
SMT-like Queries in Maple

Stephen A. Forrest

Maplesoft Europe Ltd., Cambridge, UK
sforrest@maplesoft.com

Abstract. The recognition that Symbolic Computation tools could ben-
efit from techniques from the world of Satisfiability Checking was a pri-
mary motive for the founding of the SC2 community. These benefits
would be further demonstrated by the existence of “SMT-like” queries
in legacy computer algebra systems; that is, computations which seek to
decide satisfiability or identify a satisfying witness.
The Maple CAS has been under continuous development since the 1980s
and its core symbolic routines incorporate many heuristics. We describe
ongoing work to compose an inventory of such “SMT-like“ queries ex-
tracted from the built-in Maple library, most of which were added long
before the inclusion in Maple of explicit software links to SAT/SMT
tools. Some of these queries are expressible in the SMT-LIB format us-
ing an existing logic, and it hoped that those that are not could help
inform future development of the SMT-LIB standard.

1 Introduction

1.1 Maple

Maple is a computer algebra system originally developed by members of the
Symbolic Computation Group in the Faculty of Mathematics at the University
of Waterloo. Since 1988, it has been developed and commercially distributed
by Maplesoft (formally Waterloo Maple Inc.), a company based in Waterloo,
Ontario, Canada, with ongoing contributions from affiliated research centres.
The core Maple language is implemented in a kernel written in C++ and much
of the computational library is written in the Maple language, though the system
does employ external libraries such as LAPACK and the GNU Multiprecision
Library (GMP) for special-purpose computations.

1.2 is and coulditbe

Consistent with Maple’s roots as a computer algebra system, its core symbolic
solvers (such as solve, dsolve, int) generally aim to provide a general solution
to a posed problem which is both compact and useful. Further transformation
or simplification of such solutions using simplifiers based on heuristic methods
[9] is often necessary.

Nevertheless the approach of posing queries as questions about satisfiability
or requests for a satisfying witness is not unknown in Maple. The most obvious



example is in the commands is and coulditbe. These are the standard general-
purpose commands in Maple for querying universal and existential properties,
respectively, about a given expression. [11] They are widely used by other sym-
bolic commands in Maple (e.g. solve, int).

The is command accepts an expression p and asks if p evaluates to the value
true for every possible assignment of values to the symbols in p. The coulditbe
command operates similarly but asks if there is any assignment of values to the
symbols in p which could cause p to evaluate to true.

Both is and coulditbe return results in ternary logic: true, false, or FAIL.
Both also make use of the “assume facility”, which is a system for associating
Boolean properties with symbolic variables. This provides limits on the range of
possible assignments considered by is and coulditbe and is roughly analogous
to a type declaration. For example, the expression is(x^2>=0) evaluates to
false because there are many possible values of x which do not evaluate to
nonnegative real numbers, in particular the imaginary unit

√
−1. By contrast,

the expression is(x^2>=0) assuming x::real returns true because the range
of possible values of x has been constrained to real numbers.

An illustrative example is found in the function product. In the evaluation of
the expression product(f(n),n=a..b), the system seeks to compute a symbolic

formula for the product
∏b

n=a f(n). As one can verify by inspecting the source
code with showstat(product), the implementation of product computes a set
of roots of f(n) and, if neither a nor b is infinite, checks whether there exists a
root r such that r is an integer and a ≤ r ≤ b. If so, it returns zero as the result
of the product. (Similar logic is applied if either of a or b is infinite.)

Description is coulditbe

Queries with result true 2335 3582
Queries with result false 19020 1519
Queries with result FAIL 2730 670

Expressible with QF LIA 1759 582
Expressible with QF NIA 6853 1267
Expressible with QF LRA 3059 2394
Expressible with QF NRA 4578 1475

Expressible with AUFNIRA 7569 4426

Linear Gaussian integer arithmetic ? ?
Nonlinear Gaussian integer arithmetic ? ?

Linear complex arithmetic ? ?
Nonlinear complex arithmetic 9931 985

Real numbers with trigometric functions ? ?
Real numbers with trigometric functions, exponentials, and logarithms ? ?

Complex numbers with trigometric functions ? ?
Complex numbers with elementary functions ? ?

Total distinct queries 24085 5771

Table 1. Distinct is and coulditbe queries encountered in a full library test run



As evidence of the ubiquity of such queries, Table 1 summarizes the distinct
invocations of is and coulditbe encountered during a complete run through
Maplesoft’s internal test suite for the Maple library performed on 24 April 2018.
(An investigation into an earlier version of this dataset was published in [10]).
This includes both instances in which the test case explicitly calls is/coulditbe
and instances in which is/coulditbe are invoked by other library functions such
as product, as shown previously.

(TODO: replace ? in table above with computed values in advance of work-
shop.)

In total, 24085 distinct is and 5771 distinct coulditbe queries were issued
during the course of the test run. The inputs vary considerably in size and in the
complexity of the underlying theory, and for both is and coulditbe approxi-
mately 11% of queries cannot be decided (i.e. return FAIL rather than true or
false). A complete list of queries encountered may be viewed at
https://doi.org/10.5281/zenodo.943349.

[Summary here on categorization of SMT instances by underlying theory]

2 Future Work

Recent versions of Maple have seen the addition of explicit links to SAT and
SMT solvers: Maple 2018 is distributed with both the SAT solver MapleSAT
[1] and the SMT solver [13]. In future, we aim to examine the effectiveness of
using these packaged solvers on SMT instances which arise during evaluation of
symbolic expressions.

An important factor in this assessment will be whether this implementation
offers better performance and meaningful answers (not FAIL) for a larger class
of such queries than existing tools in Maple.

References

1. Hui Liang, Vijay Ganesh. MapleSAT development site.
https://sites.google.com/a/gsd.uwaterloo.ca/maplesat/

2. E. Ábrahám, J. Abbott, B. Becker, A.M. Bigatti, M. Brain, B. Buchberger, A.
Cimatti, J.H. Davenport M. England, P. Fontaine, S. Forrest, A. Griggio, D. Kroen-
ing, W.M. Seiler, and T. Sturm. SC2: Satisfiability Checking Meets Symbolic Com-
putation. In: M. Kohlhase, M. Johansson, B. Miller, L. de Moura, F. Tompa, eds.,
Intelligent Computer Mathematics (Proceedings of CICM 2016), pp. 28-43, (Lec-
ture Notes in Computer Science, 9791). Springer International Publishing, 2016.
http://www.sc-square.org/Papers/CICM16.pdf.

3. Erika Ábrahám. 2015. Building Bridges between Symbolic Computation and Satis-
fiability Checking. In Proceedings of the 2015 ACM on International Symposium on
Symbolic and Algebraic Computation (ISSAC 2015). ACM, New York, NY, USA,
1-6. doi:10.1145/2755996.2756636.

4. Thomas Bouton, Diego Caminha B. de Oliveira, David Déharbe, Pascal
Fontaine. (2009). veriT: An Open, Trustable and Efficient SMT-Solver. 151-156.
doi:10.1007/978-3-642-02959-2 12.

https://doi.org/10.5281/zenodo.943349
https://sites.google.com/a/gsd.uwaterloo.ca/maplesat/
http://www.sc-square.org/Papers/CICM16.pdf
https://doi.org/10.1145/2755996.2756636
https://doi.org/10.1007/978-3-642-02959-2_12


5. Florian Corzilius, Ulrich Loup, Sebastian Junges, and Erika Ábrahám. 2012. SMT-
RAT: an SMT-compliant nonlinear real arithmetic toolbox. In Proceedings of the
15th international conference on Theory and Applications of Satisfiability Test-
ing (SAT’12), Alessandro Cimatti and Roberto Sebastiani (Eds.). Springer-Verlag,
Berlin, Heidelberg, 442-448. doi:10.1007/978-3-642-31612-8 35.

6. Konstantin Korovin, Marek Kosta, Thomas Sturm. Towards Conflict-Driven
Learning for Virtual Substitution. Vladimir P. Gerdt, Wolfram Koepf, Werner M.
Seiler, Evgenii V. Vorozhtsov. Computer Algebra in Scientific Computing - 16th In-
ternational Workshop, CASC 2014, 2014, Warsaw, Poland. Springer, 8660, pp.256-
270, 2014, Lecture Notes in Computer Science. doi:10.1007/978-3-319-10515-4 19.

7. Maple Programming Guide, Toronto: Maplesoft, a division of Waterloo Maple Inc.,
2005-2016.

8. Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo The-
ories Library (SMT-LIB), http://www.smt-lib.org, 2016.

9. Jacques Carette. 2004. Understanding Expression Simplification. In Proceed-
ings of the 2004 International Symposium on Symbolic and Algebraic Compu-
tation, Santander, Spain (ISSAC 2004), ACM, New York, NY, USA, 72-79.
doi:10.1145/1005285.1005298.

10. Stephen A. Forrest. 2017. Integration of SMT-LIB Support into Maple. Second
Annual SC2 Workshop, ISSAC 2017, Kaiserslautern, Germany. http://www.sc-
square.org/CSA/workshop2-papers/EA5-FinalVersion.pdf

11. The Assume Facility in Maple, Maple Online Help : The Assume Facility.
12. Logics in SMT-LIB, http://smtlib.org/logics.shtml.
13. de Moura, L. M., and Bjørner, N. Z3: an efficient SMT solver. In TACAS

(2008), vol. 4963 of Lecture Notes in Computer Science, Springer, pp. 337–340.
https://github.com/Z3Prover/z3.

http://dx.doi.org/10.1007/978-3-642-31612-8_35
http://dx.doi.org/10.1007/978-3-319-10515-4_19
http://www.smt-lib.org
http://dx.doi.org/10.1145/1005285.1005298
http://www.sc-square.org/CSA/workshop2-papers/EA5-FinalVersion.pdf
http://www.sc-square.org/CSA/workshop2-papers/EA5-FinalVersion.pdf
https://www.maplesoft.com/support/help/maple/view.aspx?path=assume
http://smtlib.org/logics.shtml
https://github.com/Z3Prover/z3

	SMT-like Queries in Maple

