subgoal, we introduce the conjunction.

[] t2 --> assumption.

def t4 : tactic.

def t5 : tactic.

[] t3 --> split t4 t5.

We again have two subgoals, eval (cons_ctx_proof b a2 (cons_ctx_proof a

a1 (cons_ctx_proof (and a b) a0 nil_ctx))) b t4 and eval (cons_ctx_proof b

a2 (cons_ctx_proof a a1 (cons_ctx_proof (and a b) a0 nil_ctx))) a t5 corre-
sponding to b, a, a ∧ b ` b and b, a, a ∧ b ` a. In both cases, the goal corresponds
to one of the assumptions so the assumption tactic does the job.

[] t4 --> assumption.

[] t5 --> assumption.

Our theorem is now proved; the following de�nition of and_commutes given by
Meta Dedukti is accepted by Dedukti:

def and_commutes : a:prop -> b:prop ->

(c:prop -> ((proof a) -> (proof b) -> proof c) -> proof c) ->

c:prop -> ((proof b) -> (proof a) -> proof c) -> proof c

:=

a:prop => b:prop => x => c:prop =>

f:((proof b) -> (proof a) -> proof c) =>

f (x b (x0 => y => y)) (x a (x0 => y => x0)).

6 Theorem Transfer

When translating independently developed formal libraries in Dedukti, we end
up with two isomorphic copies A and B of the same notions. Contrary to the
mathematical habit of identifying isomorphic structures, in formal proof systems
a theorem ϕA on the structure A cannot be used without justi�cation as a
theorem ϕB on the structure B. However this justi�cation, a proof of ϕA ⇒
ϕB , can be automated in tactic based proof assistants. The automation of such
goals of the form ϕA ⇒ ϕB is called theorem transfer[17,26] and the tactic
implementing it is called a transfer tactic.

In �g. 6, we adapt the higher-order transfer calculi of [17] and [26] to
�rst-order logic. The notations P (R1 × . . . × Rn) Q abbreviates the for-
mula ∀x1, . . . xn, y1, . . . yn. x1 R1 y1 ⇒ . . . ⇒ xn Rn yn ⇒ P (x1, . . . , xn) ⇒
Q(y1, . . . , yn) and the notation f (R1× . . .×Rn → R) g abbreviates the formula
∀x1, . . . xn, y1, . . . yn. x1 R1 y1 ⇒ . . .⇒ xn Rn yn ⇒ f(x1, . . . , xn)R g(y1, . . . , yn).



Γ ` ⊥ ⇒ ⊥
Γ ` ϕ1 ⇒ ψ1 Γ ` ϕ2 ⇒ ψ2

Γ ` (ϕ1 ∧ ϕ2)⇒ (ψ1 ∧ ψ2)

Γ ` ϕ1 ⇒ ψ1 Γ ` ϕ2 ⇒ ψ2

Γ ` (ϕ1 ∨ ϕ2)⇒ (ψ1 ∨ ψ2)

Γ ` ψ1 ⇒ ϕ1 Γ ` ϕ2 ⇒ ψ2

Γ ` (ϕ1 ⇒ ϕ2)⇒ (ψ1 ⇒ ψ2)

Γ, a : A, c : C, a R c ` ϕa ⇒ ψc ` ∀c : C. ∃a : A. a R c

Γ ` (∀a : A. ϕa)⇒ (∀c : C. ψc)

Γ, a : A, c : C, a R c ` ϕa ⇒ ψc ` ∀a : A. ∃c : C. a R c

Γ ` (∃a : A. ϕa)⇒ (∃c : C. ψc)

Γ ` t1 R1 u1 . . . Γ ` tn Rn un ` P (R1 × . . .×Rn) Q

Γ ` P (t1, . . . , tn)⇒ Q(u1, . . . , un)

Γ ` t1 R1 u1 . . . Γ ` tn Rn un ` f (R1 × . . .×Rn → R) g
Γ ` f(t1, . . . , tn) R g(u1, . . . , un)

Fig. 6. A �rst-order transfer calculus

Implementing a proof search algorithm for this calculus in our untyped tactic
language is straightforward once we have proved the formula schemes ⊥ ⇒ ⊥,
(ϕ1 ⇒ ψ1)⇒ (ϕ2 ⇒ ψ2)⇒ (ϕ1 ∧ ϕ2)⇒ (ψ1 ∧ ψ2), (ϕ1 ⇒ ψ1)⇒ (ϕ2 ⇒ ψ2)⇒
(ϕ1 ∨ ϕ2)⇒ (ψ1 ∨ ψ2), . . . corresponding to the rules of the calculus.

Instead of deriving the proofs of these formula schemes in natural deduction
directly, we take bene�t of our tactic language to de�ne an auto tactic following a
rather naive strategy for sequent calculus: it applies right rules for all connectives
but the existential quanti�er as long as possible and then applies left rules for
all connectives but universal quanti�cation until the goal matches one of the
assumptions. The auto tactic is able to prove the four �rst rules of our transfer
calculus. The four remaining rules require to instantiate universal assumptions
and are hence out of its scope but they are easy to prove directly.

Our implementation is available at the following URL: https://gitlab.
math.univ-paris-diderot.fr/cauderlier/dktransfer.

7 Resolution Certi�cates

Robinson's resolution calculus[22] is a popular proof calculus for �rst-order au-
tomatic theorem provers. It is a clausal calculus; this means that it does not
handle the full syntax of �rst-order formulae but only the CNF (clausal normal
form) fragment.

A literal is either an atom (a positive literal) or the negation of an atom (a
negative literal). We denote by l the opposite literal of l de�ned by a := ¬a

https://gitlab.math.univ-paris-diderot.fr/cauderlier/dktransfer
https://gitlab.math.univ-paris-diderot.fr/cauderlier/dktransfer


and ¬a := a where a is any atom. A clause is a possibly empty disjunction of
literals. The empty clause corresponds to falsehood. Literals and clauses may
contain free variables which are to be interpreted as universally quanti�ed. We
make this explicit by considering quanti�ed clauses (qclauses for short) which
are formulae of the form ∀x1, . . . , xk. l1 ∨ . . . ∨ ln.

A resolution proof is a derivation of the empty clause from a set of clauses
assumed as axioms. The rules of the resolution calculus are given in �g. 7. The
(Factorisation) and (Resolution) rules are standard, the (Unquanti�cation) rule
is required to remove useless quanti�cations in the clauses produced by the two
other rules. Note that the correctness of this (Unquanti�cation) rule requires the
default_value axiom that we introduced in section 2.

∀−→x . l1 ∨ . . . ∨ ln σ = mgu(li, lj)

∀−→x . σ(l1 ∨ . . . ∨ lj−1 ∨ lj+1 ∨ . . . ∨ ln)
(Factorisation)

∀−→x . l1 ∨ . . . ∨ ln ∀−→y . l′1 ∨ . . . ∨ l′m σ = mgu(li, lj)

∀−→x ,−→y . σ(l1 . . . li−1 ∨ li+1 . . . ln ∨ l′1 . . . l′j−1 ∨ l′j+1 . . . l
′
m)

(Resolution)

∀−→x . C FV (C) = −→y
∀−→y . C

(Unquanti�cation)

Fig. 7. The resolution calculus with quanti�ed clauses

We consider resolution certi�cates in which the assumed and derived clauses
are numbered and each line of the certi�cate indicates:

1. the name of the derivation rule (either �Factorisation� or �Resolution�),
2. the numbers identifying one or two (depending on the chosen derivation rule)

previously assumed or derived clauses,
3. the indexes i and j of the literals to unify, and
4. the number of the newly derived clause.

This level of detail is not unreasonable to ask from a resolution prover;
Prover9[20] for example is able to produce such certi�cates. To express these cer-
ti�cates in Meta Dedukti, we have extended the trusted signature of �rst-order
logic with the de�nitions of the syntactic notions of atoms, literals, clauses,
and qclauses (see �g. 8) and we have de�ned functions factor, resolve, and
unquantify returning the qclause resulting respectively from the (Factorisa-
tion), (Resolution), and (Unquanti�cation) rules and tacticals factor_correct,
resolve_correct, and unquantify_correct attempting to prove the resulting
clauses from proofs of the initial clauses. Moreover, we de�ned a partial func-
tion qclause_of_prop mapping propositions in the clausal fragment to quanti�ed
clauses and we proved it correct on this fragment. The signature of these func-
tions is given in �g. 9.



atom : Type.

mk_atom : p : predicate -> terms (pred_domain p) -> atom.

literal : Type.

pos_lit : atom -> literal.

neg_lit : atom -> literal.

clause : Type.

empty_clause : clause.

cons_clause : literal -> clause -> clause.

qclause : Type.

qc_base : clause -> qclause.

qc_all : A : sort -> (term A -> qclause) -> qclause.

Fig. 8. Syntactic de�nitions for the CNF fragment of �rst-order logic

def cprop : qclause -> prop.

def qclause_of_prop : prop -> qclause.

def qclause_of_prop_correct : a : prop -> proof a ->

mtactic (cprop (qclause_of_prop a)).

def factor : nat -> nat -> qclause -> qclause.

def resolve : nat -> nat -> qclause -> qclause -> qclause.

def factor_correct : i : nat -> j : nat -> C : qclause ->

proof (cprop C) -> mtactic (cprop (factor i j C)).

def resolve_correct : i : nat -> j : nat -> C : qclause -> D : qclause ->

proof (cprop C) -> proof (cprop D) -> mtactic (cprop (resolve i j C D)).

def unquantify : qclause -> qclause.

def unquantify_correct : C : qclause -> proof (cprop C) ->

mtactic (cprop (unquantify C)).

Fig. 9. Signature of the resolution tacticals



As a small example illustrating the use of these tacticals, we consider the
problem NUM343+1 from the TPTP benchmark[24]. Among the clauses resulting
from the clausi�cation of the problem, two of them are used in the proof found
by Prover9: x ≤ y ∨ y ≤ x and ¬(x ≤ n). The translation of this problem in
Dedukti is given in �g. 10. Here is a resolution certi�cate of the empty clause
from these axioms:

1. x ≤ y ∨ y ≤ x Axiom
2. ¬(x ≤ n) Axiom
3. x ≤ x Factorisation at positions 0 and 1 in clause 1
4. ⊥ Resolution at positions 0 and 0 in clauses 2 and 3

(; Signature ;)

A : sort.

LEQ : predicate.

[] pred_domain LEQ --> cons_sort A (cons_sort A nil_sort).

N : function.

[] fun_domain N --> nil_sort.

[] fun_codomain N --> A.

def leq (a : term A) (b : term A) : prop :=

pred_apply LEQ

(cons_term A a (cons_sort A nil_sort)

(cons_term A b nil_sort nil_term)).

def n : term A := fun_apply N nil_term.

(; Axioms ;)

def A0 := all A (x => all A (y => or (leq x y) (leq y x))).

a0 : proof A0.

def A1 := all A (x => not (leq x n)).

a1 : proof A1.

Fig. 10. The TPTP problem NUM343+1 in Meta Dedukti

This certi�cate can be translated in our formalism by adding an (Unquanti�-

cation) step after each other step. The Meta Dedukti version of this certi�cate
is given in �g. 11, once normalized by Meta Dedukti, we obtain a Dedukti �le
of 518 lines that is successfully checked by Dedukti in the trusted signature.

During the de�nition of the tacticals of �g. 9, we were happily sur-
prised to discover that the tacticals qclause_of_prop_correct, factor_correct,
resolve_correct, and unquantify_correct were not much harder to de�ne than
the corresponding clause computing functions because we did not prove the
soundness of the resolution calculus. In particular, we did not prove the correct-
ness of our uni�cation algorithm but we check a posteriori that the returned
substitution is indeed an uni�er of the given literals. The main di�culty comes



(; Clauses ;)

def C0 := qclause_of_prop A0.

def c0 := mrun (cprop C0) (qclause_of_prop_correct A0 a0).

def C1 := qclause_of_prop A1.

def c1 := mrun (cprop C1) (qclause_of_prop_correct A1 a1).

def C2' := factor 0 1 C0.

def c2' := mrun (cprop C2') (factor_correct 0 1 C0 c0).

def C2 := unquantify C2'.

def c2 := mrun (cprop C2) (unquantify_correct C2' c2').

def C3' := resolve 0 0 C1 C2.

def c3' := mrun (cprop C3') (resolve_correct 0 0 C1 C2 c1 c2).

def C3 := unquantify C3'.

def c3 : proof false := mrun (cprop C3) (unquantify_correct C3' c3').

Fig. 11. A resolution certi�cate for TPTP problem NUM343+1 in Meta Dedukti

from the application of substitution to qclauses which can be isolated in a rule
called specialisation:

∀x1. . . . ∀xn. C
∀x1. . . . ∀xn. σ(C)

(Specialisation)

If c is a proof of ∀−→x . C, then a proof of ∀−→x . σ(C) can be obtained
by �rst introducing all the quanti�ers then applying c to σ(x1), . . . , σ(xn).
From our tactic languages, it is not easy to do this because the num-
ber n of introduction and elimination rules to apply is unknown. To solve
this problem, we de�ned an alternative form of quanti�ed clauses were in-
stead of quantifying over terms one by one, we quantify over lists of terms:
def lqclause (As : sorts) : Type := terms As -> clause. We proved the spe-
cialisation rule on this type lqclause and the equivalence between lqclause and
qclause.

The tactic languages of section 3 and section 4 and the resolution certi�cate
checker of this section are available at the following URL: https://gitlab.
math.univ-paris-diderot.fr/cauderlier/dktactics.

8 Related Works

The main source of inspiration for the typed tactic language that we have pro-
posed in section 3 is MTac[25], a typed monadic language for the Coq proof
assistant. Our language is a fragment of MTac; the missing MTac primitives
provide non-termination (the m�x construct) and give access to operations of
Coq re�ner such as syntactic deconstruction of terms (mmatch), higher-order
uni�cation, and handling of meta variables. To provide these features, the op-
erational semantics of MTac is implemented inside Coq re�ner. In this work in
contrast, we did not modify Dedukti at all. The m�x and mmatch operations
are not needed in our tactic languages because the user already has access to

https://gitlab.math.univ-paris-diderot.fr/cauderlier/dktactics
https://gitlab.math.univ-paris-diderot.fr/cauderlier/dktactics


Dedukti higher-order rewrite engine. Since Dedukti is not a full proof assistant
but only a proof checker, it does not currently feature a re�ner from which we
could leverage higher-order uni�cation or meta variables. However, as we have
seen in section 5, we can simulate meta variables by de�nable symbols of type
tactic and as we have seen in section 7 in the �rst-order case we can also de�ne
the uni�cation algorithm.

A second version of MTac is in preparation[19]. In MTac2, an untyped tactic
language is built on top of the MTac monad but contrary to our untyped language
in which tactics promise proofs of the current goal, MTac2 tactics promise lists
of subgoals and the actual proof is built by instanciation of meta variables. This
gives MTac2 the �exibility to de�ne tactics generating a number of subgoals that
is not known statically.

Exceptions and backtracking are also implemented by a monad in the meta
language of Lean which is used to implement Lean tactics[15]. However, Lean
meta language is poorly typed making this tactic language closer to our untyped
tactic language: the way tactics manipulate the proof state in Lean is not made
explicit in their types and terms are all rei�ed in the same type expr.

The tactics of the Idris[8] system, which are used to elaborate terms from the
full Idris syntax to the syntax of Idris' kernel, are also implemented by a monad
in Haskell. However, this tactic monad is not re�ected in Idris so Idris users do
not have access to an extensible tactic language.

To bridge the gap between automatic and interactive theorem proving, a lot
of e�orts has been put to check the certi�cates of automatic theorem provers.
iProver Modulo[9], Zenon Modulo[12], and Metis[18] are �rst-order theorem
provers able to produce independently checkable proofs. Metis in particular can
be used as a tactic in Isabelle/HOL. The Sledgehammer tool[4] checks certi�cates
from �rst-order provers and SMT solvers using Isabelle tactics implementing de-
cision procedures and the Metis tactic. These works have in common an access
to a deep representation of terms, typically using De Bruijn indices or named
variables, at proof producing time whereas our tactics for the resolution calculus
only use higher-order abstract syntax. Recently, the Foundational Proof Cer-
ti�cate framework has been used to add enough details to Prover9 resolution
certi�cates that they can be checked by a simple tool that does not need to
compute the uni�ers.[6] In our context, we have found that is was actually easier
to perform the uni�cation in the certi�cate checker than to extend the format
of certi�cates to include the substitutions because the naming of free variables
in clauses (or the order in which variables are implicitly quanti�ed) is hard to
predict.

9 Conclusion

We have shown that Dedukti could be used as an expressive meta language
for writing tactics and checking proof certi�cates. We have proposed two tactic
languages for Dedukti, a typed one and an untyped one and shown applications



of these languages to interactive proof development, automated theorem transfer,
and checking of resolution certi�cates.

For interactive proof development and tactic debugging, our languages would
greatly bene�t from pretty-printing functions. We believe such functions can
be de�ned in a second meta signature used to transform blocked eval calls to
something more readable.

Our tactic and certi�cate languages are de�ned speci�cally for �rst-order
logic. Since it was inspired by tactic languages for the Calculus of Inductive
Constructions, we believe that most of the work presented in this article can
be adapted straightforwardly to richer logics with the notable exception of the
uni�cation algorithm used to check resolution certi�cates.

Most clausal �rst-order theorem provers use an extra rule called paramod-
ulation to handle equality. We would like to extend our resolution certi�cate
language to take this rule into account. This would allow us to benchmark our
certi�cate checker on large problem sets such as TPTP.
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