
The RBAC challenge in the KB-paradigm

Marc Denecker Jo Devriendt
Department Computer Science, KU Leuven

firstname.lastname@cs.kuleuven.be

June 25, 2018

1 Introduction

The RBAC challenge paper of the LPOP workshop [6] describes a dynamic
system for role based access control. In this dynamic system, new users, roles
and permissions are added dynamically, or existing ones are deleted. Users are
assigned new roles or are stripped of them; roles are assigned new permissions or
stripped of them. Roles are organized in hierarchies that may change over time.
Users can pose queries. Optimized configurations of role assignments may have
to be computed. Plans must be searched to realize goal configurations; selected
plans must be executed. The goal of the challenge is to build a software system
that implements this dynamic system and various functionalities in it.

In this position paper, we take a theoretical perspective on the problem. The
questions we asked ourselves initially were of the following kind: how much of
the RBAC domain can be formally specified in the logic FO(.) (First Order logic
extended with inductive/recursive definitions and aggregates) [3]? How much of
the RBAC system can be analyzed on the basis of the formal specification? How
much of the functionalities of the RBAC system can be executed on the basis of
the formal specification? What forms of inference are needed for that? Some
of these questions pertain to the fundamental goals of the scientific domain
of Declarative Knowledge Representation. Simple as the RBAC challenge is,
we didnot know the answers at the start of this project and some questions
remained unanswered at the end.

Our exercise fits in the context of what we called the Knowledge Base
Paradigm [4, 9]. It is the idea that all problem solving is based on domain
knowledge, but domain knowledge itself is inherently independent of the com-
putational problem; formal specifications of it can be reused to solve a range of
problems in the application domain. The goal of this experiment is to test this
idea in the RBAC challenge: to build one formal specification, one knowledge
base (or, well, as few as possible), and to reuse them in various inference prob-
lems to provide a maximal range of functionalities. We investigated how much
can be implemented/prototyped with the knowledge base system IDP [2].

1



Our exercise is theoretical in the sense that we ignore the main metric in com-
putational logic and Knowledge Representation research: efficiency/scalability.
Nevertheless, we found the exercise interesting and thought provoking and we
hope others will think the same. As such, we hope this paper provides some
material for discussion for the LPOP workshop. New questions that we hope
can be addresed during the workshop are: where is the expertise to derive soft-
ware systems from formal specifications?, what are the best formal specification
languages for domains such as RBAC and others?, what are the leading systems
and technologies to achieve these goals?, what further research is needed?

2 KR: building a formal specification of RBAC

The vocabulary An essential step in KR is the design of the formal vo-
cabulary and its informal interpretation. It should be designed to express the
relevant concepts of the application domain, at the right level of abstraction. In
this experiment, this step was trivial since all important concepts are explicitly
stated in the RBAC challenge paper [6]. The vocabulary is available in the
appendix C as vocabulary V RBAC.

The theory We expressed the RBAC dynamic domain in the logic FO(Types,ID,Agg),
as much as conveniently possible. This is First Order logic, extended with in-
ductive/recursive definitions and agregates [7]. Below, we denote this logic as
FO(.). Since FO(.) is not a temporal logic, the dynamics of the domain needs to
be explicated in the vocabulary and the theory. For this we use the methodol-
ogy of Linear Time Calculus (LTC) [1], a simplified version of the event calculus
which uses the natural numbers as a diskrete time line. The LTC methodology
introduces some fixed overhead: explicit time arguments for action and flu-
ent (=state) symbols; frame axioms for all fluent symbols f(ArgTypes, T ime),
expressed in terms of 3 auxiliary predicates per fluent:

• INIT f(ArgTypes) to express the initial state of f ;

• C f(ArgTypes, T ime) to express when f is caused to be true.

• CN f(ArgTypes, T ime) to express when f is caused to be false. The
prefix “CN” stands for “Causes Not”.

Also, standard actions of adding and deleting fluent atoms need to be specified.
More than 80% of the specification is boiler plate overhead which in a special
purpose dynamic specification language could and should be avoided.

The main components of the theory are:

• recursive definitions of fluents expressing inertia and how actions influence
fluents. It contains inertia rules such as:

∀x, t : USERS(x,Next(t))← USERS(x, t) ∧ ¬CN USERS(x, t).

2



and causal rules such as:

∀x, t : CN USERS(x, t)← Delete USERS(x, t).

which expresses that the delete action causes ¬USERS(x) to become true;

• action preconditions; e.g., to express that new user-role relations may be
added only for active users and roles:

∀x, r, t : Add UR(u, r, t)⇒ ¬UR(u, r, t) ∧ USERS(u, t) ∧ROLES(r, t).

• definitions of several derived concepts: e.g., UserPermission; HUR which
relates users with all the roles in the role hierarchy that they possess;

• concurrency axioms constraining simultaneous execution of actions.

A full theory is specified in Appendix C.

Transactions that were not specified There are also transactions of the
RBAC software system that are not and could not (conveniently) be formalized
in the theory. All transactions that take a logic expression as input were not
formally specified: the operations of querying, planning, plan execution and
optimisation take expressions as input. E.g., the query operation takes as input
a query expression and returns as output the value of this expression in the
current state. E.g., this expression could be a set-expression, and its value a
set. The problem is that FO(.) lacks the expressivity to (conveniently) express a
function from expressions to their value in the underlying structure. To express
this in the logic, meta-facilities are required and they are not available in FO(.).
The same argument holds for planning (the goal) and for optimisation (the cost
function).

The absence of specification of these transactions in the formal theory of
RBAC is a striking gap in the theory. However, it does not mean that these
transactions cannot be executed using logical inference methods. This is dis-
cussed in the next section. But what it entails is, for instance, that any formal
analysis of the RBAC theory, e.g., for proving invariants, is partial: it does not
take into account the missing transactions.

The essence of the specification The declarative information in the RBAC
challenge is quite limited. The essential information is in the definitions and
in the invariants. The definitions are of the transitive closure TransHR of the
role hierarchy, the user roles HUR in the hierarchy, and the user permissions
UserPermission. This amounts to:

/* Definitions */

{ ! x[Role], y[Role], t[Time] : TransRH(x,y,t) <- RH(x,y,t).

! x, y, t : TransRH(x,y,t) <- ?z: RH(x,z,t) & TransRH(z,y,t).

}

3



{ ! u[User], r[Role], t[Time]: HUR(u,r,t) <- UR(u,r,t).

! u, r, t: HUR(u,r,t) <- ?r1: UR(u,r1,t) & TransRH(r,r1,t).

}

{ !u[User], p[Perm], t[Time]: UserPermission(u,p,t) <-

?r: HUR(u,r,t)) & PR(p,r,t).

}

/* Invariants */

! u, r, t: UR(u,r,t) => USERS(u,t) & ROLES(r,t).

! p, r, t: PR(p,r,t) => PERMS(p,t) & ROLES(r,t).

! r, r1, t: RH(r,r1,t) => ROLES(r,t) & ROLES(r1,t).

! t: ~? r: TransRH(r,r,t).

! ssd, r, t: SSD_ROLES(ssd,r,t) => ROLES(r,t).

! u, ssd[SSD], t:

#{r[Role] : HUR(u,r,t) & SSD_ROLES(ssd,r,t)} =< SSD_Card(ssd,t).

This theory (±) is presented in Appendix A. All the rest of the theory is
boiler-place and can be generated automatically. One obtains a theory as in
appendix C. Or, in a suitable dynamic logic derived from FO(.), the extra
rules and assertions would be implicit in the semantics of the language. In
particular, for each fluent, the frame axioms, the add and delete actions and their
preconditions are similar in all cases and, in a dynamic logic, should be implicit.
All functionalities specified in the RBAC challenge paper can be derived by
generic inference on the completed theory. We discuss how in the next section.

Remark Regarding the suitability of our logic for real world applications,
if we forget about the boiler plate which evidently must be eliminated, our
specification is simple to understand, compact, and contains no redundancy:
every aspect that was formalized needs to be formalized.

A feature of a formal specification in LTC is that it is state-oriented: trans-
actions are atomic actions. The same is true in many dynamic specification
languages. One problem that we see with, e.g., the optimization transaction
or the planning transactions in RBAC is that, in practice, these operations
are not atomic but they are processes involving user interaction. At the very
least, the user needs to make a selection out of the possible reconfigurations
or plans. Thus, a specification language may need to support the concept of
process. Standard imperative or object oriented languages are strongly process
oriented. Surely, this has sometimes its disadvantages as well. E.g., such process
descriptions often impose unnecessary constraints on the order of execution of
actions. So, one question that rises here is the issue of how to formally specify

4



processes, whether or when state-oriented versus process-oriented is best, and
how to combine the best of worlds.

3 Tasks

Analysis: Verification of invariants The theory T RBAC Pre in Appendix C
specifies action preconditions. E.g., that a new edge (r1, r2) can be added to
the role hierarchy RH only if r2 is not higher in the hierarchy than r1. This is
to avoid that cycles are created in the hierarchy.

The RBAC challenge paper [6] mentions a set of invariants of RBAC. E.g.,
roles assigned to users need to be in the set ROLES of active roles, and can be
assigned only to elements of the set USERS of active users. Others are implicit,
e.g., there are no cycles in the role hierarchy. They are described above. They
are the elements of the theory invariant in the appendix C.

One analysis task for the specification is to check if T RBAC Pre entails
invariant. This is a deduction problem over the inductively defined set of
natural numbers (Time). Using a standard technique, this problem can (often)
be reduced to determining unsatisfiability of the following theory:

T RBAC Pre bs + invariant(0) + ¬invariant(1)

Here, T RBAC Pre bs is the bistate theory, the part of theory T RBAC Pre express-
ing the relationship between two successive states, named 0, 1; invariant(0) and
¬invariant(1) express that the invariants are satisfied at 0 and not at 1. If this
theory is unsatisfiable, then any process starting from an initial state satisfying
invariant(0) preserves the invariants.

The theory T RBAC Pre contains an inductive definition of TransRH that
cannot be expressed in predicate logic. To the best of our knowledge, there
are currently no theorem provers for predicate logic augmented with inductive
definitions1. The IDP system supports a light weight version: it can verify the
satisfiability in the context of fixed finite domain. It is nevertheless useful. That
is, the small scope hypothesis works fine in many cases: errors in the specification
often do emerge in small domains.

We performed this analysis with IDP. At first, we assumed a no concur-
rency axiom, excluding the presence of multiple simultaneous actions. The
analysis brought a few forgotten preconditions to the surface: namely that no
element of USERS,ROLES, PERMS may be be deleted when still in use in
UR,PR,RH,SSD Roles.

In a second step, we analyzed concurrent execution of actions (dropping no
concurrency). The analysis showed that with concurrency, all action precondi-
tions need to be strengthened. So that, e.g., it is not possible to simultaneously
add a role to user u and delete u of USERS. The action preconditions become
quite complex then. However, (1) the action preconditions can be computed au-
tomatically from the invariants by the principle of regression [8]; (2) by adding

1Entailment of predicate logic with inductive definitions is not decidable, not even semi-
decidable.

5



the invariants to the theory, combinations of actions that violate invariants can
be detected by satisfiability checking. Thus, if the goal of an action precondi-
tion is merely to safeguard the invariants, there is no need for it: a suitable
transaction engine will be able to accept or reject a proposed transaction on the
basis of an LTC theory including the invariants. Thus, we can greatly simplify
the theory. The appendix A contains the theory from which all boiler-plate was
removed. It is the input of the IDP-solution.

We observe that not every action precondition serves to protect an invariant.
E.g., an action precondition for the operation of adding x to a fluent is that x
is not an element already of the fluent. This action precondition is not related
to an invariant.

Executing updates for RBAC The RBAC challenge specifies a dynamic
transactional system with persistent data and updates through add and delete
operations. We here describe how, in theory, the updates could be derived from
the formal specification.

For simplicity, we assume that times and dates are associated with natural
numbers. E.g., 3:35pm on 18/7/2018 is associated with the total number of
seconds that has passed since 0:00am of 1/1/1980.

Given an LTC theory T , we define a state theory at time n ∈ IN as a theory
consisting of the following components:

• the theory T , extended with

• equation now = n, where now is a logical constant informally interpreted
as the current time;

• an exhaustive description of the initial values of all fluents;

• an exhaustive description of the set of actions that occur at time points
t ≤ n (i.e., in the past of now). E.g., in FO(.), the actions could be
described by:

Add USERS(u, t)← Future Add Users(u, t) ∧ t > now.
Add USERS(Jim,′′ 2/1/2018, 10 : 31am′′).
Add USERS(Sarah,′′ 2/1/2018, 15 : 02pm′′).
. . . 〈 set of add operations to USERS in the past of now〉


This definition expresses a local closed world assumption on Add USERS,
for the past of now. Here, the predicate Future Add Users represents the
unknown future Add USERS transactions.

An evolution of the RBAC software system corresponds to an evolution of state
theories. At each time point n, the state of the software system corresponds
to a state theory at n. This state theory represents the epistemic state of the
application: what it knows and does not know. With an update at time n, a
new state theory corresponds which is obtained by extending the previous one
with actions at time n. E.g., if Dave is added as a user on 18/6/2018 12am,

6



the above definition is extended with Add USERS(Dave,′′ 18/6/2018, 12am′′)..
With time, the state theory accumulates more information about the world, in
particular about the past of now. At no point in time, the state theory knows the
future of now. There is a monotonicity property: the class of models/possible
worlds of state theories decreases monotonically with time until, at infinity, it
becomes categorical and has only one model: the history as it happened. Since
the class of possible worlds decreases, the knowledge increases. There is one
aspect that is non-monotonic though: with time, the value of now changes and
this is a non-monotonic change. I.e., with time the application changes its mind
about what is the current time. Even when nothing happens for a while, the
application accumulates extra knowledge: that no change happened. Of course,
the meta-operations (e.g., the queries and planning operations) are not and
cannot be registered in the state theory.

Conceptually, to verify if the action preconditions and concurrency axioms
are satisfied by a proposed update, the update is inserted in the state theory
and the theory is verified for satisfiability. If the state theory is satisfiable, the
update is accepted and the state theory is stored. Otherwise, the update is
rejected and the state theory remains unchanged (except for the new value of
now).

For a practical implementation of the above theoretical procedure, many
optimizations are possible and necessary. For example, the satisfiability of the
action preconditions of an update at time now = n can be computed using the
current state structure: the state at time now. Implementation-wise, it makes
sense to explicitly store this structure. If the transaction is accepted, the current
state structure can be progressed to the new current state [5, 1]. The current
state structure is useful as well to answer what will probably be the bulk of the
queries, namely queries about the current state.

Solving current state queries and temporal queries A state theory at
time n determines two structures: the current state structure ICur, expressing
all fluents and actions at time now = n, and the past state structure IPast, ex-
pressing all fluents and actions for the interval [0, n]. The current state structure
is a structure of the single state vocabulary: this is the vocabulary from which
time is projected out from fluents and actions.

Queries over the current state can be expressed as a set expression, or a
formula or a function term in the single state vocabulary. An example is:

{u[User] : #{p[Perm] : UserPermission(u, p)} ≥ 4}

It expresses the set of users that have at least 4 permissions in the current state.
Temporal queries generalize current state queries. E.g., this current state

query can be expressed as the temporal query:

{u[User] : #{p[Perm] : UserPermission(u, p, now)} ≥ 4}

Temporal queries over the past can be expressed as expressions of the same sort
over the original vocabulary. E.g., the following query is whether there is a user

7



that once had a permission to “write”, lost it and then regained it:

∃u : ∃t1, t2, t3 : t1 < t2 < t3 < now ∧ UserPermission(u,Write, t1)∧
¬UserPermission(u,Write, t2) ∧ UserPermission(u,Write, t3)

As explained above, the query operations cannot be formally specified in the
description of the dynamic system. They can be expressed on the (procedural)
meta-level and such queries can be solved by IDP in the suitable structure.
Querying does not change the state and hence, it trivially preserves all invari-
ants.

Planning and plan execution For this problem of the RBAC challenge, the
goal is to compute a series of updates to transform the current state into a goal
state satisfying a formula Ψ[t]. In a next phase, if the user accepts the computed
plan, the plan has to be executed.

The planning inference problem takes as input the current state theory and
the goal formula ∃t : t ≥ now∧Ψ[t]. Its output is representable as an exhaustive
enumeration of add and delete actions in some interval [now, t end] so that the
state theory extended with it is satisfiable and entails Ψ[t end].

In practice, this problem can be solved using iterated model expansion. This
is a well known approach in SAT for planning and in answer set programming.
The search is for a model of the current state theory augmented Ψ[now + N ].
N is incremented until a model is found.

At this theoretical level, “execution” of the plan boils down to add the
actions in the time interval [now, now + N ] in this model to the state theory.
In reality, there is much more to do. E.g., execution of plans with actions that
change the external world have to be monitored since they may fail. Here we
will ignore this problem.

As explained above, formally specifying the planning transaction in the de-
scription of the dynamic system requires meta-facilities in the underlying logic.
This does not prevent us from specifying the transaction at the procedural
meta-level, using o.a. a call to a planning inference engine.

Optimizing the configuration The last problem of the RBAC challenge
considered here is to reconfigure the base relations UR,PR,RH: determine
minimal values for these relations such that all users maintain exactly the same
permissions as in the current state.

This problem can be specified as the following inference problem. It takes
as input the definition of UserPermission/2, the current state structure pro-
jected on the symbols USERS,ROLES, PERMS and UserPermission/2, and
finally a cost function specifying that the sum of the cardinality of the relations
UR,PR,RH is minimal. The output is a value for UR,P , RH in a model that
minimizes the cost function. This is an application of optimization inference.

We observe that the input of the problem contains both a value and an
(inductive) definition for UserPermission. Thus, the model generator needs to

8



find values for the parameters of this definition such that the value determined
by the definition corresponds to the given value.

The final step is to bring the database in the optimized state. This problem
can be reduced to the application of the planning and plan execution procedure.

4 Implementation in IDP

We implemented a prototype system in IDP. It supports base versions of all
the requested functionalities of the challenge. The system has a persistent state
represented as a state theory. Implemented operations are: verification of in-
variants, temporal queries, updates of base relations, planning, execution of
chosen plans, optimization, and planning and executing a choosen optimiza-
tion. Our explicit goal was to narrowly implement the theoretical ideas, that
is, to characterize and implement a maximum of functionality and flexibility on
the basis of a minimal, purely declarative specification. The input of the system
is the formal specification provided in the appendix A. All “boiler plate” is
automatically generated from it. A trace file is presented in appendix B. None
of the optimizations proposed above were implemented. The system handles
only toy examples. Nevertheless, we expect that with a limited effort, it should
be possible to build a system from off-the-shelve tools that can handle small
applications. The system is available at bitbucket.org/krr/rbac.

5 Conclusion

The contributions of this paper are more in the scientific questions that we
pose than in the complexity of the solutions that were offered. The goal of
this experiment was the following: to check to what extend the RBAC software
system could be implemented by generic inference on a knowledge base/formal
specification. To this aim, we have evaluated the instances for RBAC of some
fundamental questions of KR: what parts of the dynamic system can be formally
specified, what forms of inference are needed to implement the functionalities
of RBAC.

We have seen gaps in the expressivity of the logic (which occur in many, if not
all current dynamic logics), namely to express complex transactions that take
arguments of type Expression as input. That does not mean that for executing
them, logic based systems are of no use. The contrary is true. However, it
certainly means that the full RBAC system cannot be formally analyzed, e.g.,
proving invariants. It also excludes that the RBAC system as a whole can be
run by uniformally applying a fixed form of inference on the specification.

All parts of the RBAC challenge can be “implemented” by inference on the
formal specification(s). In all of this, the same very limited set of propositions
are used time and again: the definitions of the main concepts (UserPermission,
HUR, TransRH), concurrency axioms, invariants. Beside this, other declara-
tive entities such as queries and goals and cost functions need to be expressed

9



depending of the problem at hand.
There are important functionalities that were not considered. E.g., verifi-

cation of temporal logic properties. E.g., revision inference to erase erroneous
facts. For example, assume that in 2011, a non-existing user was accidentally
added and this is discovered in 2018.

References

[1] Bart Bogaerts, Joachim Jansen, Maurice Bruynooghe, Broes De Cat, Joost
Vennekens, and Marc Denecker. Simulating dynamic systems using linear
time calculus theories. TPLP, 14(4–5):477–492, 7 2014.

[2] Broes De Cat, Bart Bogaerts, Maurice Bruynooghe, Gerda Janssens, and
Marc Denecker. Predicate logic as a modelling language: The IDP system.
CoRR, abs/1401.6312v2, 2016.

[3] Marc Denecker and Eugenia Ternovska. A logic of nonmonotone inductive
definitions. ACM Trans. Comput. Log., 9(2):14:1–14:52, April 2008.

[4] Marc Denecker and Joost Vennekens. Building a knowledge base system for
an integration of logic programming and classical logic. In Maŕıa Garćıa de
la Banda and Enrico Pontelli, editors, ICLP, volume 5366 of LNCS, pages
71–76. Springer, 2008.

[5] Fangzhen Lin and Raymond Reiter. How to progress a database. Artif.
Intell., 92(1-2):131–167, 1997.

[6] Yanhong A. Liu. Role-based access control as a programming challenge.
Logic and Practice of Programming workshop, July 18 2018.

[7] Nikolay Pelov, Marc Denecker, and Maurice Bruynooghe. Well-founded and
stable semantics of logic programs with aggregates. TPLP, 7(3):301–353,
2007.

[8] Raymond Reiter. Artificial intelligence and mathematical theory of computa-
tion, chapter The frame problem in situation the calculus: A simple solution
(sometimes) and a completeness result for goal regression, pages 359–380.
Academic Press Professional, Inc., San Diego, CA, USA, 1991.

[9] Pieter Van Hertum, Ingmar Dasseville, Gerda Janssens, and Marc Denecker.
The KB paradigm and its application to interactive configuration. TPLP,
17(1):91–117, 2017.

10



A Input RBAC specification (without boiler
plate)

vocabulary V{

extern vocabulary LTCvoc

TransRH(Role,Role,Time)

HUR(User,Role,Time)

UserPermission(User,Perm,Time)

}

theory Invariants:V{

/* No concurrency axiom */

/* Invariants */

!ssd,r,t: SSD_ROLES(ssd,r,t) => ROLES(r,t).

! u[User],ssd[SSD],t, c: SSD_Card(ssd,c,t) =>

#{r[Role] : HUR(u,r,t) & SSD_ROLES(ssd,r,t)} =< c.

}

theory UserPermission:V{

{ ! x,y,t : TransRH(x,y,t) <- RH(x,y,t).

! x,y,t : TransRH(x,y,t) <- ?z: RH(x,z,t) & TransRH(z,y,t).

}

{ ! u,r,t: HUR(u,r,t) <- UR(u,r,t).

! u,r,t: HUR(u,r,t) <- ?rr: UR(u,rr,t) & TransRH(r,rr,t).

}

/* UserPermission : definition: */

{ !u,p,t: UserPermission(u,p,t) <- ?r: HUR(u,r,t) & PR(p,r,t).

}

/* Invariants */

! u,r,t: UR(u,r,t) => USERS(u,t) & ROLES(r,t).

! p,r,t: PR(p,r,t) => PERMS(p,t) & ROLES(r,t).

! r,rr,t: RH(r,rr,t) => ROLES(r,t) & ROLES(rr,t).

!t: ~?r: TransRH(r,r,t).

}

structure S:V {

Time = {0..20}

now = procedure readNow

}

term ObjPlan:V{

maxT

}

term ObjOptimize:V{

#{u[User] r[Role] : UR(u,r,now)} +

#{p[Perm] r[Role] : PR(p,r,now)} + #{r[Role] rr[Role] : RH(r,rr,now)}

}

11



vocabulary OptimizeProjection{

extern vocabulary Types

extern V::USERS/2

extern V::PERMS/2

extern V::ROLES/2

extern V::now/0:1

extern V::UserPermission/3

}

vocabulary OptimizeGoal{

extern vocabulary Types

extern V::UR/3

extern V::PR/3

extern V::RH/3

}

B A trace
$./reset.sh

$./query.sh "{ x : USERS(x,now)}"

{ }

$./query.sh "{ x : x=now}"

{ 1 }

$./query.sh "{ x : x=now}"

{ 2 }

$./update.sh "Add_USERS(u1). Add_USERS(u2). Add_USERS(u3).

Add_ROLES(r1). Add_ROLES(r2). Add_ROLES(r3).

Add_PERMS(read). Add_PERMS(write). Add_PERMS(modify).

Add_UR(u2,r2). Add_UR(u3,r3).

Add_PR(write,r1). Add_PR(read,r2). Add_PR(modify,r3).

Add_RH(r1,r2). Add_RH(r2,r3)."

Update succesful.

$./query.sh "{ x p : UserPermission(x,p,now)}"

{ u2,read; u2,write; u3,modify; u3,read; u3,write }

$./update.sh "Add_USERS(u1)."

Warning: given update violates preconditions and is aborted.

$./update.sh "Delete_USERS(u1)."

Update succesful.

$./update.sh "Add_USERS(u1)."

Update succesful.

$./update.sh " Add_RH(r3,r3)."

Warning: given update violates preconditions and is aborted.

$./update.sh " Add_RH(r3,r2)."

Warning: given update violates preconditions and is aborted.

$./query.sh "{ x p : TransRH(x,p,now)}"

{ r1,r2; r1,r3; r2,r3 }

$./plan.sh "/*all users have all permissions; only one action per time point */

! x[User], p1[Perm]: UserPermission(x,p1,maxT) &

! t: t>= now => #{u:Add_USERS(u,t)}+

#{u:Add_ROLES(u,t)}+

#{u:Add_PERMS(u,t)}+

#{u, r:Add_UR(u,r,t)}+

12



#{p, r :Add_PR(p,r,t)}+

#{r,rr :Add_RH(r,rr,t)}+

#{s,r :Add_SSD_ROLES(s,r,t)}+

#{s,c :Add_SSD_Card(s,c,t)}+

#{u:Delete_USERS(u,t)}+

#{u:Delete_ROLES(u,t)}+

#{u:Delete_PERMS(u,t)}+

#{u, r:Delete_UR(u,r,t)}+

#{p, r :Delete_PR(p,r,t)}+

#{r,rr :Delete_RH(r,rr,t)}+

#{s,r :Delete_SSD_ROLES(s,r,t)}+

#{s,c :Delete_SSD_Card(s,c,t)}=<1. "

A correct plan is:

1) Add_PR(modify,r2).

2) Add_UR(u1,r3).

Commit this plan? (y/n/q) y

$./optimize.sh

Optimization:

PR(modify,r2). PR(read,r2). PR(write,r2).

UR(u1,r2). UR(u2,r2). UR(u3,r2).

Proposed plan:

1) Add_PR(write,r2). Delete_PR(modify,r3). Delete_PR(write,r1).

Delete_RH(r1,r2). Delete_RH(r2,r3). Add_UR(u3,r2).

Delete_UR(u3,r3).

Commit this plan? (y/n/q) y

$

C RBAC with action preconditions and with-
out concurrency

LTCvocabulary V_RBAC{

type Time isa int

Start:Time

partial Next(Time):Time

type User

type Role

type Perm

USERS(User,Time)

Add_USERS(User,Time)

Delete_USERS(User,Time)

Init_USERS(User)

C_USERS(User,Time)

CN_USERS(User,Time)

UsedUSERS(User,Time)

UsedROLES(Role,Time)

UsedPERMS(Perm,Time)

ROLES(Role,Time)

Add_ROLES(Role,Time)

Delete_ROLES(Role,Time)

13



Init_ROLES(Role)

C_ROLES(Role,Time)

CN_ROLES(Role,Time)

PERMS(Perm,Time)

Add_PERMS(Perm,Time)

Delete_PERMS(Perm,Time)

Init_PERMS(Perm)

C_PERMS(Perm,Time)

CN_PERMS(Perm,Time)

UR(User,Role,Time)

Add_UR(User,Role,Time)

Delete_UR(User,Role,Time)

Init_UR(User,Role)

C_UR(User,Role,Time)

CN_UR(User,Role,Time)

PR(Perm,Role,Time)

Add_PR(Perm,Role,Time)

Delete_PR(Perm,Role,Time)

Init_PR(Perm,Role)

C_PR(Perm,Role,Time)

CN_PR(Perm,Role,Time)

UserPermission(User,Perm,Time)

/* hierarchical */

RH(Role,Role,Time)

Add_RH(Role,Role,Time)

Delete_RH(Role,Role,Time)

Init_RH(Role,Role)

C_RH(Role,Role,Time)

CN_RH(Role,Role,Time)

TransRH(Role,Role,Time)

HUR(User,Role,Time) /* AuthorizedRole */

HUserPermission(User,Perm,Time)

/*SSD*/

type SSD

type NrRoles isa int

SSD_ROLES(SSD,Role,Time)

Add_SSD_ROLES(SSD,Role,Time)

Delete_SSD_ROLES(SSD,Role,Time)

Init_SSD_ROLES(SSD,Role)

C_SSD_ROLES(SSD,Role,Time)

CN_SSD_ROLES(SSD,Role,Time)

SSD_Card(SSD,Time):NrRoles

Set_SSD_Card(SSD,NrRoles,Time)

14



Init_SSD_Card(SSD,NrRoles)

C_SSD_Card(SSD,NrRoles,Time)

}

theory T_RBAC_Pre: V_RBAC{

{ ! u,t:UsedUSERS(u,t)<- ?r:UR(u,r,t).}

{ ! r,t:UsedROLES(r,t)<- ?u:UR(u,r,t).

! r,t:UsedROLES(r,t)<- ?p:PR(p,r,t).

! r,t:UsedROLES(r,t)<- ?r1:RH(r,r1,t).

! r,t:UsedROLES(r,t)<- ?r1:RH(r1,r,t).

! r,t:UsedROLES(r,t)<-? ssd: SSD_ROLES(ssd,r,t). }

{ ! p, t :UsedPERMS(p,t)<- ?r:PR(p,r,t).}

/*RBAC pure */

{ !u: USERS(u,Start) <- Init_USERS(u).

!u, t: USERS(u,Next(t)) <- C_USERS(u,t).

!u, t: USERS(u,Next(t)) <- USERS(u,t) & ~CN_USERS(u,t).

!u,t: C_USERS(u,t) <- Add_USERS(u,t).

!u,t: CN_USERS(u,t) <- Delete_USERS(u,t).

}

! x,t: Add_USERS(x,t) => ~USERS(x,t).

! x,t: Delete_USERS(x,t) => USERS(x,t) & ~ UsedUSERS(x,t).

{ !r: ROLES(r,Start) <- Init_ROLES(r).

!r, t: ROLES(r,Next(t)) <- C_ROLES(r,t).

!r, t: ROLES(r,Next(t)) <- ROLES(r,t) & ~CN_ROLES(r,t).

!r,t: C_ROLES(r,t) <- Add_ROLES(r,t).

!r,t: CN_ROLES(r,t) <- Delete_ROLES(r,t).

}

! x,t: Add_ROLES(x,t) => ~ROLES(x,t).

! x,t: Delete_ROLES(x,t) => ROLES(x,t) & ~ UsedROLES(x,t).

{ !p: PERMS(p,Start) <- Init_PERMS(p).

!p, t: PERMS(p,Next(t)) <- C_PERMS(p,t).

!p,t: PERMS(p,Next(t)) <- PERMS(p,t) & ~CN_PERMS(p,t).

!p,t: C_PERMS(p,t) <- Add_PERMS(p,t).

!p,t: CN_PERMS(p,t) <- Delete_PERMS(p,t).

}

! x,t: Add_PERMS(x,t) => ~PERMS(x,t).

! x,t: Delete_PERMS(x,t) => PERMS(x,t)& ~ UsedPERMS(x,t).

{ !u,r: UR(u,r,Start) <- Init_UR(u,r).

!u, r, t: UR(u,r,Next(t)) <- C_UR(u,r,t).

!u,r,t: UR(u,r,Next(t)) <- UR(u,r,t) & ~CN_UR(u,r,t).

15



!u,r,t: C_UR(u,r,t) <- Add_UR(u,r,t).

!u,r,t: CN_UR(u,r,t) <- Delete_UR(u,r,t).

}

! u,r,t: Add_UR(u,r,t) => ~UR(u,r,t).

! u,r,t: Add_UR(u,r,t) => USERS(u,t) & ROLES(r,t).

! u,r,t: Delete_UR(u,r,t) => UR(u,r,t).

{ !p,r: PR(p,r,Start) <- Init_PR(p,r).

!p, r, t: PR(p,r,Next(t)) <- C_PR(p,r,t).

!p,r,t: PR(p,r,Next(t)) <- PR(p,r,t) & ~CN_PR(p,r,t).

!p,r,t: C_PR(p,r,t)<-Add_PR(p,r,t).

!p,r,t: CN_PR(p,r,t)<-Delete_PR(p,r,t).

}

! p,r,t: Add_PR(p,r,t) => ~PR(p,r,t).

! p,r,t: Add_PR(p,r,t) => PERMS(p,t) & ROLES(r,t).

! p,r,t: Delete_PR(p,r,t) => PR(p,r,t).

{ !u,p,t: UserPermission(u,p,t) <- ?r: UR(u,r,t) & PR(p,r,t).

}

/* Hierarchical */

{ !r,r1: RH(r,r1,Start) <- Init_RH(r,r1).

!r,r1, t: RH(r,r1,Next(t)) <- C_RH(r,r1,t).

!r,r1, t: RH(r,r1,Next(t)) <- RH(r,r1,t) & ~CN_RH(r,r1,t).

!r,r1,t: C_RH(r,r1,t)<-Add_RH(r,r1,t).

!r,r1,t: CN_RH(r,r1,t)<-Delete_RH(r,r1,t).

}

! r,r1,t: Add_RH(r,r1,t) => ~RH(r,r1,t).

! r,r1,t: Add_RH(r,r1,t) => ROLES(r,t) & ROLES(r1,t) & r~=r1.

! r,r1,t: Add_RH(r,r1,t) => ~TransRH(r1,r,t).

! r,r1,t: Delete_RH(r,r1,t) => RH(r,r1,t).

{ ! x,t : TransRH(x,y,t) <- RH(x,y,t).

! x,y,t : TransRH(x,y,t) <- ?z: RH(x,z,t) & TransRH(z,y,t).

}

{ ! u,r,t: HUR(u,r,t) <- ?r1: UR(u,r1,t) & TransRH(r,r1,t).

}

{ !u,p,t: HUserPermission(u,p,t)<- ?r: (UR(u,r,t) | HUR(u,r,t)) & PR(p,r,t).

}

/* SSD */

{ !ssd,r: SSD_ROLES(ssd,r,Start) <- Init_SSD_ROLES(ssd,r).

!ssd,r, t: SSD_ROLES(ssd,r,Next(t)) <- C_SSD_ROLES(ssd,r,t).

!ssd,r,t: SSD_ROLES(ssd,r,Next(t)) <- SSD_ROLES(ssd,r,t) & ~CN_SSD_ROLES(ssd,r,t).

!ssd,r,t: C_SSD_ROLES(ssd,r,t) <- Add_SSD_ROLES(ssd,r,t).

!ssd,r,t: CN_SSD_ROLES(ssd,r,t) <- Delete_SSD_ROLES(ssd,r,t).

}

16



! ssd,r,t: Add_SSD_ROLES(ssd,r,t) => ~SSD_ROLES(ssd,r,t).

! ssd,r,t: Delete_SSD_ROLES(ssd,r,t) => SSD_ROLES(ssd,r,t).

{ !ssd,c: SSD_Card(ssd,Start)=c <- Init_SSD_Card(ssd,c).

!ssd,c, t: SSD_Card(ssd,Next(t))=c <- C_SSD_Card(ssd,c,t).

!t,ssd: SSD_Card(ssd,Next(t))=SSD_Card(ssd,t) <- ~? c: C_SSD_Card(ssd,c,t).

!t,ssd,c: C_SSD_Card(ssd,c,t)<- Set_SSD_Card(ssd,c,t).

}

! u[User],ssd[SSD],t: #{r[Role] : HUR(u,r,t) & SSD_ROLES(ssd,r,t)} =< SSD_Card(ssd,t).

//No concurrency

! t: #{u:Add_USERS(u,t)}+

#{u:Add_ROLES(u,t)}+

#{u:Add_PERMS(u,t)}+

#{u, r:Add_UR(u,r,t)}+

#{p, r :Add_PR(p,r,t)}+

#{r,r1 :Add_RH(r,r1,t)}+

#{s,r :Add_SSD_ROLES(s,r,t)}+

#{s,c :Set_SSD_Card(s,c,t)}+

#{u:Delete_USERS(u,t)}+

#{u:Delete_ROLES(u,t)}+

#{u:Delete_PERMS(u,t)}+

#{u, r:Delete_UR(u,r,t)}+

#{p, r :Delete_PR(p,r,t)}+

#{r,r1 :Delete_RH(r,r1,t)}+

#{s,r :Delete_SSD_ROLES(s,r,t)}=<1.

}

theory invariant: V_RBAC{

! u,r,t: UR(u,r,t) => USERS(u,t) & ROLES(r,t).

! p,r,t: PR(p,r,t) => PERMS(p,t) & ROLES(r,t).

! r,r1,t: RH(r,r1,t) => ROLES(r,t) & ROLES(r1,t).

!t: ~?r: TransRH(r,r,t).

!ssd,r,t: SSD_ROLES(ssd,r,t) => ROLES(r,t).

! t[Time]: !u[User],ssd[SSD]:

#{r[Role] : HUR(u,r,t) & SSD_ROLES(ssd,r,t)}

=< SSD_Card(ssd,t).

}

17


