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A usual idea of transforming imperative programs over the integers into rewriting systems is to trans-
form programs into transition systems where some auxiliary function symbols are introduced to
represent intermediate states. In transforming a function calling itself or others, we allow an aux-
iliary symbol corresponding to a function call to have an extra argument where the called function
is executed, and values stored in global variables are passed to the called function as its extra argu-
ments, and the caller receives the possibly updated values together with returned values of the called
function. Such a mechanism for global variables performs well under sequential execution, but is not
enough to adapt to parallel execution. In this paper, using an example, we show another approach to
transformations of imperative programs with function calls and global variables into logically con-
strained term rewriting systems that represent actions of the whole execution environment with call
stacks. More precisely, we prepare a function symbol for the whole environment of execution, which
stores global variables and a call stack as its arguments. For a function call, we push the frame to
the stack and pop it after the execution. Any running frame is executed at the top of the stack, and
statements accessing global variables are represented by rewrite rules for the environment symbol.

1 Introduction

Recently, analyses of imperative programs (in C, Java Bytecode, etc.) via transformations into term
rewriting systems have been investigated [2, 3, 5, O]. In particular, constrained rewriting systems are
popular for these transformations, since logical constraints used for modeling the control flow can be
separated from terms expressing intermediate states [2}, [3, 15, [7, [10]. To capture the existing approaches
for constrained rewriting in one setting, the framework of logically constrained term rewriting systems
(an LCTRS, for short) has been proposed [6]]. Transformations of C programs with characters, arrays of
integers, global variables, and so on into LCTRSs has been discussed in [4].

A basic idea of transforming functions defined in imperative programs over the integers is to repre-
sent transitions of parameters and local variables as rewrite rules with auxiliary function symbols. The
resulting rewriting system can be considered a transition system w.r.t. parameters and local variables.
Consider the following function sum1 in Figure |1} which is written in C language. The function sum1
computes the summation from 0 to a given non-negative integer x. The execution of the body of this
function can be considered a transition of values (vy,v;,v;) for x, i, and z, respectively. For example, we
have the following transition for sum1(3):

(3,0,0) = (3,0,1) = (3,1,1) = (3,1,3) = (3,2,3) — (3,2,6) — (3,3,6) — (3,3,6)
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2 On Transforming Functions Accessing Global Variables into LCTRSs

int suml(int x){
int 1 = 0, z = 0;
for( i =0 ; i< x ; i++ ){
z += 1 + 1;
}

return z;

Figure 1: a C program defining a function to compute the summation from 0 to x.

This transition for the execution of the function sum1 can be modeled by an LCTRS as follows [3} 4]]:

suml(x) — u1(x,0,0)
Ri=4q ui(xiz)—ui(x,i+1,z+(+1)) [ i<x |
uz(x,i,z) — return(z) [—(i<x)]

The auxiliary function symbols uj, us can be considered locations stored in the program counter.
A function call is added as an extra argument of the auxiliary symbol that corresponds to the state-
ment of the call. In addition to the above sum1, consider the following function:

int g(int x){
return x * suml(x);

¥

This function is transformed into the following rules:
={ g(x) = ua(x,suml(x)) uz(x,return(y)) — return(x xy) }

The auxiliary function symbol u; calls sum1 in the second argument.

To deal with a global variable under sequential execution, it is enough to pass a value stored in the
global variable to a function call as an extra argument and to receive from the called function a value of
the global variable that may be updated in executing the function call, restoring the value in the global
variable. Let us add a global variable counting the total number of function calls to the above program as
in Figure 2] When we consider the sequential execution, this program is transformed into the following
LCTRS [4]:

sum1(x,num) — uy(x,0,0,num+1)
uy(x,i,z,num) = uy(x,i+ 1,24+ (i+1)),num) [ i<x |
Ror— uz(x,7,z,num) — return(z, num) [—(i<x)]
T g(x, num) — up (x,num +1)
uz (x, num) — uz(x,sum1(x, num), num)
)

us (x, return(y, numy,,y, ), RUM1g ) — return(x X y, numye,, )

The above approach to transformations of function calls is very naive but not general. For example, to
model parallel execution, a value stored in a global variable do not have to be passed to a particular
function or a process because another function or process may access the global variable.

In this paper, using an example, we show another approach to transformations of imperative pro-
grams with function calls and global variables into LCTRSs. Our target languages are call-by-value
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int num = 0;

int suml(int x){
num ++;
int 1 = 0, z = 0;
for(i=0; i<zx; i++ ){
z += i +
}

return z;

int g(int x){
num ++;
return x * suml(x);

}

Figure 2: a C program obtained by adding the definition of g into the program for sum.

imperative languages such as C. For this reason, we use a small subclass of C programs over the integers
as fundamental imperative programs.

Our idea of the treatment for global variables in calling functions is to prepare a new symbol to
represent the whole environment for execution. Values of global variables are stored in arguments of the
new symbol, and transitions accessing global variables are represented as transitions of the environment.
In reduction sequences of LCTRSs obtained by the original transformation, positions of function calls
are not unique, and thus, we may need (possibly infinitely) many rules for a transition related to a
global variable. To solve this problem, we prepare a so-called call stack, and transform programs into
LCTRSs that specify statements as rewrite rules for user-defined functions and the introduced symbol of
the environment. In calling a function, a frame of the called function is pushed to the stack, and popped
from the stack when the execution halts successfully. This implies that any running frame is called at the
top of the stack, i.e., positions of function calls are unique. We transform statements not accessing global
variables into rewrite rules for called functions, and transform statements accessing global variables into
rewrite rules for the introduced symbol for the environment.

2 Preliminaries

In this section, we recall LCTRSs, following the definitions in [6} 4]. Familiarity with basic notions on
term rewriting [[1, 18] is assumed.

Let S be a set of sorts and V a countably infinite set of variables, each of which is equipped with
a sort. A signature ¥ is a set, disjoint from V), of function symbols f, each of which is equipped with
a sort declaration 11 X --- X 1, = 1 where 11,...,1,,1 € §. For readability, we often write ¢ instead of
1] X --- X 1, = 1 if n = 0. We denote the set of well-sorted terms over £ and V by T'(X,V). In the rest of
this section, we fix S, X, and V. The set of variables occurring in s is denoted by Var(s). Given a term
s and a position p (a sequence of positive integers) of s, s|, denotes the subterm of s at position p, and
s[t], denotes s with the subterm at position p replaced by ¢.

A substitution vy is a sort-preserving total mapping from V to T(X,)), and naturally extended for
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a mapping from 7' (X,V) to T(X,V): the result sy of applying a substitution ¥ to a term s is s with all
occurrences of a variable x replaced by y(x). The domain Dom(y) of 7y is the set of variables x with
¥(x) # x. The notation {x; + s1,...,x; — sx} denotes a substitution y with y(x;) = s; for 1 <i <n, and
Y(y) =yfory ¢ {xi,....x:}.

To define LCTRSs, we consider different kinds of symbols and terms: (1) two signatures X5 and
Liheory such that X = X0 U Xipe0ry, (2) @ mapping Z which assigns to each sort 1 occurring in X0y, a set
Z,, (3) amapping J which assigns to each f: 1 X --- X 1, = 1 € Lypeory a functioninZy x -+ XLy =1,
and (4) a set Val; C Ljeory of values—function symbols a : 1 such that 7 gives a bijective mapping from
Val, to Z,—for each sort 1 occurring in Xseory. We require that Xiepms N Espeory € Val = ;s Val,. The
sorts occurring in Xye,ry are called theory sorts, and the symbols theory symbols. Symbols in Xseopy \ Val
are calculation symbols. A term in T (Eypeory, V) is called a logical term. For ground logical terms, we
define the interpretation as [f(s1,...,5,)] = T (f)([s1],---,[sn])). For every ground logical term s, there
is a unique value ¢ such that [[s] = [c¢]. We use infix notation for theory and calculation symbols.

A constraint is a logical term ¢ of some sort bool with Z,,; =B = {T, L}, the set of booleans. A
constraint ¢ is valid if [@y] = T for all substitutions ¥ which map Var(¢) to values, and satisfiable if
[oy] = T for some such substitution. A substitution y respects ¢ if y(x) is a value for all x € Var(¢)
and [@y] = T. We typically choose a theory signature with Xy, 2 X0, where X7 contains
true, false : bool, \,V, = : bool X bool = bool, — : bool = bool, and, for all theory sorts 1, symbols
=;,%#;: 1 X 1 = bool, and an evaluation function J that interprets these symbols as expected. We omit
the sort subscripts from = and # when clear from context.

The standard integer signature I3 is T U {+, —,,exp,div,mod : int X int = int} U {>,>:
int X int = bool} U{n : int | n € Z} with values true, false, and n for all integers n € Z. Thus, we use
n (in sans-serif font) as the function symbol for n € Z (in math font). We define 7 in the natural way,
except: since all 7 (f) must be total functions, we set 7 (div)(n,0) = J(mod)(n,0) = J (exp)(n,k) =0
for all n and all £ < 0. When constructing LCTRSs from, e.g., while programs, we can add explicit error
checks for, e.g., “division by zero”, to constraints (cf. [4]).

A constrained rewrite rule is a triple £ — r [ @] such that ¢ and r are terms of the same sort, @ is a
constraint, and ¢ has the form f(¢y,...,¢,) and contains at least one symbol in Xy \ Zineory (i.€., £ is
not a logical term). If ¢ = true with J (true) = T, we may write £ — r. We define LVar({ — r [¢])
as Var(@)U (Var(r) \ Var(¢)). We say that a substitution y respects £ — r [@] if y(x) € Val for all
x € LVar({ — r[@]), and [@y] = T. Note that it is allowed to have Var(r) Z Var(¢), but fresh variables
in the right-hand side may only be instantiated with values. Given a set R of constrained rewrite rules,
we let Rea1c be the set {f(x1,...,x,) =y [y = f(x1,..., %)) | f:1 X X1 = 1 E Loy \ Val}.
We usually call the elements of R.a1. constrained rewrite rules (or calculation rules) even though their
left-hand side is a logical term. The rewrite relation —5 is a binary relation on terms, defined by:
sy, = s(rylp if € = r [@] € RURca1c and y respects £ — r [@]. A reduction step with Rca1c is
called a calculation.

Now we define a logically constrained term rewriting system (LCTRS) as the abstract rewriting
system (T'(X,V),—x). An LCTRS is usually given by supplying X, R, and an informal description of
7 and J if these are not clear from context. An LCTRS R is said to be left-linear if for every rule in
R, the left-hand side is linear. R is said to be non-overlapping if for every term s and rule ¢ — r [@]
such that s reduces with £ — r [ @] at the root position: (a) there are no other rules ¢ — r’ [¢’] such that
s reduces with ¢/ — ' [@'] at the root position, and (b) if s reduces with any rule at a non-root position
g, then ¢ is not a position of £. R is said to be orthogonal if R is left-linear and non-overlapping. For
flly,....0,) = r [@] € R, we call f a defined symbol of R, and non-defined elements of X,,,,,; and
all values are called constructors of R. Let Dy be the set of all defined symbols and Cr the set of
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int num = 0;

int sum(int x){
num ++;
if( x <= 0 ){
return O;
Yelsed{
return x + sum(x - 1);
}
}

int main(){
int n = 3;
sum(n) ;
return O;

}

Figure 3: a C program obtained by adding the definition of g into the program for sum.

constructors. A term in 7(Cr,V) is a constructor term of R. We call R a constructor system if the
left-hand side of each rule £ — r [@] € R is of the form f(r1,...,t,) with7,,...,t, constructor terms.

Example 2.1 ([4]) Let S = {int,bool}, and ¥ = Xypys UZiZ’e()ry, where X;.ms = { fact :int = int }U{n:
int |n € Z }. Then both int and bool are theory sorts. We also define set and function interpretations,
ie., Ziwy = Z, Tpoor = B, and J is defined as above. Examples of logical terms are 0 = 0+ —1 and
x4+ 3 > y+ —42 that are constraints. 5+ 9 is also a (ground) logical term, but not a constraint. Expected
starting terms are, e.g., fact(42) or fact(fact(—4)). To implement an LCTRS calculating the factorial
function, we use the signature X above and the following rules: R,y = { fact(x) — 1 [x < 0], fact(x) —
x x fact(x — 1) [-(x < 0)] }. Using calculation steps, a term 3 — 1 reduces to 2 in one step with the
calculation rule x —y — z [z =x—y], and 3 x (2 X (1 x 1)) reduces to 6 in three steps. Using the

constrained rewrite rules in R, fact(3) reduces in ten steps to 6.

3 A New Approach to Transformations of Imperative Programs

In this section, using an example, we introduce a new approach to transformations of imperative programs
with function calls and global variables.

3.1 The Existing Transformation of Functions Accessing Global Variables

In this section, we briefly recall the transformation of imperative programs with functions accessing
global variables [4] using the program in Figure [3] which is simpler than that in Section[I] The above
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program is transformed into the following LCTRS [4]:

sum(x, num) — ug(x,num+ 1)
ua (x, num) — return(0, num) [ x<0 ]
ug (x, num) — us (x, num) [—(x<0)]
Ry = U5(x num) — ug (x, sum(x — 1, num), num)
ue (x, return(y, numye,, ), numy ) — return(x 4y, numye,, )
main(num) — uz (3, num)
uz(n,num) — ug(n,sum(n,num),num)
)

ug (n, return(y, numye,, ), numy;g) — return(0, numye,, )

where sum, ug, us, uz, return : int X int = state, ug, Ug : int X state X int = state, and main : int = state.
To represent the function call sum(x - 1), the auxiliary function symbol ug for the function call takes
the term sum(x — 1,num) as the second argument. The function symbol sum takes two arguments, while
the original function sum in the program takes one argument. This is because the global variable num is
accessed during the execution of sum, and we pass the value stored in num to sum, passing the variable
itself to sum in the constructed rule. The function sum increments the global variable num, and thus,
we include the value stored in num in the result of sum via return(x + y, numye,,). The rule of ug is used
after the reduction of sum(x — 1, num), receiving the result via the pattern return(y, numy,,, ). The updated
value stored in num is received by numy,,,,, and the rule of ug updates the global variable num by including
UMy, in the result. We do the same for the function call sum(n) in the auxiliary function symbol ug.
For the execution of the program, we have the reduction of R4 illustrated in Figure 4 Note that the
global variable num is initialized by 0 and we started from main(0). From the above reduction, we can
see that the called function is the only running one under sequential execution, and others are waiting
for the called function halting. The approach above to function calls and global variables is enough for
sequential execution.

In the LCTRS R4 above, the function symbol ug recursively calls sum in its second argument. For
this reason, the running function is located below ug, and positions where sum is called are not unique.
The above approach to transformations of function calls is very naive but not general. For example, to
model parallel execution, a value stored in a global variable do not have to be passed to a particular
function or a process because another function or process may access the global variable.

3.2 Another Approach to Global Variables

In this section, we show another approach to the treatment of global variables.

To adapt to parallel execution, global variables used like shared memories should be located at fixed
places because they may be accessed from two or more functions or processes. To keep values stored
in global variables at fixed positions, we do not pass (values of) global variables to called functions in
order to avoid locally updating global variables. To this end, we prepare a new function symbol env to
represent the whole environment for execution, and make env have values stored in global variables in its
arguments. In addition, we make env have an extra argument where functions or processes are executed
sequentially. When we execute n (> 1) processes in parallel, we make env have n extra arguments
where ith process is executed in the ith extra argument. For example, the process of executing the above
program is expressed as follows:

env(0, main())

Note that env has the sort int X state = univ. The first argument of env is the place where the value of the
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main(0) —x, uz(3,0)
— R, U 8(3 sum(3 0) 0)
— R, U 8(3 U4(3 0+1 ),0)
—R, ug(3,us(3,1),0)
—Ry U 8( 5( ) )
— R, U 8( 6(3 sum(3—1,1),1),0)
— R, U 8( 6(3 sum(2 1) 1),0)
—R, U 8( 5(3 U4(2 1+1), ),0)
—Ry Ug(3,u6(3,u4(2,2),1),0)
—R, Us(3,u6(3,us(2,2),1),0)
—R, U 8( 6( 6(2 sum( —1,2),2),1) 0)
—>R4 8( 6( 6(2 sum(l 2),2),1) 0)
—R, U 8( , 6( , 6(2,U4(1 2+1>,2>, ),O)
—Ry Ug(3,u6(3,u6(2,u4(1,3),2),1),0)
— R, U 8( 6( ) 6(27u5( ) ) 1),0)
—R, Us(3,u6(3,u6(2,u6(1,sum(1-1,3),3),2),1),0)
— R, U 8( 6( 6( 6(1 sum(O 3) 3),2),1) 0)
—Rr, us(3,u6(3,u6(2,u6(1,us(0,3+1),3),2),1),0)
—Ry Ug(3,u6(3,u6(2,us(1,us(0,4),3),2),1),0)
—R, ug(3,u6(3,ue(2,up(1,return(0,4),3),2),1),0)
— R, U 8( 6(3 u6(2 return(l +0, 4), ),1),0)
—R, ug(3,ue(3,ue(2,return(1,4),2),1),0)
—R, ug(3,ue(3,return(2+1,4),1),0)
—R, ug(3,us(3,return(3,4),1),0)
—R, ug(3,return(3+3,4),0)

—R, ug(3,return(6,4),0)
—R, return(0,4)

Figure 4: the reduction of R4 for the execution of the program for sum.

global variable num is stored, and the second argument of env is the place where functions are executed,
e.g., the main function main is called in the above term.

We do not change the transformation of local statements—statements without accessing global
variables—in function definitions. Let us consider the execution of the program, i.e., main. All the
statements in main are local, and thus, we transform the definition of main as follows:

main() —uz(3)
uz(n) — ug(n,sum(n))
ug(n,return(y)) — return(0)

In executing the program (i.e., main), the first access to the global variable num is the statement num++,
the increment of num, in the definition of sum. The initial term env(0,main()) can be reduced to
env(0,ug(3,sum(3)), and thus, the first execution of the statement num++ can be expressed by the fol-
lowing rewrite rule for env:

env(num,ug(n,sum(x))) — env(num+ 1,ug(n,us(x)))
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The other statements in the definition of sum are local and we transform them into the following rules:

0 ]
0)]

ug(x) — return(x)

(x) [
4(x) = us(x) [—(x
)

<
<

c

us(x) — ug(x,sum(x—1))
ug(x, return(y)) — return(x+y)

The above rules are not enough to capture all possible executions, e.g. the second execution of num++,
which is done by the second call of sum, is not expressed yet. Thus, we prepare the following rule:

env(num, ug(n, ug(x’;sum(x)))) — env(num+ 1,ug(n, ug(x’, us(x))))
In addition, sum is further recursively called, and we need the following rule:
env(num, ug(n, ug(x”,ug(x’,sum(x))))) — env(num+ 1,ug(n,ue(x”, ug(x’, us(x)))))

Finally, we need another similar rule for sum(3). However, in general, sum may receive all the (finitely
many) integers, and we need too much rules, all of which express the increment of num. In addition, we
may need other cases when we added other functions calling sum. This troublesome is caused by the fact
that positions where sum is called are not unique in the above approach.

3.3 Using a Call Stack for Function Calls

In this section, we show a representation of function calls for transformed LCTRSs by means of the
example in Figure

The approach to the treatment of global variables in the previous section needs many similar rules
for statements accessing global variables, and we have to add other similar rules when we introduce
another function that may call itself or other functions. As described at the end of the previous section,
the cause of this problem is that positions where functions are called in terms of the form env(...) are
not unique due to nests of auxiliary function symbols. A solution to fix this problem is to make such
positions unique. An execution is represented as a term rooted by env, and global variables are located
at fixed positions (i.e., arguments of env). The last argument of env is used for execution of user-defined
functions. In the last argument, we fix positions where functions are called by using a so-called call
stack. To this end, we prepare a binary function symbol stack : state X process = process and a constant
L : process (the empty stack). To adapt to stacks, we change the sort of env. For example, we give
int X process = univ to env, and the initial term for the execution of the program is the following one:

env(0,stack(main(), L))

In this approach, the environment has a stack s to execute functions by means of the form env(...,s). In
calling a function f as f(7), we push f(7) as a frame for the function call to the stack s, and after halting
the execution successfully, we pop the frame of the form return(...) from the stack s.

The statements of calling functions in the above example are transformed into the following rules:

stack(us(x),s) — stack(sum(x —1),stack(ug(x),s)) [—(x<0)]
stack(return(y), stack(ug(x),s)) — stack(return(x+y),s)
stack(uz(n),s) — stack(sum(n),stack(ug(n),s))
stack(return(y), stack(ug(n))) — stack(return(0),s)
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The first and third rules push frames to the stack, and the second and fourth pop frames. For a term
env(xy,...,x,,stack(...)), the reduction of user-defined functions is performed at the position n+ 1 of
the term, where x1,...,x, are global variables. For this reason, statements accessing global variables can
be represented by the following form:

env(xy,...,x,,stack(f(...),s)) — env(ty,...,t,,stack(g(...),s)) [@]

Note that s in the above rule is a variable. The statement num++ in the above example is transformed into
the following rule:

env(num,stack(sum(x),s)) — env(num+ 1,stack(us(x),s))
In summary, the above example is transformed into the following LCTRS:

env(num,stack(sum(x),s)) — env(num + 1,stack(us(x),s))

stack(uz(n)

,8) — stack(sum(n),stack(ug(n),s))
stack(return(y),stack(ug(n)

)) — stack(return(0),s)

)
ug(x) — return(0) [ x<0 ]
ug (x) = us (x) [—(x<0)]
Rs = stack(us(x),s) — stack(sum(x —1),stack(ug(x),s))
stack(return(y),stack(ug(x),s)) — stack(return(x+y),s)
main() — u7(3)
)
)

For the execution of the program, we have the reduction of Rs illustrated in Figure [5

The function symbol stack is a defined symbol of Rs, while it looks a constructor for stacks. If we
would like the resulting LCTRS to be a constructor system, rules performing “push” and “pop” for stacks
may be generated as rules for env. More precisely, instead of stack(f(¥),s) — stack(g(7),stack(f'(¥),s)),
we generate

env(¥,stack(f(X),s)) — env(¥,stack(g(7),stack(f'(¥),s)))

and instead of stack(return(z),stack(f’(X),s)) — stack(f”(¥),s), we generate
env(¥,stack(return(z),stack(f'(¥),s))) — env(¥,stack(f"(¥),s))

For example, R5 can be modified to the following constructor LCTRS:

( env(num,stack(sum(x),s)) — env(num + 1,stack(us(x),s))
ug(x) — return(0) [ x<0 ]
g (x) — us (x) [~(x<0))]
env(num, stack(us(x) s))

main() — u7(3)
env(num,stack(uz(n),s)) — env(num,stack(sum(n),stack(ug(n),s)))

)

|

,8)) — env(num,stack(sum(x — 1), stack(ug(x),

)

)
) ))

env(num,stack(return(y),stack(ug(n)))) — env(num,stack(return(0),s))

(x
env(num,stack(return(y),stack(ug(x),s))) — env(num,stack(return(x+y),s))
)

The reduction of this LCTRS from env(0,stack(main(), L)) is the same as that in Figure[5



10 On Transforming Functions Accessing Global Variables into LCTRSs

env(0,stack(main(), L))
—>R5 env(0,stack(uz(3),L1))
Rs env(0,stack(sum(3),stack(ug(3),1)))
—>R5 env(0+1,stack(us(3),stack(ug(3),L)))
Rs env(1,stack(us(3),stack(ug(3),L1)))
—>R5 env(1,stack(us(3),stack(ug(3),L1)))
R env(1,stack(sum(3 —1),stack(ue(3),stack(ug(3),1))))
—>R5 env(1,stack(sum(2),stack(ug(3),stack(ug(3),1))))
—R, env(1+41,stack(us(2),stack(ue(3),stack(ug(3),L))))
—>R5 env(2,stack(ug(2),stack(ug(3),stack(ug(3),1))))
Rs env(2,stack(us(2),stack(ug(3),stack(ug(3),1))))
Rs env(2,stack(sum(2 —1),stack(ug(2),stack(ug(3),stack(ug(3),L)))))
—>R5 env(2,stack(sum(1),stack(ug(2),stack(ug(3),stack(ug(3),1)))))
Rs env(2+1,stack(ua(1),stack(ue(2),stack(ue(3),stack(ug(3),L1)))))
),stack(ug(2),stack(ug(3),stack(ug(3),1)))))
),stack(ug(2),stack(ug(3),stack(ug(3),1)))))
(1—1),stack(ue(1),stack(ue(2),stack(ue(3),stack(ug(3

—>R5 env(3,stack(ug(1
R env(3,stack(us(1

—>R5 env(3,stack(sum )LL)
R env(3,stack(sum(0),stack(ug(1),stack(ue(2),stack(ue(3),stack(ug(3),L1))))))
—>R5 env(3+1,stack(us(0),stack(ug(1),stack(ue(2),stack(ue(3),stack(ug(3),L1))))))
—R, env(4,stack(us(0),stack(ue(1),stack(ug(2),stack(ue(3),stack(ug(3),L))))))
—>R5 env(4,stack(us(0),stack(ug(1),stack(ug(2),stack(ue(3),stack(ug(3),L))))))
R env(4,stack(return(0),stack(ug(1),stack(us(2),stack(ue(3),stack(ug(3),L1))))))
R env(4,stack(return 1+0) stack(ue(2),stack(ug(3),stack(ug(3),L)))))

(u
e
—>R5 env(4,stack(return(1),stack(ug(2),stack(ug(3),stack(ug(3),1)))))
Rs env(4, stack(return(2+1) stack(ue(3),stack(ug(3),L1))))
—>R5 env(4,stack(return(3),stack(ug(3),stack(ug(3),L1))))
R, env(4,stack(return(3+ 3),stack(ug(3),1)))
—>R5 env(4,stack(return(6),stack(ug(3),1)))
R env(4,stack(return(0), L))

Figure 5: the reduction of Rs for the execution of the program for sum.

4 Conclusion

In this paper, we illustrated a new approach to transformations of imperative programs with function
calls and global variables into LCTRSs using an example. We will formalize the transformation based
on the approach, proving correctness of the transformation.

A direction of future work is to apply this approach to a sequential program and its parallelized
version in order to prove their equivalence. To simplify the discussion, we considered a program executed
as a single process, i.e., executed sequentially, and the introduced symbol env has an argument that is
used for the single process (see Rs again). To adapt to parallel execution where the number of executed
processes is fixed, it suffices to add arguments for all executed processes into the symbol env. We will
formalize this idea and prove the correctness of the transformation for parallel execution.
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