
Submitted to:
HCVS 2018

c© E. De Angelis et al.
This work is licensed under the
Creative Commons Attribution License.

Metaprogramming and symbolic execution
for detecting runtime errors in Erlang programs

Emanuele De Angelis, Fabio Fioravanti
DEC, University “G. d’Annunzio” of Chieti-Pescara

Viale Pindaro 42, 65127 Pescara, Italy
{emanuele.deangelis, fabio.fioravanti}@unich.it

Adrián Palacios
MiST, DSIC, Universitat Politècnica de València

Camino de Vera, s/n, 46022 Valencia, Spain
apalacios@dsic.upv.es

Alberto Pettorossi
University of Roma Tor Vergata

Via del Politecnico 1, 00133 Roma, Italy
pettorossi@info.uniroma2.it

Maurizio Proietti
CNR-IASI

Via dei Taurini 19, 00185 Roma, Italy
maurizio.proietti@iasi.cnr.it

Dynamically typed languages, like Erlang, allow developers to quickly write programs without ex-
plicitly providing any type information on expressions or function definitions. However, this feature
makes those languages less reliable than statically typed languages, where many runtime errors can
be easily detected at compile time. In this paper, we present a preliminary work on a tool that, by us-
ing the well-known techniques of metaprogramming and symbolic execution, can be used to perform
bounded verification of Erlang programs. In particular, by using Constraint Logic Programming, we
develop an interpreter that, given an Erlang program and a symbolic input for that program, returns
answer constraints that represent sets of concrete data for which the Erlang program generates a
runtime error.

1 Introduction

Erlang [7] is a functional, message passing, concurrent language with dynamic typing. Due to this type
discipline, Erlang programmers are quite familiar with typing and pattern matching errors at runtime,
which normally appear during the first executions of freshly written programs. Less often, these errors
will be undetected for a long time, until the user inputs a particular value that causes the program to crash
or, in the case of concurrent programs, determines a particular interleaving that causes an error to occur.

In order to mitigate these problems, many static analysis tools have been proposed. Here let us recall:
(i) Dialyzer [5], which is a popular tool included in Erlang/OTP for performing type inference based on
success typings, and (ii) SOTER [3], which is a tool that performs verification of Erlang programs by
using model checking and abstract interpretation. However, those tools are not all fully automatic, and
they can only be used to cover either the sequential or the concurrent part of an Erlang program, but not
both.

In this paper we present a preliminary work on a technique, based on Constraint Logic Programming
(CLP) [4], for detecting runtime errors in Erlang programs. In our approach, sequential Erlang programs
are first translated into CLP terms and then run by using an interpreter written in CLP. Our CLP inter-
preter is able to run program on symbolic input data, and it can perform verification of Erlang programs
up to a fixed bound on the number of execution steps.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Metaprogramming and symbolic execution for detecting runtime errors in Erlang programs

The Erlang language. In this work we only consider sequential programs written in a first-order subset
of the Erlang language. In this language, a module is a sequence of function definitions, where each
function name has an associated definition of the form: fun (X1, . . . ,Xn) -> expr end (for simplicity, we
assume that programs are made out of a single module). The body of a function is an expression expr,
which can include literals (atoms, integers, floats, or the empty list), variables, list constructors, tuples,
let expressions, case expressions, try/catch blocks, function applications, and calls to built-in functions.

-module(sum_list).

-export([sum/1]).

sum(L) ->

case L of

[] -> 0;

[H|T] -> H + sum(T)

end.

Figure 1: A program in Erlang
that computes the sum of all num-
bers in the input list L.

The Erlang program in Figure 1 will successfully compile with
no warnings in Erlang/OTP and will correctly compute the sum of
the elements in L provided that L is a list of numbers. Otherwise, the
program generates a runtime error. For instance, if the input to sum is
an atom, then the program crashes and outputs a pattern matching er-
ror (match fail), because there are no patterns that match an atom.
Similarly, if the input to sum is a list of values, where at least one el-
ement is an atom, the execution halts with a type error (badarith),
when applying the function ‘+’ to a non-numerical argument.

The tool Dialyzer does not generate any warnings when analyz-
ing this program. That is coherent with the Dialyze approach, which
only complains about type errors that would guarantee the program
to crash. However, it might be the case that we want to perform a

more detailed analysis on this program. In the following, we will see how our tool lists all the potential
runtime errors, together with the input types that can cause them.

2 A symbolic interpreter for detecting Erlang runtime errors

The main component of the verifier is a CLP interpreter that defines the operational semantics of Core
Erlang1. This executable specification of the semantics enables the execution of Erlang programs repre-
sented as Prolog terms. (The translator generates one term for each function definition.)

The interpreter provides a flexible means to perform the bounded verification of Erlang programs.
Indeed, by using a symbolic representation of the input data, the interpreter allows the exhaustive ex-
ploration of the program computations without explicitly enumerating all the concrete input values. In
particular, the interpreter can run on input terms containing variables, and it uses constraint solvers to
manipulate expressions with variables ranging over integer or real numbers. By fixing a bound to limit
the number of computation steps performed by the interpreter, we force the exploration process to be
finite, and hence either we detect a runtime error or we prove that the program is error-free up to the
given bound.

Let us consider an Erlang program Prog which is represented as a set of Prolog facts of the form
fun(FName/Arity,Pars,Body), where Pars and Body represent the parameters and the body, respec-
tively, of a function named FName of arity Arity.

In order to perform the bounded verification of the Erlang program Prog, the interpreter provides
the predicate run(FName/Arity,Bound,In,Out), whose execution evaluates the application of the
function FName to the input arguments In, by constructing an evaluation tree of depth at most Bound.
The arguments In are represented as a Prolog list (written using square brackets) of length Arity. The
result is represented by Out. If the evaluation of the function application generates an error, then Out is

1Core Erlang is the intermediate language used by the standard Erlang compiler, which removes most of the syntactic sugar
present in Erlang programs.

E. De Angelis et al. 3

bound to a term of the form error(Err), where Err is an error name (e.g., match fail, indicating a
match failure, or badarith, indicating an attempt to evaluate an arithmetic function on a non-arithmetic
input), meaning that the specific error Err had occurred. Hence, the bounded verification of a given
Erlang program can be performed by executing a query of the form:

?- run(FName/Arity,Bound,In,error(Err)).

where FName is a constant, Arity and Bound are non-negative integers, and In and Err are, possibly
non-ground, terms.

Any answer to the query is a successful detection of the error Err generated by evaluating the ap-
plication of the function FName to the input In. If no answer is found, then it means that no error is
generated by exploring the computation of FName up to the value of Bound, and we say that the program
Prog is correct up to the given bound.

Now let us see the bounded verifier in action by considering the sum list program of the previous
section and the following query:

?- run(sum/1,20,In,error(Err)).

Among the answers to the query, we get the following constraints relative to the input In and the er-
ror Err:

In=[cons(lit(Type, V),lit(list,nil))], Err=badarith, dif(Type,number)

meaning that if sum/1 takes as input a list (represented as a Prolog term of the form cons(Head,Tail))
whose head is not a numeric literal (denoted by the constraint dif(Type,number)), then a badarith

error occurs, that is, a non-numerical argument is given as input to an arithmetic operator. Another
answer we get is:

In=[L], Err=match fail, dif(L,cons(Head, Tail)), dif(L,lit(list,nil))

meaning that if sum/1 takes as input an argument L which is neither a cons nor a nil term, then a
match fail error occurs. Note that, due to the recursive definition of sum, the bound is essential to
detect this error.

Let us now introduce the predicate int list(L,M) that generates lists L of integers of length up
to M. For instance, the query

?- int list(L,100).

generates the answer

L=cons(lit(int,N1),cons(lit(int,N2),...))

where L is a list of length 100 and N1,N2, . . . ,N100 are variables. If we give L as input to sum as follows:

?- int list(L,100), run(sum/1,100,L,error(Err)).

the bounded verifier terminates after 0.142 seconds2 with answer false, meaning that if the input to sum

is any list of 100 integers, then the program is correct up to the bound 100. Note that no concrete integer
element of the list is needed for the verification of this property.

Now we sketch the implementation of the operational semantics of Erlang expressions. The seman-
tics is given in terms of a transition relation of the form tr(Bound,ICfg,FCfg) that defines how to get
the final configuration FCfg from the initial configuration ICfg in Bound transition steps. Configurations
are pairs of the form cf(Env,Exp), where Env is the environment mapping program variables to values
and Exp is a term representing an Erlang expression.

2the query has been executed using SWI-Prolog v7.6.4 (http://www.swi-prolog.org/) on an Intel Core i5-2467M
1.60GHz processor with 4GB of memory under GNU/Linux OS

http://www.swi-prolog.org/

4 Metaprogramming and symbolic execution for detecting runtime errors in Erlang programs

tr(Bound,cf(IEnv,IExp),cf(FEnv,FExp)) :-

IExp = apply(FName/Arity,IExps),

lookup_error_flag(IEnv,false),

Bound>0,

Bound1 is Bound-1,

fun(FName/Arity,FPars,FBody),

tr_list(Bound1,IEnv,IExps,EEnv,EExps),

bind(FPars,EExps,AEnv),

lookup_error_flag(EEnv,F1),

update_error_flag(AEnv,F1,BEnv),

tr(Bound1,cf(BEnv,FBody),cf(CEnv,FExp)),

lookup_error_flag(CEnv,F2),

update_error_flag(EEnv,F2,FEnv).

Figure 2: definition of the operational semantics of tr/3
for a function application apply/2.

The environment is extended with a
boolean flag that keeps track of the occur-
rence of any runtime error during program ex-
ecution. The value of the error flag F in the
environment Env can be retrieved by using
the predicate lookup error flag(Env,F).
The value of the flag in a given environ-
ment EnvI can be updated using the pred-
icate update error flag(EnvI,F,EnvO),
thereby deriving the environment EnvO whose
error flag is set to F. If the evaluation of IExp
generates the error Err, then FExp is a term of
the form error(Err) and the error flag is set
to true.

In Figure 2 we present the clause for tr/3
which implements the semantics of function
applications represented using terms of the
form apply(FName/Arity,IExps), where FName is the name of a function of arity Arity applied
to the expressions IExps. The transition only applies if: (i) no error has occurred so far, that is,
lookup error flag(IEnv,false), and (ii) the bound has not been exceeded, that is, Bound>0. Then,
the function definition fun(FName/Arity,FPars,FBody) is retrieved and the following operations are
performed: (i) the value of the bound Bound is decreased, (ii) the list of the actual parameters IExps
is evaluated in IEnv, thereby deriving the list of expressions EExps and the new environment EEnv (it
may differ from IEnv in the error flag and new variables occurring in the expressions IExps may have
been added), (iii) the formal parameters FPars are bound to the expressions IExps to form the new
environment AEnv, and (iv) the error flag in AEnv is updated to value EEnv, thereby deriving the envi-
ronment BEnv. Finally, the body FBody is evaluated in BEnv to get the final expression FExp. The final
environment FEnv equals to EEnv except for the error flag, which is set to the value obtained from the
callee function.

Each rule of the operational semantics for Erlang programs is translated into a clause for the predicate
tr/3. These clauses are omitted for lack of space.

We can now present the definition of run/4, which depends on tr/3:

run(FName/Arity,Bound,In,Out) :-

lookup_fun_pars(FName/Arity,FPars),

bind(FPars,In,IEnv),

tr(Bound,cf(IEnv,apply(FName/Arity,FPars)),cf(FEnv,Out)).

The predicate run retrieves the formal parameters FPars of FName/Arity and creates an environment
IEnv where those parameters are bound to the input values In. Then, it evaluates the application of
FName to its parameters, thereby producing the final expression Out.

3 Conclusions and future work

We have presented a work in progress for the development of a CLP interpreter for detecting runtime
errors of Erlang programs. An Erlang program is first translated into a set of Prolog terms, and then

E. De Angelis et al. 5

the CLP interpreter is run on these terms together with symbolic input data. At present, our interpreter
is able to deal with first-order sequential Erlang programs, but we think that the extension to higher-
order functions can be achieved by following a similar approach. In the future, we also plan to consider
concurrency with an appropriate technique for handling the state explosion problem. For instance, we
may employ a partial order reduction technique [1] to obtain the minimal set of concurrent behaviours
for a given program, and then generate the associated executions using our interpreter.

Let us briefly compare our work with the static analysis tools available for Erlang. Unlike Dyal-
izer [5], our tool computes answer constraints that describe type-related input patterns which lead to
runtime errors. However, as already mentioned, due to the bounded symbolic execution, our interpreter
may terminate with no answer, even if runtime errors are possible for concrete runs which exceed the
given bound. One of the weaknesses of Dialyzer is that it is hard to know where typing errors come from.
An extension of Dialyzer that provides an explanation for the cause of typing errors has been proposed
to overcome this problem [6]. We believe that we are able to provide a similar information if we include
debugging information in the clauses generated by our Erlang-to-CLP translation.

Unlike SOTER [3], which is based on abstract interpretation, our CLP interpreter provides full sup-
port to arithmetic operations through the use of constraint solvers. Moreover, the symbolic interpreter
does not require any user intervention (except for the bound), while in SOTER the user is responsible for
providing a suitable abstraction.

Besides being useful on its own for bounded verification, the CLP interpreter for Erlang may be
the basis for more sophisticated analysis techniques. In particular, by following an approach developed
in the case of imperative languages, we intend to apply CLP transformation techniques to specialize
the interpreter with respect to a given Erlang program and its symbolic input [2]. The specialized CLP
clauses may enable more efficient bounded verification, and they can also be used as input to other tools
for analysis and verification (such as constraint-based analyzers and SMT solvers), which have already
been shown to be effective in other contexts.

References
[1] Parosh Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas (2014): Optimal dynamic partial

order reduction. ACM SIGPLAN Notices 49(1), pp. 373–384.
[2] Emanuele De Angelis, Fabio Fioravanti, Alberto Pettorossi, and Maurizio Proietti (2017): Semantics-based

generation of verification conditions via program specialization. Science of Computer Programming 147,
pp. 78–108.

[3] Emanuele D’Osualdo, Jonathan Kochems, and C-H Luke Ong (2013): Automatic verification of Erlang-style
concurrency. In: Static Analysis Symposium, LNCS 7935, Springer, pp. 454–476.

[4] Joxan Jaffar and Michael Maher (1994): Constraint Logic Programming: A Survey. Journal of Logic Pro-
gramming 19/20, pp. 503–581.

[5] Tobias Lindahl and Konstantinos Sagonas (2006): Practical type inference based on success typings. In:
Proceedings of the 8th ACM SIGPLAN International Conference on Principles and Practice of Declarative
Programming, ACM, pp. 167–178.

[6] Konstantinos Sagonas, Josep Silva, and Salvador Tamarit (2013): Precise explanation of success typing errors.
In: Proceedings of the ACM SIGPLAN 2013 Workshop on Partial Evaluation and Program Manipulation,
ACM, pp. 33–42.

[7] Robert Virding, Claes Wikström, and Mike Williams (1996): Concurrent Programming in ERLANG, 2nd Ed.
Prentice Hall International, Ltd., Hertfordshire, UK.

	Introduction
	A symbolic interpreter for detecting Erlang runtime errors
	Conclusions and future work

