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Abstract. Combining methods from satisfiability checking with meth-
ods from symbolic computation promises to solve challenging problems in
various areas of theory and application. We look at the basically equiv-
alent problem of proving statements directly in a non–clausal setting,
when additional information on the underlying domain is available in
form of specific properties and algorithms. We demonstrate on a concrete
example several heuristic techniques for the automation of natural–style
proving of statements from elementary analysis. The purpose of this work
in progress is to generate proofs similar to those produced by humans, by
combining automated reasoning methods with techniques from computer
algebra. Our techniques include: the S-decomposition method for formu-
lae with alternating quantifiers, quantifier elimination by cylindrical al-
gebraic decomposition, analysis of terms behaviour in zero, bounding the
ε-bounds, rewriting of expressions involving absolute value, algebraic ma-
nipulations, and identification of equal terms under unknown functions.
These techniques are being implemented in the Theorema system and
are able to construct automatically natural–style proofs for numerous
examples including: convergence of sequences, limits and continuity of
functions, uniform continuity, and other.

Keywords: Satisfiability Checking · Natural-style Proofs · Symbolic
Computation.

1 Introduction

The need for natural1–style proofs (that is: similar to proofs produced by hu-
mans – see [2]) arises in various applications, as for instance in tutorials, demon-
strations, and interactive teaching systems. Some authors argue for the use of
natural style when the proof system is not completely automatic (e. g. interactive
provers) because this facilitates the interaction with the human user.

? Partially supported by project “Satisfiability Checking and Symbolic Computation”
(H2020-FETOPN-2015-CSA 712689).

1 Here we do not mean natural deduction as described e. g. in [7].
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When applied to problems over reals, Satisfiability Modulo Theories (SMT)
solving combines techniques from Automated Reasoning and from Computer Al-
gebra. From the point of view of Automated Reasoning, proving unsatisfiability
of a set of clauses appears to be quite different from producing natural-style
proofs. Indeed the proof systems are different (resolution on clauses2 vs. some
version of sequent calculus3), but they are essentially equivalent, relaying on
equivalent transformations of formulae. Moreover, the most important steps in
first–order proving, namely the instantiations of universally quantified formu-
lae (which in natural–style proofs is also present as the equivalent operation
of finding witnesses for existentially quantified goals), are actually the same or
very similar. (For an illustration of instantiations in natural–style proofs see [4].)
From the point of view of Computer Algebra, finding these instantiations is the
most important operation, thus here again one can use the same techniques in
SMT solving and natural–style proving. Therefore the techniques can be easily
moved from one area to the other, because they are essentially equivalent.

In this paper we present our results on a class of proof problems which arise
in elementary analysis. These are problems involving formulae with alternating
quantifiers, which are difficult to solve by the purely logic approach, because
this requires the use of a large number of formulae which express the necessary
properties of numbers (naturals, integers, rationals, reals). We use the following
techniques, which extend our previous work [8]:

– the S-decomposition method for formulae with alternating quantifiers [6],

– Quantifier Elimination by Cylindrical Algebraic Decomposition [3],

– analysis of terms behaviour in zero,

– bounding the ε-bounds,

– rewriting of expressions involving absolute value,

– algebraic manipulations: solving, substitution, and simplification,

– identification of equal terms under unknown functions.

Our prover, implemented in the frame of the Theorema system [2], aims at
producing natural–style proofs for simple theorems involving limits of sequences
and of functions, continuity, uniform continuity, etc. An important aspect of the
naturalness of the proof is the fact that the prover does not need to access a
large collection of formulae (expressing the properties of the domains involved).
Rather, the prover uses symbolic computation techniques from algebra in order
to discover relevant terms and to check necessary conditions, and only needs as
starting formulae the definitions of the main notions involved.

The prover can run either in interactive mode (the user has a choice of certain
techniques at certain points) or fully automatic mode, because this is provided
by the Theorema system. When in automatic mode, the proofs tested by us took
at most 30 seconds.

2 en.wikipedia.org/wiki/Resolution (logic) (May 2018)
3 www.encyclopediaofmath.org/index.php/Sequent calculus (May 2018),
en.wikipedia.org/wiki/Sequent calculus (May 2018)
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2 Example: Product of Convergent Sequences

We illustrate our method by the proof of the theorem “The product of two
convergent sequences is convergent.”, which is presented in detail on the next
pages. The lines labeled [K1], . . . , [K5] are not part of the proof, but only
annotations for the purpose of this presentation: they indicate the key steps in
the proof where special symbolic methods have to be used.

Note the specific structure of the quantified formulae: the quantifier has a
first underline which declares the type of the variable, and possibly a second
underline which declares a condition upon the quantified variable. These two
conditions have a specific role during the decomposition of the proof using our
method – see [1]. For space reasons, in this presentation we do not address the
treatment of types. Note also that we follow the convention of Mathematica and
Theorema, by denoting function and predicate application by square brackets
instead of the traditional round parantheses.

The proof starts from the definition of the notion of convergent sequence and
of the product of sequences, and decomposes the theorem into 3 statements: two
assumptions (1), (2) and one goal (3).

The main structure of the proof follows from the S-decomposition method
(see [6]): the quantifiers are removed from the 3 statements in parallel, using a
combination of inference steps which decompose the proof into several branches,
introduce Skolem constants4, and require special terms (for instantiations or as
witnesses). In the background the prover keeps certain quantified formulae which
express the general structure of the proof and which are used at certain moments
for finding the witnesses and the instantiation terms (as described in [1]).

At the beginning the 3 formulae are existential, in this situation S-decomposi-
tion is applied as follows:

– First for the assumptions (1), (2): introduce the Skolem constants a1, a2
instead of the quantified variables; assume that the type conditions under
the quantifier hold;

– Second for the goal (3): introduce the witness a1 ∗ a2 instead of the existen-
tially quantified variable; prove additionally the type condition (not shown
in the example) under the quantifier.

As an effect of this transformations the 3 formulae become universal (4), (5),
(6), and S-decomposition proceeds as follows:

– First for the goal (6): introduce the Skolem constant e0 instead of the quan-
tified variable; assume that the conditions e0 ∈ R and e0 > 0 under the
quantifier hold;

– Second for the assumptions (4), (5): introduce the instantiation term e = . . .
instead of the universally quantified variable; prove additionally the condi-
tions under the quantifier (the proof of the type condition is not shown in
the example); and instantiate the assumptions.

4 Skolem constants are new constant symbols introduced instead of quantified variables
in certain situations: existential assumptions and universal goals.
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After these transformations we obtain again 3 existentially quantified formulae
and the cycle re-iterates. At every iteration of the proof cycle one needs a witness
for the existential goal and an instantiation term for the universal assumptions:
these are the difficult steps in the proof, for which we use special proof techiques
based on symbolic computation.

Definition: The sequence f : N −→ R is convergent iff:

∃
a∈R

∀
e∈R
e>0

∃
M∈N

∀
n∈N
n≥M

|f [n]− a| < e

Theorem: The product of convergent sequences is convergent.

Proof:
We assume:

(1) ∃
a∈R

∀
e∈R
e>0

∃
M∈N

∀
n∈N
n≥M

|f1[n]− a| < e

(2) ∃
a∈R

∀
e∈R
e>0

∃
M∈N

∀
n∈N
n≥M

|f2[n]− a| < e

and we prove :

(3) ∃
a∈R

∀
e∈R
e>0

∃
M∈N

∀
n∈N
n≥M

| (f1[n] ∗ f2[n])− a| < e

By (1), (2) we can take a1,a2 ∈ R such that :

(4) ∀
e∈R
e>0

∃
M∈N

∀
n∈N
n≥M

|f1[n]− a1| < e

(5) ∀
e∈R
e>0

∃
M∈N

∀
n∈N
n≥M

|f2[n]− a2| < e

[K1] Witness for the existential goal: a→ a1 ∗ a2

For proving (3) it is sufficient to prove :

(6) ∀
e∈R
e>0

∃
M∈N

∀
n∈N
n≥M

| (f1[n] ∗ f2[n])− (a1 ∗ a2) | < e

For proving (6) we take e0 ∈ R arbitrary but fixed, we assume :

(7) e0 > 0

and we prove :

(8) ∃
M∈N

∀
n∈N
n≥M

| (f1[n] ∗ f2[n])− (a1 ∗ a2) | < e0
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[K2] Instantiation term for universal assumptions: e→ Min [. . .]

We consider :

e = Min
[
1, e0
|a2|+|a1|+1

]
First we prove :

(9) e > 0

This follows from (7) and elementary properties of R.

Using (9), from (4) and (5) we obtain :

(10) ∃
M∈N

∀
n∈N
n≥M

|f1[n]− a1| < e

(11) ∃
M∈N

∀
n∈N
n≥M

|f2[n]− a2| < e

By (10) and (11) we can take M1,M2∈ N such that :

(12) ∀
n∈N

n≥M1

|f1[n]− a1| < e

(13) ∀
n∈N

n≥M2

|f2[n]− a2| < e

[K3] Witness for existential goal : M → Max [M1,M2]

In order to prove (8) it suffices to prove:

(14) ∀
n∈N

n≥Max[M1,M2]

| (f1[n] ∗ f2[n])− (a1 ∗ a2) | < e0

For proving (14) we take n0 ∈ N arbitrary but fixed, we assume :

(15) n0 ≥ Max [M1,M2]

and we prove :

(16) | (f1 [n0] ∗ f2 [n0])− (a1 ∗ a2) | < e0
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[K4] Instantiation term for universal assumptions : n→ n0

First we prove :

(17) (n0 ≥M1) ∧ (n0 ≥M2)

This follows from (15) and elementary properties of R.

Using (17), from (12) and (13) we obtain:

(18) |f1 [n0]− a1| < e

(19) |f2 [n0]− a2| < e

[K5] Algebraic manipulations

Using elementary properties of R we transform (16) into:

(20) |a1 ∗ (f2[n0]− a2) + a2 ∗ (f1[n0]− a1) + (f1[n0]− a1) ∗ (f2[n0]− a2)| < e0

Using elementary properties of R, from (18) and (19) we obtain:

(21) |a1 ∗ (f2[n0]− a2) + a2 ∗ (f1[n0]− a1) + (f1[n0]− a1) ∗ (f2[n0]− a2)| ≤

≤ |a1 ∗ (f2[n0]− a2)|+ |a2 ∗ (f1[n0]− a1)| + |(f1[n0]− a1) ∗ (f2[n0]− a2)| =

= |a1| ∗ |f2[n0]− a2|+ |a2| ∗ |f1[n0]− a1| + |f1[n0]− a1| ∗ |f2[n0]− a2| <

< |a1| ∗ e+ |a2| ∗ e+ e ∗ e ≤ |a1| ∗ e+ |a2| ∗ e+ e = e ∗ (|a1|+ |a2|+ 1) =

= e0
|a2|+|a1|+1 ∗ (|a1|+ |a2|+ 1) = e0

which proves the goal.

3 Application of Special Techniques

We describe here how the special techniques mentioned in the introduction are
used in the course of the proof presented above, namely at the key steps indicated
with [K1], . . . , [K5].

3.1 K1: Witness for Existential Goal

Here the prover must produce the witness a1 ∗a2 needed for the existential vari-
able a in the current goal (3). We use the well known technique of metavariables
(see also [4]), that is we replace the existential variable by a new symbol, which
is a name for the term which we need to find. This term will be found later,
when the prover generates a certain simplified formula (see [8, 1]) which we call
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formula (A):

∀a1,a2∃a0∀e0(e0 > 0⇒ ∃e1,e2(e1 > 0 ∧ e2 > 0∧

∀x1,x2
(|x1 − a1| < e1 ∧ |x2 − a2| < e2)⇒ |x1 ∗ x2 − a0| < e0))

The value of the metavariable (standing for a0) can be found using Quantifier
Elimination (QE) by Cylindrical Algebraic Decomposition (CAD), as described
in [1] – which works for the case of the sum of convergent sequences. However
in the case of product the corresponding QE problem cannot be solved in a
reasonable time by CAD (e. g. in Mathematica), and even if solved, it generates
a very complicated expression which cannot be used for finding a0.

In the proof above we used another, much simpler technique: reasoning about
terms behaviour in zero. It is clear that the formula (A) expresses the behaviour
of the polynomials in any (small) vicinity of zero. Since polynomials are continu-
ous, this will also be their behaviour in zero. One can in fact prove that formula
(A) is equivalent to the formula:

∀a1,a2∃a0∀x1,x2(|x1 − a1| = 0 ∧ |x2 − a2| = 0)⇒ |x1 ∗ x2 − a0| = 0

In our special case it is immediately clear that a0 equals a1 ∗ a2, but we im-
plemented a more general method: the two LHS equations are solved for x1, x2,
then the values are replaced in the RHS equation, which is then solved for a0.

3.2 K2: Instantiantion Term for Universal Assumptions

Here the prover must produce an appropriate term for the instantiation of the
assumptions (4) and (5). In the case of sum of sequences this is e0/2 and is
relatively easy to guess by a human prover. Similar to [K1], a metavariable is
used instead of the unknown term, and this will correspond to the existential
variables e1, e2 in formula (A).

Again it is possible to use QE by CAD, by treating the formula (A) after
replacing a0 with its value and removal of the quantifiers for a0, a1, a2 – see [1].
This works in the case of sum, but again it does not work satisfactorily in the
case of product.

In order to find this witness (we assume that it is the same for e1 and e2), we
use algebraic manipulation (solving, substitution, and computation), as well as
rewriting of terms under the absolute value function. This is probably the most
interesting of the new techniques presented here, and is detailed below at [K5].

3.3 K3: Witness for the Existential Goal

The proof needs a witness for the existential variable M in the goal (8). Sim-
ilarly to the other key steps, the prover uses a metavariable and produces an
appropriate quantified formula whose treatment by QE allows to infer the right
term, as described in [1].
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3.4 K4: Instantiation of Universal Assumptions

The assumptions (12) and (13) need to be instantiated with appropriate terms
for the universally quantified variable n. Here we use the special heuristics: iden-
tification of equal terms under unknown functions.

Since f1 and f2 are universally quantified in the original formula, and later
become arbitrary constants, we do not know anything about their behaviour.
In the goal (16), f1 and f2 have argument n0. Therefore it will be possible to
use the assumptions (12) and (13) for proving (16) only if f1 and f2 are applied
to the same argument. (This corresponds in fact to resolution in first order
logic.) In the case of this proof the solution is to set n to n0, but even if the
expressions are more complicated one can use equation solving, substitution,
and computation in order to find more complicated terms. Moreover, after this
instantiation we substitute f1[n0] and f2[n0] with new arbitrary constants (e. g.
x1, x2, respectively): this makes our expressions polynomial and helps creating
the formula (A).

3.5 K5: Algebraic Manipulations

The most challenging part is the automatic generation of the instantiation term
needed at step [K2], which is performed by a heuristic combination of solving,
substitution, and simplifying, as well as rewriting of expressions under the ab-
solute value function.

Note the goal (16) has under the absolute value function the expression (call
it E0) corresponding to x1 ∗ x2 − a1 ∗ a2. Let us also name the absolute value
arguments of the assumptions (18) and (19) as E1 and E2, respectively.

First we use the following heuristic principle: transform the goal expression
E0 such that it uses as much as possible E1 and E2, because about those we know
that they are small. In order to do this we take new variables y1, y2, we solve the
equations y1 = E1 and y2 = E2 for x1, x2, we substitute the solutions in E0 and
the result simplifies to: a1∗y2+a2∗y1+y1∗y2. This is the internal representation
of the absolute value argument in the goal (20). Note that the transformation
from (16) to (20) is relatively challenging even for a human prover.

The formula (21) is realized by rewriting of the absolute value expressions.
Namely, we apply certain rewrite rules to expressions of the form |E| and their
combination, as well as to the metavariable e. Every rewrite rule transforms a
(sub)term into one which is not smaller, so we are sure to obtain a greater or
equal term. The final purpose of these transformations is to obtain a strictly
positive ground term t multiplied by the target metavariable (here e). Since we
need a value for e which fullfils t ∗ e ≤ e0, we can set e to e0/t. The rewrite
rules come from the elementary properties of the absolute value function: (e. g.
|u + v| ≤ |u| + |v|)) and from the principle of bounding the ε-bounds: Since we
are interested in the behaviour of the expressions in the immediated vicinity of
zero, the bounds (e, e0, e1, e2) can be bound from above by any positive value.
In the case of product (presented here), we also use the rule: e ∗ e ≤ e, that is
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we bound e to 1. This is why the final expression of e is the minimum between
1 and the expression found as above.

This method works of course for the case of sum of sequences.
In order to make it work for more complex expressions, namely rational

functions, we use a second set of rules which decrease the term: in order to obtain
a bound for U/V , increase U and decrease V . Using this we obtain automatically
appropriate bounds for the case of inverse of a sequence and for the case of
fraction of two sequences.

Full detail of the techniques and of the examples are presented in [5].

3.6 Proving Simple Conditions

At certain places in the proof, the conditions upon certain quantified variables
have to be proven. The prover does not display a proof of these simple state-
ments, but just declares them to be consequences of “elementary properties of
R”. (Such elementary properties are also invoked when developing formulae (20)
and (21).) By “elementary properties” in this context we understand the prop-
erties of various constants (like 0, 1), functions (like Min, Max, absolute value,
+,−, ∗, /), and predicates (like =, <,≤) over reals and naturals, which are nor-
mally studied before the notions of limit, continuity, etc. and which are typically
considered prerequisites for working in elementary analysis.

In the background, however, the prover uses Mathematica functions in order
to check that these statements are correct. This happens for the subgoal (9) and
will be treated after the instatiation term is found, by using QE on the formula
∀e0(e0 > 0⇒ e > 0) (where e has the found value Min[. . .]), which returns true
in Mathematica. The same procedure is used for the subgoal (17).

4 Conclusion and Further Work

The full automation of proofs in elementary analysis constitutes a very inter-
sting application for the combination of logic and algebraic techniques, which
is essentially equivalent to SMT solving (combining satisfiability checking and
symbolic computation). Our experiments show that complete and efficient au-
tomation is possible by using certain heuristics in combination with complex
algebraic algorithms.

Further work includes a systematic treatment of various formulae which ap-
pear in textbooks, and extension of the heuristics to more general types of for-
mulae. In this way we hope to address the class of problems which are usually
subject to SMT solving.
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