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Abstract. This work describes the ongoing specification and formal-
ization in the PVS proof assistant of some definitions and theorems of
ring theory in abstract algebra, and briefly presents some of the results
intended to be formalized. So far, some important theorems from ring
theory were specified and formally proved, like the First Isomorphism
Theorem, the Binomial Theorem and the lemma establishing that every
finite integral domain with cardinality greater than one is a field. The
goal of the project in progress is to specify and formalize in PVS the
main theorems from ring theory presented in undergraduate textbooks
of abstract algebra, but in the short term the authors intended to for-
malize: (i) the Second and the Third Isomorphism Theorems for rings;
(ii) the primality of the characteristic of a ring without zero divisors;
(iii) definitions of prime and maximal ideals and theorems related with
those concepts. The developed formalization applies mainly a part of the
NASA PVS library for abstract algebra specified in the theory algebra.

1 Introduction

Ring theory has a wide range of applications in the most varied fields of knowl-
edge. According to [18], the segmentation of digital images becomes more effi-
ciently automated by applying the Zn ring to obtain index of similarity between
images. Furthermore, according to [3] finite commutative rings has an important
role in areas like combinatorics, analysis of algorithms, algebraic cryptography
and coding theory. In particular in coding theory, finite fields (which are com-
mutative rings with unity) and polynomials over finite fields has been widely
applied in description of redundant codes [16].

The authors has the project that consists in to formalize in the PVS proof
assistant the basic theory for rings presented in undergraduate textbooks of ab-
stract algebra. This formalization would make possible the formal verification of
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Fig. 1: Hierarchy of the PVS theory rings, which imports the theory algebra from
nasalib. The four main branches developed so far are highlighted.

more complex theories involving rings in their scope. This is an ongoing formal-
ization and the lemmas already verified constitute the theory rings, which is a
collection of subtheories that will be described in Section 2. The PVS is a spec-
ification and verification system which provides an integrated environment for
development and analysis of formal specifications. An important and well-known
library for PVS is the NASA PVS Library4 (nasalib) that contains many theories
in several subjects, like analysis [5], topology [15], term rewriting systems [8],
among others. In particular, a formal verification for basic abstract algebra is
part of nasalib, in the theory algebra [4], where basic concepts about groups,
rings and fields were specified. However the content of the theory algebra, for
instance about rings, is essentially definitions and basic results obtained from
such definitions. To the best knowledge of the authors, the only formalization in-
volving rings in PVS is the theory algebra. The project proposed by the authors
was motivated by the wish to contribute with the enrichment of mathematics
formalizations in the available PVS libraries, by formalizing non basic results
about rings that are not in nasalib.

The main contributions presented in this paper consist in the formalization
of important theorems such that the First Isomorphism Theorem, the Binomial
Theorem for rings and the result establishing that every finite integral domain
with cardinality greater than one is a field. Furthermore, important concepts
and lemmas from nasalib theories and prelude (the native library of PVS which
contains a collection of theories about functions, sets, predicates, logic, numbers,
among others) were generalized in order to build the ongoing theory rings. The
present formalization follows the approach of the textbooks [2, 7, 11, 12], but
mainly the Hungerford textbook [12].

2 The theory rings: formalized so far

In this section it will be described the collection of definitions, lemmas and the-
orems specified and formalized in the main theory rings. These results range

4 available at https://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/
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from basic properties for rings, like an alternative characterization for subrings,
to nontrivial formalizations, like the formalization of the classical First Isomor-
phism Theorem for rings.

The current state of formalization of the PVS theory rings, proposed by
the authors, consists of some subtheories divided in four main branches (Fig.
1), each one dedicated to formalize lemmas involving: (i) characteristic of rings

subring_equiv: LEMMA
subring?(S,R) IFF nonempty?(S) AND subset?(S,R)
AND (FORALL (x,y:(S)):

member(x-y,S) AND member(x*y,S))

R_sigma(low,high,F): Recursive T =
IF low > high THEN zero ELSIF high = low
THEN F(low) ELSE R_sigma(low,high-1,F)+F(high)

ENDIF MEASURE abs(high+1-low)

left_zd?(x: nz_T): bool =
EXISTS (y:nz_T): x*y = zero

nlzd: TYPE = {x:T | x = zero OR NOT left_zd?(x)}

nzd_cancel_left: LEMMA FORALL (a:nlzd, b,c:T):
a*b = a*c IMPLIES (a = zero OR b = c)

------------------------------------------------
R_homomorphism?(R1,R2)(phi:[(R1)->(R2)]): bool =
FORALL(a,b:(R1)):phi(s1(a,b))=s2(phi(a),phi(b))

AND phi(p1(a,b))=p2(phi(a),phi(b))

R_monomorphism?(R1,R2)(phi:[(R1)->(R2)]): bool =
injective?(phi) AND R_homomorphism?(R1,R2)(phi)

R_epimorphism?(R1,R2)(phi:[(R1)->(R2)]): bool =
surjective?(phi) AND R_homomorphism?(R1,R2)(phi)

R_isomorphism?(R1,R2)(phi:[(R1)->(R2)]): bool =
R_monomorphism?(R1,R2)(phi)
AND R_epimorphism?(R1,R2)(phi)

R_kernel(R1,R2)(phi: R_homomorphism(R1,R2)):
subgroup[T1,s1,zero1](R1) = kernel(R1,R2)(phi)

------------------------------------------------
multiple_char: LEMMA
(EXISTS (m:int): k = m * charac(R))
IFF (FORALL (x:(R)): times(x, k) = zero)

char_1_zero_ring: LEMMA
charac(R) = 1 IFF R = singleton(zero)

------------------------------------------------
power_commute: LEMMA x*y = y*x IMPLIES
power(x,m)*power(y,i) = power(y,i)*power(x,m)

gen_times_int_one: LEMMA times(one,k) = zero
IMPLIES times(x, k) = zero

Fig. 2: Highlighted specifications in the sub-
theories ring basic properties, ring ho-

momorphisms def, ring characteristic def

and ring with one basic properties.

and rings with one; (ii) finite inte-
gral domain; (iii) Binomial Theo-
rem for rings; (iv) homomorphism
of rings. Those branches will be
described in the following subsec-
tions. The basis of the develop-
ment is constituted by some sub-
theories for fundamental definitions
and results regarding ring theory,
namely:
ring basic properties: This sub-
theory contains basic results about
rings not specified in the theory
algebra. The main contributions
of this subtheory are: (i) An al-
ternative characterization for sub-
rings, Lemma subring equiv (Fig.
2); (ii) The formalization of the re-
cursive Function R sigma that per-
forms a summation of elements of
arbitrary types and its properties
(Fig. 2). In order to ensure its total-
ity it was necessary to provide a de-
creasing measure applied to prove
the TCC’s (type correctness condi-
tions - lemmas automatically gener-
ated by the prover during the pro-
cess of type checking) for termina-
tion. Such function generalizes the
summation of reals defined in the
nasalib theory reals; and (iii) The
definition of a non zero divisor el-
ement type, necessary in the for-
malization of a more general can-
cellation law that holds in an arbi-
trary ring since the cancelled ele-
ment has the non zero divisor type
(Fig. 2).
ring ideal def: The concepts of left and right ideal, as well as the type ideal of
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a ring were established.
ring homomorphisms def: Such subtheory contains the definition of homomor-
phism of rings and its variants: injective, surjective and bijective homomorphism.
In addition, the kernel of a homomorphism of rings (Fig. 2) is defined from the
kernel of a homomorphism of groups specified in the theory algebra.
ring characteristic def: The specification of the notion of characteristic of a
ring and basic results were established. Two lemmas deserve to be highlighted:
multiple char and char 1 zero ring (Fig. 2). The former is a characterization of
multiples of the characteristic of a ring, and the latter states the characteristic
of the zero ring as being the integer 1.
ring with one basic properties: In this subtheory one has two important re-
sults, power commute and gen times int one (Fig. 2), to formalize a version of the
Binomial Theorem for rings and properties involving characteristic of a ring.

Note that, in some specified lemmas in Fig. 2, the universal quantifier on
free variables is implicit. This is possible because the PVS syntax allows one to
declare free variables anywhere in the specification file before lemmas, functions
and definitons that use those variables. Furthermore, it is possible to use a set
inside parentheses to denote the type of its elements.

2.1 The subtheory ring general results

homomorphism_Z_to_R: LEMMA
charac(R) > 0 IMPLIES
(LET phi:[(fullset[int])->(R)] =

(LAMBDA (m:int): times(one, m)) IN
R_homomorphism?(fullset[int],R)(phi) AND
R_kernel(fullset[int],R)(phi)
={x:int | EXISTS (k:int): x = k*charac(R)})

---------------------------------------------
R_bino_theo: LEMMA
FORALL(x,y:(R)): x*y = y*x IMPLIES
power(x+y,n) = R_sigma(0,n,F_bino(n,x,y))

F_bino(n,x,y): [nat -> T] = LAMBDA k:
IF k > n THEN zero ELSE
times(power(x,k)*power(y,n-k),C(n,k)) ENDIF

Fig. 3: Highlighted specifications in the
subtheories ring general results and
ring binomial theorem.

The main result in this branch con-
sists in to determine the kernel of the
homomorphism from the ring of in-
tegers to a ring R, illustrated in the
Lemma homomorphism Z to R (Fig. 3),
as the set of multiples of the charac-
teristic of the ring R. Its proof follows
from the Lemmas gen times int one

and multiple char, respectively.
It is intended to extend this sub-

theory establishing results about, for
instance, the characteristic of non zero
divisor rings and, in particular, of in-
tegral domains.

2.2 The subtheory finite integral domain

The subtheory finite integral domain extends the subtheory integral domain

from algebra. The most important theorem states that every finite integral do-
main with cardinality greater than 1 is a field. The formalization follows the
approach in [11]. However, it is important to remark that in [11] a necessary
hypothesis is omitted, since the author does not require that the cardinality of
the finite integral domain is greater than 1, and the lack of this requirement
makes the formal proof unachievable, once in this case the zero ring must be
consider and obviously such integral domain is not a field.



5

Also, in this subtheory it was necessary to formalize a result generalizing the
pigeonhole principle for an arbitrary set with elements of an arbitrary type, since
the pigeonhole principle in the prelude is restricted to subsets of N.

2.3 The subtheory ring binomial theorem

From the recursive Function R sigma in ring basic properties and its properties
and the Lemma power commute in ring with one basic properties one can for-
mally prove the Binomial Theorem for rings R bino theo (Fig. 3), where
F bino(n, x, y) =

(
n
k

)
· xkyn−k.

2.4 The subtheory ring isomorphism theorems

ideal_is_normal_subgroup: LEMMA
ideal?(I,R) IMPLIES normal_subgroup?(I,R)

---------------------------------------------
cosets(R:ring,I:ideal(R)):TYPE
= left_cosets(R,I)

add(R:ring,I:ideal(R)):
[cosets(R,I),cosets(R,I)->cosets(R,I)]
= mult(R,I)

product(R:ring, I:ideal(R))
(A,B: cosets(R,I)):cosets(R,I) =

lc_gen(R,I,A)*lc_gen(R,I,B) + I

ring_cosets: LEMMA FORALL(R:ring,I:ideal(R)):
ring?[cosets(R,I),add(R,I),product(R,I),I]
({s:cosets(R,I) | EXISTS (a:(R)):s = a+I})

---------------------------------------------
image_homo_is_subring: LEMMA
FORALL (phi: R_homomorphism(R1,R2)):

subring?(image(phi)(R1),R2)

monomorphism_charac: LEMMA
FORALL (phi: R_homomorphism(R1,R2)):

R_monomorphism?(R1,R2)(phi) IFF
R_kernel(R1,R2)(phi) = singleton(zero1))

kernel_homo_is_ideal: LEMMA
FORALL (phi: R_homomorphism(R1,R2)):

ideal?(R_kernel(R1,R2)(phi),R1)
---------------------------------------------
first_isomorphism_th: THEOREM
FORALL(phi: R_homomorphism(R,S)):
R_isomorphic?[cosets(R, R_kernel(R,S)(phi)),

add(R,R_kernel(R,S)(phi)),
product(R,R_kernel(R,S)(phi)),
R_kernel(R,S)(phi),D,s,p,zerod]

(/[T,+,*,zero]
(R,R_kernel(R,S)(phi)),image(phi)(R))

Fig. 4: Highlighted specifications in the
subtheories ring ideal, quotient ring,
ring homomorphism lemmas and ring iso-

morphism theorems.

The subtheory ring isomorphism theo-

rems is the more elaborated one
among the four highlighted subtheo-
ries in Figure 1. At this point, the
most important lemma of such sub-
theory is the First Isomorphism Theo-
rem for rings. In order to formalize the
results in ring isomorphism theorems

relevant notions related with ideals,
quotient rings and homomorphisms of
rings were specified in the subtheo-
ries:
ring ideal: The main lemma formal-
ized in this subtheory states that the
ideal of ring is a normal subgroup
(Fig. 4). This result was strongly
applied to verify the TCC’s in the
subtheory ring isomorphism theorems,
generated from the specification of
quotient rings, in the subtheory
quotient ring, which in turn imports
the subtheory factor groups from the
theory algebra, where it is required
that the type of the parameters in the
quotient of groups has to be a group
G and a normal subgroup of G.
quotient rings: The algebra of quo-
tient rings is builded by specifying the
type cosets and defining the opera-
tions of addition, add, and multipli-
cation, product, between two cosets
(Fig. 4). From that it was formalized
that the structure (cosets(R,I),add(R,I),product(R,I),I) (Fig. 4) is a ring,
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where R is a ring and I is an ideal of R.
ring homomorphism lemmas: Classical results were formalized, such as, given a
function φ : R → S from a ring (R,+R, ∗R, eR) to a ring (S,+S, ∗S, eS), if φ
is a homomorphism then: (i) the kernel of φ, denoted as ker(φ), is an ideal of
R; (ii) the image of φ is a subring of S; and (iii) φ is a monomorphism iff the
kernel of φ is the set ker(φ) = {eR} (Fig. 4).

Additionally, in order to formalize the First Isomorphism Theorem (Theorem
1), whose specification is in Fig. 4 (Theorem first isomorphism th), it was nec-
essary to specify and prove, in the subtheory ring isomorphism theorems, other
six auxiliary lemmas corresponding to the Lemma 1.

Lemma 1. If φ : R → S is a homomorphism of rings and I is an ideal of R
which is contained in the kernel of φ, then there is a unique homomorphism of
rings f : R/I → S such that f(a + I) = φ(a) for all a ∈ R. The image of f is
equal to the image of φ and ker(f) = ker(φ)/I. f is an isomorphism if and only
if φ is an epimorphism and ker(φ) = I.

Theorem 1 (First Isomorphism Theorem). If φ : R → S is a homomor-
phism of rings then φ induces an isomorphism of rings from R/ker(φ) to the
image of φ.

3 Related Work

In the literature, abstract algebra formalizations are available. In Coq results
about groups, rings and ordered fields were formalized as part of the FTA project
[9]. Also in Coq, [6] presents a formalization of rings with explicit divisibility. In
Nuprl and in Mizar it is provided a formal proof of the Binomial Theorem for
rings, [13] and [17] respectively. In ACL2 it is builded a hierarchy of algebraic
structures ranging from setoids to vector spaces focused on the verification of
computer algebra systems [10]. The Algebra Library of Isabelle/HOL [1] presents
an interesting collection of results in the algebraic hierarchy of rings, mainly
about groups, factorization over ideals, ring of integers and polynomial ring. To
the best of the authors knowledge, only in Mizar it was formalized the First
Isomorphism Theorem for rings [14]. However, the Mizar formalization differs
from the one presented in this paper in the sense that Mizar is a system of first
order set theory whereas PVS is a higher order logic system.

4 Conclusions and Future Work

The formalization presented in this paper shows the beginning of a project where
it is planned to develop in PVS the specification and formal verification of the
main theorems from ring theory. Some important theorems were formalized, as
well as several auxiliary results necessary to complete the current formalization
(Section 2). In numbers the theory rings consists of 141 proved formulas, from
which 68 are TCC’s. The specification files have together 1134 lines and their
size is 64 KB; the proof files have 17503 lines and 1.2 MB.
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The next step would be the formalization of: (i) the Second and the Third Iso-
morphism Theorems; (ii) the Correspondence Theorem for rings; (iii) a theorem
establishing the primality of the characteristic of a ring without zero divisors, in
particular of a integral domain; (iv) definitions of prime and maximal ideals and
theorems related with those concepts, as for example the equivalence between
fields and the non existence of a proper ideal in commutative rings with one.

Ring theory has a number of applications, for example, coding theory, seg-
mentation of digital images, cryptography, among others. In this sense, this
formalization forms a basis for future formal verifications of more elaborated
theories involving rings and their properties.
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