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V. Benzaken2, É. Contejean1, Ch. Keller2, and E. Martins2
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Abstract. In this article, we use the Coq proof assistant to specify and
verify the low level layer of SQL’s execution engines. To reach our goals,
we first design a high-level Coq specification for data-centric operators
intended to capture their essence. We, then, provide two Coq implemen-
tations of our specification. The first one, the physical algebra, consists
in the low level operators found in systems such as Postgresql or Oracle.
The second, SQL algebra, is an extended relational algebra that provides
a semantics for SQL. Last, we formally relate physical algebra and SQL
algebra. By proving that the physical algebra implements SQL algebra,
we give high level assurances that physical algebraic and SQL algebra
expressions enjoy the same semantics. All this yields the first, to our
best knowledge, formalisation and verification of the low level layer of
an RDBMS as well as SQL’s compilation’s physical optimisation: funda-
mental steps towards mechanising SQL’s compilation chain.

1 Introduction

Data-centric applications involve increasingly massive data volumes. An impor-
tant part of such data is handled by relational database management systems
(RDBMS’s) through the SQL query language. Surprisingly, formal methods have
not been broadly promoted for data-centric systems to ensure strong safety guar-
antees about their expected behaviours. Such guarantees can be obtained by
using proof assistants like Coq [27] or Isabelle [28] for specifying, proving and
testing (parts of) such systems. In this article, we use the Coq proof assistant
to specify and verify the low level layer of an RDBMS as proposed in [26] and
detailed in [18].

The theoretical foundations for RDBMS’s go back to the 70’s where relational
algebra was originally defined by Codd [13]. Few years later, SQL, the standard
domain specific language for manipulating relational data was designed [10].
SQL was dedicated to efficiently retrieve data stored on secondary storage in
RDBMS’s, as described in the seminal work [26] that addressed the low level
layer as well as secondary memory access for such systems, known in the field
as physical algebra, access methods and iterator interface. SQL and RDBMS’s
evolved over time but they still obey the principles described in those works
and found in all textbooks on the topic (see [18,25,15,5] for instance). In par-
ticular, the semantic analysis of a SQL query could yield an expression, e1, of
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an (extended) relational algebra. The logical optimisation step rewrites this ex-
pression into another algebraic expression e2 (based on well-known rules that
can be found in [18]). Then physical optimisation takes place and an evaluation
strategy for expression e2, called a query execution plan (QEP) in this setting, is
produced. QEP’s are composed by physical algebra operators. Yet there are no
formal guarantees that the produced QEP and (optimised) algebraic expression
do have the same semantics. One contribution of our work is to open the way
to formally provide such evidences. To reach our goal, we adopt a very general
approach that is not limited to our specific problem. It consists in providing a
high-level pivotal specification that will be used to describe and relate several
lower-level languages.

In our particular setting, we first design a high-level, very abstract, generic,
thus extensible, Coq specification for data-centric operators intended to capture
their essence (which will be useful to address other data models and languages
than relational ones).

The first low-level language consists of physical operators as found in systems
such as Postgresql and described in main textbooks on the topic [18,25]. One
specificity and difficulty lied in the fact that, when evaluating a SQL query, all
those operators are put together, and for efficiency purposes, database systems
implement, as far as possible, on-line ([22]) versions of them through the iterator
interface. At that point there is a discrepancy between the specifications that
provide collection-at-a-time invariants and the implementations that account for
value-at-a-time executions. To fill up the gap, we exhibit non trivial invariants
to prove that our on-line algorithms do implement their high-level specification.
Moreover, those operators are shown to be exhaustive and to terminate.

The second low-level language (actually mid-level specification) is SQL al-
gebra (syntax and semantics), an algebra that hosts SQL. By hosting we mean
that there is an embedding of SQL into this algebra which preserves SQL’s se-
mantics. Due to space limitations, such an embedding is out of the scope of this
paper and is described in [7]. We relate each algebraic operator to our high level
specification by proving adequacy lemmas providing strong guarantees that the
operator at issue is a realization of the specification.

Last, we formally bridge both implementations. By proving that the physical
algebra does implement SQL algebra, we give strong assurances that the QEP
and the algebraic expression resulting from the semantics analysis and logical
optimisation do have the same semantics. This last step has been eased thanks
to the efforts devoted to the design of our high-level pivotal specification. All this
yields the first, to our best knowledge, executable formalisation and verification
of the low level layer of an RDBMS as well as SQL’s compilation’s physical
optimisation: fundamental steps towards mechanising SQL’s compilation chain.

Organisation We briefly recall in Section 2 the key ingredients of SQL compi-
lation and database engines: extended relational algebra, physical algebra oper-
ators and iterator interface. Section 3 presents our Coq high-level specification
that captures the essence of data-centric operators. In Section 4, we formalise the
iterator interface and physical algebra, detailing the necessary invariants. Sec-
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tion 5 presents the formal specification of SQL algebra. We formally establish,
in Section 6, that any given physical operator does implement its correspond-
ing logical operator. We draw lessons, compare our work, conclude and give
perspectives in Section 7.

2 SQL’s compilation in a nutshell

Following [18] SQL’s compilation proceeds into three broad steps. First, the
query is parsed, that is turned into a parse-tree representing its structure. Second,
semantics analysis is performed transforming the parse tree into an expression
tree of (extended) relational algebra. Third, the optimisation step is performed:
using relational algebraic rewritings (logical optimisation) and based on a cost
model 3, a physical query execution plan (QEP) is produced. It not only indicates
the operations performed but also the order in which they will be evaluated, the
algorithm chosen for each operation and the way stored data is obtained and
passed from one operation to another. This last stage is data dependent.

We present the main concepts through the following example that models
a movie database gathering information about movies (relation movie), movies’
directors director, the movies they directed and relation role carrying infor-
mation about who played (identified by his/her pid) which role in a given movie
(identified by its mid). On Figure 1 we give for a typical SQL query the corre-
sponding (Postgresql)4 QEP issued as well as the AST obtained after semantic
analysis and logical optimisation.

select lastname from people p, director d, role r, movie m

where d.mid = r.mid and d.pid = r.pid and p.pid = d.pid and

m.mid = d.mid and m.year > 1950;

5
Index Join

5
Index Join Index Scan on

movie

Index Cond: (mid = d.mid)

Filter Cond: year > 1950

5
Hash Join

(r.mid,r.pid) =

(d.mid,d.pid)

Index Scan on

people

Index Cond: (pid = d.pid)

Seq Scan on

role

Hash

(d.mid, d.pid)

Seq Scan on

director

σ
(m.mid = d.mid)

∧ year > 1950

5

movie
σ

(p.pid = d.pid)

5

people
σ

(r.mid = d.mid)

∧ (r.pid = d.pid)

5

role director

Fig. 1: A typical SQL query, its QEP and logical AST.

3 The model exploits system collected statistics about the data stored in the database.
4 The IJ nodes are expressed in Postqresql as Nested loop combined with an Index

scan but corresponds to an index-based join.
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The leaves (i.e., relations) are treated by means of access methods such as
Seq Scan or Index Scan (in case an index is available); a third access method
usually provided by RDBMS’s is the Sort Scan which orders the elements in the
result according to a given criteria. In the example, relations role and director

are accessed via Seq Scan, whereas people and movie are accessed thanks to
Index Scan. The product of relations in the from part is reordered and the
filtering condition is spread over the relevant (sub-product of) relations.

Intuitively, each physical operator corresponds to one or a combination of
algebraic operators: σ (selection), × (product), completed with π (projection)
and γ (grouping) (see Section 5.1 for their formal semantics).

Conversely, to each operator of the logical plan, σ,×, . . ., potentially corre-
sponds one or more operators of the physical plan: the underlying database sys-
tem provides several different algorithm’s implementations. For the cross prod-
uct, for instance, at least four such different algorithms are provided by main-
stream systems: Nested Loop, Index Join, Sort Merge Join and Hash Join.
For the selection operator the system may use the Filter physical operator.

The situation is made even more complex by the facts that a QEP contains
some strategy (top-down, left-most evaluation) and that some physical operators
are implemented via on-line algorithms. Hence a filtering condition which spans
over a cross-product between two operands, in an algebraic expression, may be
used in the corresponding QEP to filter the second one, by inlining the condition
for each tuple of the first operand. This is the case for instance with the second
join of Figure 1 where the second operand is an Index-Scan. Therefore the pattern
x×IJ (Index Scan y Index Cond :a = x.a′) corresponds to σy.a=x.a′(x× y).

Unfortunately not all physical operators support the on-line approach and
materialising partial results (i.e., temporarily storing intermediate results) is
needed: the Materialise physical operator allows to express this in Postgresql
physical plans. Table 1 summarises our contributions where the colored cells
indicate the Coq specified and implemented operators.

Iterator interface operators

Section 3 Section 4, φ algebra Section 5
data centric
operators

simple index based sort based
SQL

algebra

map Seq Scan
Index scan

Bitmap index scan
Sort scan r, π

join
Nested loop

Block nested loop

Hash join

Index join
Sort merge join ×

filter Filter σ

group Group γ

bind Subplan env

accumulator Aggregate, Hash, Hash aggregate aggregate

Intermediate results storage operators
Materialize

Table 1: Synthesis
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3 A high-level specification for data-centric operators

In the data-centric setting, data are mainly collections of values. Such values can
be combined and enjoy a decidable comparison. Operators allow for manipulating
collections, that is to extract data from a collection according to a condition
(filter), to iterate over a collection (map), to combine two collections (join) and,
last, to aggregate results over a collection (group).

Since collections may be implemented by various means (lists with or with-
out dupplicates, AVL, etc), in the following we shall call these implementations
containerX’s. The content, that is the elements gathered in such a containerX,
may be retrieved with the corresponding function contentX and we also make a
last assumption, that there is a decidable equivalence equivX for elements. The
function nb_occX is defined as the the number of occurrences of an element in
the contentX of a containerX modulo equivX5.

We then characterise the essence of data centric operations performed on
containers. Operators filter and map are a lifting of the usual operators on lists
to containers.

Definition is_a_filter_op contentA contentA’ (f: A → bool) (fltr: containerA → containerA’)

:= ∀ s, ∀ t, nb_occA’ t (fltr s) = (nb_occA t s) * (if f t then 1 else 0).

Definition is_a_map_op contentA contentB (f: A → B) (mp: containerA → containerB) :=

∀ s, ∀ t, nb_occB t (mp s) = nb_occ t (map f (contentA s)).

Unlike the first two operators which make no hypothesis on the nature of the
elements of a containerX, joins manipulate homogeneous containers i.e., their
elements are equipped with a support supX which returns a set of attributes,
and all elements in a containerX enjoy the same supX, which is called the sort of
the container. Let us denote by A1 (resp. A2, resp. A) the type of the elements of
the first operand (resp. the second operand, resp. the result) of a join operator
j. Elements of type A are also equipped with two functions projA1 and projA2,
which respectively project them over A1 and A2.

Definition is_a_join_op sa1 sa2 contentA1 contentA2 contentA

(j : containerA1 → containerA2 → containerA) :=

∀ s1 s2, (∀ t, 0 < nb_occA1 t s1 → supA1 t = sa1) →
(∀ t, 0 < nb_occA2 t s2 → supA2 t = sa2) →

((∀ t, 0 < nb_occA t (j s1 s2) → supA t = (sa1 unionS sa2)) ∧
(nb_occA t (j s1 s2) = nb_occA1 (projA1 t) s1 * nb_occA2 (projA2 t) s2))

* (if supA t = (sa1 unionS sa2) then 1 else 0).

Intuitively, joins allow for combining two homogeneous containers by taking
the union of their sort and the product of their occurrence’s functions.

The grouping operator, as presented in textbooks [18], partitions, using mk_g,
a container into groups according to a grouping criteria g and then discards some
groups that do not satisfy a filtering condition f. Last for the remaining groups
it builds a new element.

5 X will be A, A’, B, according to the various types of elements and various implemen-
tations for the collection. A particular case of nb_occX is nb_occ which denotes the
number of occurrences in a list.
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Definition is_a_grouping_op (G : Type) (mk_g : G → containerA → list B) grp :=

∀ (g : G) (f : B → bool) (build : B → A) (s : containerA) t,

nb_occA t (grp g f build s) = nb_occ t (map build (filter f (mk_g g s))).

All the above definitions share a common pattern: they state that the number
of occurences nb_occX t (o p s) of an element t in a container built from an
operator o applied to some parameters p and some operands s, is equal to foopp

(t, nb_occX (g t) s), where foopp is a function which depends only on the
operator and the parameters. This implies that any two operators satisfying the
same specification is_a_..._op are interchangeable. For grouping, the situation
is slightly more subtle, however the same interchangeability property shall hold
since nb_occA t (grp g f build s)) depends only on t and contentA s for the
grouping criteria used in the following sections.

Tuning those definitions was really challenging: finding the relevant level of
abstraction for containers and contents suitable to host both physical and logical
operators was not intuitive. Even for the most simple one such as filter, we
would have expected that the type of containers should be the same for input
and output. It was not possible as we wanted a simple, concise and efficient
implementation.

4 Physical algebra

All physical operators that can be implemented by on-line algorithms rely on a
common iterator interface that allows them to build the next tuple on demand.

4.1 Iterators

A key aspect in our formalisation of physical operators is a specification of such
a common iterator interface together with the properties an iterator needs to
satisfy. We validate this interface by implementing standard iterative physical
operators, namely sequential scanning, filtering, and nested loop.

Abstract iterator interface An iterator is a data structure that iterates over a
collection of elements to provide them, on demand, one after the other. Following
the iterator interface given in [18] and in the same spirit of the formalisation of
cursors presented in [17], we define a cursor as an abstract object over some
type elt of elements that must support three operations: next, that returns the
next element of the iteration if it exists; has_next, that checks if such an element
does exist; and reset, that restarts the cursor at its beginning. In Coq, this can
be modelled as a record6 named Cursor that contains (at least) an abstract type
of cursors and these three operations:

6 We could also use a module type, but the syntax would be heavier and less general.
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Record Cursor (elt : Type) : Type :=

{ cursor : Type;

next : cursor → result elt * cursor;

has_next : cursor → Prop;

reset : cursor → cursor;

[...] (* Some properties, see below *) }.

Due to the immutable nature of Coq objects, the operations next and reset

must return the modified cursor. Moreover, since next must be a total function,
a monadic7 construction is used to wrap the element of type t that it outputs:

Inductive result (A : Type) := Result : A → result A | No_Result | Empty_Cursor.

The constructor Result corresponds to the case where an element can be
returned, and the two constructors No_Result and Empty_Cursor deal with the
cases where an element cannot be returned, respectively because it does not
match some selection condition (see Sec. 4.1) or because the cursor has been
fully iterated over.

We designed a sufficient set of properties that a cursor should satisfy in order
to be valid. These properties are expressed in terms of three high-level inspection
functions (that are used for specification only, not for computation): collection
returns all the elements of the cursor, visited returns the elements visited so
far, and coherent states an invariant that the given cursor must preserve:

Record Cursor (elt : Type) : Type := { [...]

collection : cursor → list elt;

visited : cursor → list elt;

coherent : cursor → Prop; [...] }.

collection



Tuple C1 (A1,. . .,An)

Tuple C2 (A1,. . .,An)

Tuple C3 (A1,. . .,An)
...

Tuple Cn (A1,. . .,An)

}
visited
cursor

Given these operations, the required properties are the following:

Record Cursor (elt : Type) : Type := { [...]

(* next preserves the collection *)

next_col : ∀ c, coherent c → collection (snd (next c))) = collection c;

(* next adds the returned element to visited *)

next_visited_Result :

∀ a c c’, coherent c → next c = (Result a, c’) → visited c’ = a :: (visited c);

next_visited_No_Result :

∀ c c’, coherent c → next c = (No_Result, c’) → visited c’ = visited c;

next_visited_Empty_Cursor :

∀ c c’, coherent c → next c = (Empty_Cursor, c’) → visited c’ = visited c;

(* next preserves coherence *) next_coherent : ∀ c, coherent c → coherent (snd (next c));

(* when a cursor has no element left, visited contains all the elements of the collection *)

has_next_spec : ∀ c, coherent c → ¬ has_next c → (collection c) = (rev (visited c));

(* a cursor has new elements if and only if next may return something *)

has_next_next_neg : ∀ c, coherent c → (has_next c ↔ fst (next c) 6= Empty_Cursor);

(* reset preserves the collection *)

reset_collection : ∀ c, collection (reset c) = collection c;

(* reset restarts the visited elements *) reset_visited : ∀ c, visited (reset c) = nil;

(* reset returns a coherent cursor *) reset_coherent : ∀ c, coherent (reset c); [...]}.

7 This construction is similar to the exception monad. There is no interest to write
the standard “return” and “bind” operators. The sequential scan and nested loop,
respecitvely, can be seen as online versions of them.
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The ..._coherent and ..._collection axioms ensure that coherent and the
collection of elements are indeed invariants of the iterator. The ..._visited

axioms explain how visited is populated. Finally, the has_next_spec axiom is the
key property to express that all the elements have been visited at the end of the
iteration.

Last, we require a progress property on cursors (otherwise next could return
the No_Result value forever and still satisfy all the properties). Progress is stated
in terms of an upper bound on the number of iterations of next before reaching
an Empty_Cursor:

Record Cursor (elt : Type) : Type := { [...]

(* an upper bound on the number of iterations before the cursor has been fully visited *)

ubound : cursor → nat;

(* this upper bound is indeed complete *)

ubound_complete : ∀ c acc, coherent c → ¬ has_next (fst (iter next (ubound c) c acc)); }.

where iter f n c acc iterates n times the function f on the cursor c, returning
a pair of the resulting cursor and the accumulator acc augmented with the
elements produced during the iteration. The upper bound is not only part of the
specification (to state that cursors have a finite number of possible iterations)
but can also be used in Coq to actually materialize them.

We will see that these properties are strong enough both to combine iterators
and to derive their adequacy with respect to their algebraic counterparts.

First instance: sequential scan The base cursor implements sequential scan
by returning, tuple by tuple, all the elements of a given relation, represented by
a list in our high-level setting. It simply maintains a list of elements still to be
visited named to_visit and its invariant expresses that the collection contains
the elements visited so far and the elements that remain to be visited. A natural
upper bound on the number of iterations is the number of elements to visit.

Definition coherent (c : cursor) := c.(collection) = rev c.(visited) ++ c.(to_visit).

Definition ubound (c : cursor) : nat := List.length c.(to_visit).

Second instance: filter Filtering a cursor returns the same cursor, but with a
different function next and accordingly different specification functions. Given a
property on the elements f : elt → bool, the function next filters elements of
the underlying cursor:

Definition next (c : cursor) : result elt * cursor :=

match Cursor.next c with

| (Result e, c’) ⇒ if f e then (Result e, c’) else (No_Result, c’) | rc’ ⇒ rc’

end.

This is where No_Result is introduced when the condition is not met. Accordingly,
the functions collection and visited are the filtered collection and visited of
the underlying cursor and an upper bound on the number of iterations is the
upper bound of the underlying cursor:

Definition collection (c : cursor) := List.filter f (Cursor.collection c).

8



Definition visited (c : cursor) := List.filter f (Cursor.visited c).

Definition ubound (q : cursor) : nat := Cursor.ubound q.

Third instance: nested loop The nested loop operator builds the cross-
product between an outer cursor and an inner cursor: the next function returns
either the combination of the current tuple of the outer cursor with the next tu-
ple of the inner cursor (if this latter exists) or the combination of the next tuple
of the outer cursor with the first tuple of the reset outer cursor (see Fig. 2).

visited
cursor1



Collection cursor1

Tuple O1 (a1,b1,c1)

Tuple O2 (a2,b2,c2)

Tuple O3 (a3,b3,c3)

·
·

Tuple On (an,bn,cn)

current

tuple

(el)

}
visited
cursor2

Collection cursor2

Tuple I1

Tuple I2

Tuple I3

build (Tuple O1, Tuple I1)

build (Tuple O1, Tuple I2)

build (Tuple O1, Tuple I3)

build (Tuple O2, Tuple I1)

build (Tuple O2, Tuple I2)

build (Tuple O2, Tuple I3)

build (Tuple O3, Tuple I1)

build (Tuple O3, Tuple I2)

︸ ︷︷ ︸
visited

join cursor

Algorithm 1 Nested Loop-Join

for each tuple o ∈ O do
for each tuple i ∈ I do

Add the tuple <o,i> to visited
end for

end for

Fig. 2: Nested Loop-Join

Specifying such a cursor becomes slightly more involved. For correctness, one
has to show the invariant stating that the elements visited so far contain (i) the
last visited element of the outer cursor combined with all the visited elements of
the inner cursor; and (ii) the other visited elements of the outer cursor combined
with all the collection of the inner cursor.

Definition coherent (c: cursor) : Prop :=

(* the two underlying cursors are coherent *)

Cursor.coherent (outer c) ∧ Cursor.coherent (inner c) ∧
match Cursor.visited (outer c) with

(* if the outer cursor has not been visited yet, so as the inner cursor *)

| nil ⇒ visited c = nil ∧ Cursor.visited (inner c) = nil

(* otherwise, the visited elements are a partial cross-product *)

| el :: li ⇒ visited c = (cross (el::nil) (Cursor.visited (inner c))) ++

(cross li (rev (Cursor.collection (inner c))))

end.

where cross builds the cross product of two lists. For progress, an upper
bound for the length of this partial cross-product is needed:

Definition ubound (c:cursor) : nat :=

Cursor.ubound (inner c) +

(Cursor.ubound (outer c) * (S (Cursor.ubound (Cursor.reset (inner c))))).

where a successor on the upper bound on the inner cursor has been added
for simplicity reasons. The proof of completeness is elaborate and relies on key
properties on bounds for cursors stating in particular that the bound decreases
when next is applied to a non-empty cursor:

Lemma ubound_next_not_Empty:

∀ c, coherent c → fst (next c) 6= Empty_Cursor → ubound (snd (next c)) < ubound c;

9



Materialisation Independently from any specific operator, materialising an
iterator is achieved by resetting it, then iterating the upper bound number of
times while accumulating the returned elements. We can show the key lemma
for adequacy of operators: materialising an iterator produces all the elements of
its collection.

Definition materialize c :=

let c’ := reset c in List.rev (snd (iter next (ubound c’) c’ nil)).

Lemma materialize_collection c : materialize c = collection c.

We used the same technique to implement the grouping operator by, instead
of simply accumulating the elements, group them on the fly.

4.2 Index-based operators

Having an index on a given relation is modelled as a wrapper around cursors:
such a relation must be able to provide a (possibly empty) cursor for each value of
the index. The main components of an indexed relation are: (i) a type containers

of the internal representation of data (which can be a hash table, a B-tree, a
bitmap, . . . ), (ii) a function proj, representing the projection from tuples to
their values on the attributes enjoying the index, (iii) a comparison function P

on these attributes (which can be an equality for hash-indices, a comparison for
tree-based indices, . . . ) and (iv) an indexing function i that, given a container
and an index, returns the cursors of the elements of the container matched by
the index (w.r.t. P). This is implemented as the following record:

Record Index (elt eltp : Type) : Type :=

{ containers : Type; (* representation of data *)

proj : elt → eltp; (* projection on the index *)

P : eltp → eltp → bool; (* comparison between two indices *)

i : containers → eltp → Cursor.cursor; (* indexing function *) [...] }.

As for sequential iterators, we state the main three properties that an index
should satisfy. Again, these properties are expressed in terms of the collection of
a container, used for specification purposes only.

Record Index (elt eltp : Type) : Type := { [...]

ccollection : containers → list elt; (* the elements of a container *)

(* the collection of an indexed cursor contains the filtered elements of the

container w.r.t. P *)

i_collection : ∀ c x, Cursor.collection (i c x) =

List.filter (fun y ⇒ P x (proj y)) (ccollection c);

(* a fresh indexed cursor has not been visited yet *)

i_visited : ∀ c x, Cursor.visited (i c x) = nil;

(* a fresh indexed cursor is coherent *) i_coherent : ∀ c x, Cursor.coherent (i c x) }.

First instance: sequential scan Let us start with a simple example: sequential
scan can be seen as an index scan with a trivial comparison function that always
returns true, and a trivial indexing function that returns a sequential cursor.
It is thus sufficient to use the following definitions and the properties follow
immediately:
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Definition containers := list elt.

Definition P := fun _ _ ⇒ true.

Definition i := fun c _ ⇒ SeqScan.mk_cursor c.

Let us see how this setting models more interesting index-based algorithms.

Second instance: hash-index scan In this case, the comparison function
is an equality, and the underlying containers are hash tables whose keys are
the attributes composing the index. To each key is associated the cursor whose
collection contains elements whose projection on the index equals the key. In our
development, we use the Coq FMap library to represent hash tables, but we are
rather independent of the representation:

Record containers : Type := mk_containers

{ (* the hash table *) hash : FMapWeakList.Raw(Eltp) (cursor C);

(* the elements are associated to the corresponding key *)

keys : ∀ x es, MapsTo x es hash → ∀ e, List.In e (collection es) → P x (proj e) = true;

noDup : NoDup hash (* the hash table has no key duplicate *) }.

where MapsTo x es hash means that es is the cursor associated to the key x in
the hash table.

Given a particular index, the indexing function returns the cursor associated
to the index in the hash table. Its properties follow from the properties of hash
tables.

Third instance: bitmap-index scan In this case, the comparison function
can be any predicate, and the containers are arrays of all the possible elements
of the relation together with bitmaps (bit vectors) associated to each index,
stating whether the nth element of the relation corresponds to the index. In our
development, we use Coq vectors to represent this data structure:

Record containers : Type := mk_containers

{ size : nat; (* the number of elements in the relation *)

collection : Vector.t elt size; (* all the elements of the relation *)

bitmap : eltp → Bvector size;(* a bitmap associated to every index *)

(* each bitmap associates to true exactly the elements matching the corresponding index *)

coherent : ∀ n x0, nth (bitmap x0) n = P x0 (proj (nth collection n)) }.

Given a particular index, the indexing function returns the sequential cursor
built from the elements for which the bitmap associated to the index returns
true. Its properties follow by induction on the size of the relation.

Application: Index-join algorithm The index-join algorithm is similar in principle
to the nested loop algorithm but faster thanks to an exploitable index on the
inner relation: for each tuple of the outer relation, only matching tuples of the
inner relation are considered (see Fig. 3). Hence, our formal development is
similar as the one for nested loop, but more involved: (i) in the function next,
each time we get a new element from the outer relation, we need to generate the
cursor corresponding to the index from the inner relation (instead of resetting the
whole cursor) (ii) the collection is now a dependent cross-product between the
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outer relation and the matching inner tuples; the invariant predicate coherent

has to be changed consequently (iii) the ubound is a dependent product of the
bound of the outer relation with each bound of the matching cursors of the inner
relation (obtained by materialising the outer relation).

visited
cursor1



Collection cursor1

Tuple O1 (a1,b1,c1)

Tuple O2 (a2,b2,c2)

Tuple O3 (a3,b3,c3)

·
·

Tuple On (an,bn,cn)

build (Tuple O1, Tuple 1 I1)

build (Tuple O2, Tuple 2 I1)

build (Tuple O2, Tuple 2 I2)

build (Tuple O2, Tuple 2 I3)

build (Tuple O2, Tuple 2 I4)

︸ ︷︷ ︸
visited

join cursor

Containers (ctn)

Col1

Tuple 1 I1

Col2

Tuple 2 I1

Tuple 2 I2

Tuple 2 I3

Tuple 2 I4


Col3 = collection

(i ctn (proj O3))

Col3

Tuple 3 I1

Tuple 3 I2

Tuple 3 I3

Algorithm 2 Index-Join

for each tuple o ∈ O do
I ← index-lookup ()
for each tuple i ∈ I do

Add the tuple <o,i> to visited
end for

end for

Fig. 3: Index-based nested loop

Derived operators Our high level of abstraction gives for free the specification of
common variants of the physical operators. For instance, the Block Nested Loop
algorithm is straightforwardly formalised by replacing, in the Nested Loop for-
malisation, the abstract type of elements by a type of “blocks” of elements (e.g.,
lists), and the function that combines two tuples by a function that combines
two blocks of tuples.

4.3 Adequacy

All physical operators specified and implemented so far are shown to fulfil the
high-level specification. For instance, if C is a cursor, f a filtering condition
compatible with the equivalence of elements in C, then the corresponding filter
iterator F:= (Filter.build f f_eq C) fulfils the specification of a filter:

Lemma mk_filter_is_a_filter_op :

is_a_filter_op (Cursor.materialize C) (Cursor.materialize F) f (Filter.mk_filter F).

Sometimes, there are some additional side conditions: if C1 and C2 are two
cursors, and NL := (NestedLoop.build [...] C1 C2) is the corresponding nested
loop which combines elements thanks to the combination function build_, not
only some hypotheses are needed to be able to build NL, but some extra ones are
needed to prove NL is indeed a join operator:

Hypothesis [...]

Hypothesis build_split_eq_1 :

12



∀ t1 u1 t2 u2, equivA (build_ t1 t2) (build_ u1 u2) → [...] → equivA1 t1 u1.

Hypothesis build_split_eq_2 :

∀ t1 u1 t2 u2, equivA (build_ t1 t2) (build_ u1 u2) → [...] → equivA2 t2 u2.

Lemma NL_is_a_join_op :

is_a_join_op [...] (Cursor.materialize C1) (Cursor.materialize C2) (Cursor.materialize NL)

[...] (fun c1 c2 ⇒ NestedLoop.mk_cursor C1 C2 nil c1 c2).

5 SQL algebra

We now present SQL algebra, our Coq formalisation of an algebra that satisfies
the high-level specification given in Section 3 and that hosts SQL.

5.1 Syntax and semantics

The extended relational algebra, as presented in textbooks, consists of the well-
known operators π (projection), σ (selection) and × (join) completed with the γ
(grouping) together with the set theoretic operators. We focus on the former four
operators. In our formalisation, formula mimics the SQL’s filtering conditions
expressed in the where and having clauses of SQL.

Inductive query : Type :=

| Q_Table : relname → query

| Q_Set : set_op → query → query → query

| Q_Join : query → query → query

| Q_Pi : list select → query → query

| Q_Sigma : formula → query → query

| Q_Gamma :

list term → formula → list select →
query → query

with formula : Type :=

| Q_Conj :

and_or → formula → formula → formula

| Q_Not : formula → formula

| Q_Atom : atom → formula

with atom : Type :=

| Q_True

| Q_Pred : predicate → list term → atom

| Q_Quant :

quantifier → predicate → list term →
query → atom

| Q_In : list select → query → atom

| Q_Exists : query → atom.

We assume that there is an instance which associates to each relation a
multiset (bagT) of tuples, and that these multisets enjoy some list-like operators
such as empty, map, filter, etc (see the additional material for more details and
precise definitions). In order to support so-called SQL correlated queries, the
notion of environment is necessary.

Fixpoint eval query env q {struct q} : bagT :=

match q with

| Q_Table r ⇒ instance r

| Q_Set o q1 q2 ⇒ if sort q1 = sort q2

then interp_set_op o (eval_query env q1) (eval_query env q2)

else empty

| Q_Join q1 q2 ⇒ natural_join (eval_query env q1) (eval_query env q2)

| Q_Pi s q ⇒ map (fun t ⇒ projection_ (env_t env t) s) (eval_query env q)

| Q_Sigma f q ⇒ filter (fun t ⇒ eval_formula (env_t env t) f) (eval_query env q)

| Q_Gamma lf f s q ⇒ let g := Group_By lf in

mk_bag (map (fun l ⇒ projection_ (env_g env g l) s)

(filter (fun l ⇒ eval_formula (env_g env g l) f)

(make_groups_ env (eval_query env q) g)))
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end

with eval formula env f := [ ... ]

with eval atom env atm := [ ...]

end.

Let us detail the evaluation of Q_Sigma f q in environment env. It consists of
the tuples t in the evaluation of q in env which satisfy the evaluation of formula f

in env. In order to evaluate f one has to evaluate the expressions it contains. Such
expressions are formed with attributes which are either bound in env or occur
in tuple t’s support. This is why the evaluation of f takes place in environment
env_t env t which corresponds to pushing t over env yielding

Q_Sigma f q ⇒ filter (fun t ⇒ eval_formula (env_t env t) f) (eval_query env q)

Similarly, we use env_t env t for the evaluation of expressions of s in the Q_Pi

s q case. The grouping γ is expressed thanks to Q_Gamma. A group consists of
elements which evaluate to the same values for a list of grouping expressions.
Each group yields a tuple thanks to the list select part in which each (sub-
)term either takes the same value for each tuple in the group, or consists in an
aggregate expression. This usual definition (see for instance [18]) is not enough
to handle SQL’s having conditions, as having directly operates on the group
that carry more information than the corresponding tuple. This is why Q_Gamma

has also a formula operand. Thus the corresponding expression for query
select avg(a1) as avg a1, sum(b1) as sum b1 from t1

group by a1+b1, 3*b1 having a1 + b1 > 3 + avg(c1);

is Q Gamma [a1 + b1; 3*b1] (Q Atom (Q Pred > [a1 + b1; 3 + avg(c1)]))

[Select As avg(a1) avg a1; Select As sum(b1) sum b1] (Q table t1)

5.2 Adequacy

The following lemmas assess that SQL algebra is a realisation of our high-level
specification. Note that, in the context of SQL algebra the notion of tuple cor-
responds to the high-level notion of elements’ type X, finite bag corresponds to
the high-level notion of containerX and elements to contentX.

Lemma Q_Sigma_is_a_filter_op : ∀ env f,

is_a_filter_op [...]

(* contentA := fun q ⇒ Febag.elements BTupleT (eval_query env q) *)

(* contentA’ := fun q ⇒ Febag.elements BTupleT (eval_query env q) *)

(fun t ⇒ eval_formula (env_t env t) f)

(fun q ⇒ Q_Sigma f q).

Lemma Q_Join_is_a_join_op : ∀ env s1 s2,

let Q_Join q1 q2 := Q_Join q1 q2 in

is_a_join_op (* contentA1 := fun q ⇒ elements (eval_query env q) *)

(* contentA2 := fun q ⇒ elements (eval_query env q) *)

(* contentA := fun q ⇒ elements (eval_query env q) *) [...] s1 s2 Q_Join.

Lemma Q_Gamma_is_a_grouping_op : ∀ env g f s ,

let eval_s l := projection_ (env_g env (Group_By g) l) (Select_List s) in

let eval_f l := eval_formula (env_g env (Group_By g) l) f in

let mk_grp g q := partition_list_expr (elements (eval_query env q))

(map (fun f t ⇒ interp_funterm (env_t env t) f) g) in

let Q_Gamma g f s q := eval_query env (Q_Gamma g f s q) in

is_a_grouping_op [...] mk_grp g eval_f eval_s (Q_Gamma g f s).
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6 Formally bridging logical and physical algebra

We now formally bridge physical algebra to SQL algebra. Fig. 4 describes the
general picture. As pointed out in Section 3, any two operators which satisfy the
same high-level specification are interchangeable. This means in particular that
physical algebra’s operators can be used to implement the evaluation of construc-
tors of SQL algebra’s inductive query. The fundamental nature of the proof of

High-Level Spec

Definition is a ... op p o :=

∀ x t, nb occ t (o p x) = fo,p(t, nb occ t x)

φ-algebra

Lemma φ ... op is a ... op :

Hφ ⇒ ∀ x t, nb occ t (oφ p x) = fo,p(t, nb occ t x)

SQL Algebra

Lemma SQL ... op is a ... op :

HSQL ⇒ ∀ x t, nb occ t (oSQL p x) = fo,p(t, nb occ t x)

Bridge

Lemma φ ... op implements SQL ... op :

Hφ∧ HSQL ⇒ ∀ x t, nb occ t (oφ p x) = nb occ t (oSQL p x)

Fig. 4: Relating φ-algebra and SQL algebra.

such facts is the transitivity of equality of number of occurences. However, there
are some additionnal hypotheses in both lemmas φ_..._op_is_a_..._op and SQL_

..._op_is_a_..._op. Some of them are trivially fulfilled when the elements are
tuples, while others cannot be discarded.

For instance, for proving that NestedLoop implements Q_Join, we have to
check that the hypotheses for NL_is_a_filter_op are fulfilled. Doing so, the con-
dition that the queries to be joined must have disjoint sorts appeared mandatory
in order to prove the hypothesis build_split_eq_2 which assess that whenever
two combined tuples are equivalent, their projections over the part corresponding
to the inner relation also have to be equivalent.

Lemma NL_implements_Q_Join :

(* Provided that the sorts are disjoined... *)

∀ C1 C2 env q1 q2, (sort q1 interS sort q2) = emptysetS →
(∀ t, 0 < nb_occ t (eval_query env q1) → support t = sort q1) →
(∀ t, 0 < nb_occ t eval_query env q2 → support t = sort q2) →
let NL := NestedLoop.build [...] C1 C2 in

∀ c1 c2, (* ... if the two cursors implement the queries... *)

(∀ t, nb_occ t (eval_query env q1) = nb_occ t (Cursor.materialize C1 c1)) →
(∀ t, nb_occ t (eval_query env q2) = nb_occ t (Cursor.materialize C2 c2)) →

(* ... then the nested loop implements the join *)

∀ t, nb_occ t (eval_query env (Q_Join q1 q2)) =

nb_occ t (Cursor.materialize NL (NestedLoop.mk_cursor C1 C2 nil c1 c2)).

This is an a posteriori justification that most systems implement combination of
relations as cross-products whereas according to theory [1], combination should
be the natural join.
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7 Related works, lessons, conclusions and perspectives

Related work Our work is rooted on the many efforts to use proof assistants
to mechanise commercial languages’ semantics and formally verify their compi-
lation as done with the seminal work on Compcert [23]. The first attempt to
formalise the relational data model using Agda is described in [20,19] and a
first complete Coq formalisation of it is found in [8]. A SSreflect-based mecha-
nisation of the Datalog language has been proposed in [9]. The very first Coq
formalisation of RDBMSs’ is detailed in [24] where the authors proposed a ver-
ified source to source compiler for (a small subset) of SQL. In [14], an approach
which automatically compiles high-level SQL-like specifications down into per-
formant, imperative, low-level code is presented. Our goal is different as we aim
at verifying real-life RDBMS’s execution strategies rather than producing im-
perative code. More recently, in [3,4] a Coq modelisation of the nested relational
algebra is provided to assign a semantics to data-centric languages among which
SQL. Regarding logical optimisation, the most in depth proposal is addressed
in [12] where the authors describe a tool to decide whether two SQL queries are
equivalent. However, none of these works consider specifying and verifying the
low-level aspects of SQL’s compilation and execution as we did. Our work is,
thus, complementary to theirs and one perspective could be to join our efforts
along the line of formalising data-centric systems.

Lessons, conclusions and perspectives While formalising the low level layer of
RDBMSs and SQL’s physical optimisation, we learnt the following lessons: (i)
not only finding the right invariants for physical operators was really involved but
proving them (in particular termination for nested loop) was indeed subtle. This
is due to the inherent difficulty to design on-line versions of even trivial off-line
algorithms. (ii) we are even more convinced by the relevance of designing such
a high-level specification that opens the way for accounting other data-centric
languages. More precisely, we first formalised SQL algebra then the physical
one, this implied revising the specification: in particular the introduction of
containersX was made. Then, while bridging both formalisms we slightly mod-
ified the specification but without questionning our fundamental choices about
abstracting over collections using containersX, only hypotheses were slightly
tuned. (iii) The need for higher-order and polymorphism was mandatory both
for the specification and physical algebra modelisation. This prevented us from
using deductive verification tools such as Why3 [16] for instance: it was quite
difficult to write down the algorithms and their invariants in this setting, even
worse the automated provers were of no use to discharge the proof obligations.
We tried tuning the invariants to help provers, without success. Hence our claim
is that it is easier to directly use a proof assistant, where one has the control
over the statements which have to be proven. (iv) The last point is that we
experimented records versus modules: records are simpler to use than modules
in our formalisation (no need of definitions’ unfolding, no need of intermediate
inductive types for technical reasons), the counterpart being that modules in the
standard Coq library, such as FSets or FMaps were not directy usable. The nice
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feature which allows to hide part of their contents through module subtyping
was not needed here.

There are many points still to be addressed. In the very short term we plan
to specify the missing operators of Table 1 and enrich the physical algebra with
more fancy algorithms. Along this line two directions remain to be explored.
In our development, the emphasis was put on specification rather than perfor-
mance. Even if we carefully separated functions used in specification (such as
collection, coherent, . . . ) from the concrete algorithms, these latter are defined
in the functional language of Coq using higher-order data structures. We plan to
refine these algorithms into more efficient versions, in particular that manipulate
the memory. We plan to rely on CertiCoq [2] in order to produce fully certified
C code. We are confident that our specification is modular enough to be plugged
on other system components, such as buffer management, page allocation, disk
access, already formalised in Coq as in [21,11]. Back to the general picture of
designing a fully certified SQL compilation chain, in [6] we provided a Coq mech-
anised semantics pass that assigns any SQL query its executable SQL algebra
expression. What remains to be done is to formally prove equivalence between
SQL algebra expressions: those produced by the logical optimisation phase and
the one corresponding to the query execution plan. Last, we are confident that
our specification is general enough to host various data-centric languages and
will provide a framework for data-centric languages interoperability which is our
long term goal.
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