
EasyChair Preprint

№ 209

Do different syntactic trees yield different logical

readings? Some remarks on head variables in

typed lambda calculus.

Davide Catta, Richard Moot and Christian Retoré

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

June 1, 2018

Do different syntactic trees yield different logical
readings? Some remarks on head variables in

typed lambda calculus.

No Author Given

No Institute Given

Abstract. A natural question in categorial grammar is the relation be-
tween a syntactic analysis and its logical form, i.e. the logical formula ob-
tained from this syntactic analysis, once provided with semantic lambda
terms. More precisely, do different syntactic analyses fed with equal se-
mantic terms, lead to equal logical form? We shall show that when this
question is too simply formulated, the answer is “no” while with some
constraints on semantic lambda terms the answer is “yes”.

1 Introduction: Lambek calculus and formal semantics

The Lambek calculus [6] is a logic developed for analyzing natural language.
For Lambek grammars, the grammaticality of a sentence corresponds to the
derivability of a statement in the logical calculus, given a lexicon mapping the
words of the sentence to formulas. Lambek calculus proofs correspond to logical
formulas in a simple and systematic way [2]. The questions which interests us
in this paper is when different syntactic proofs correspond to different logical
readings.

1.1 Proof theory

Introducing the Lambek calculus a bit more formally, given a sentence w1, . . . , wn
of words, a function Lex mapping words to formulas, and a goal formula (we
typically used s for sentence), we say that this sentence is grammatical if and
only if there exists, for each i, an Ai in Lex (wi) and A1, . . . An ` s is derivable.

Table 1 gives a simple Lambek calculus lexicon. Some words, like “John”
are assigned atomic formulas (here np for ‘noun phrase’). Similarly, “student” is
assigned atomic formula n for ‘noun’. The article “the” is assigned formula np/n
indicating it is looking for a noun n (such as “student”) to its right to form a
noun phrase. Similarly, “slept” is assign formula np\s, indicating is is looking for
a noun phrase np (such as “the student” or “John”) to form a sentence.

The natural deduction rules for the Lambek calculus are shown in Table 2.
The elimination rules /E and \E are simply directional versions of the modus
ponens rule. The introduction rules /I and \I require us the withdraw exactly
one occurrence of the B formula (we use an index j unique to the proof to keep

lex(John) = np lex(ran) = np\s
lex(Mary) = np lex(slept) = np\s
lex(the) = np/n lex(ate) = (np\s)/np

lex(report) = n lex(wrote) = (np\s)/np
lex(student) = n lex(everyone) = s/(np\s)
lex(pizza) = n lex(someone) = (s/np)\s
lex(who) = (n\n)/(np\s) lex(every) = (s/(np\s))/n

lex(whom) = (n\n)/(s/np) lex(some) = ((s/np)\s)/n

Table 1. Lambek calculus lexicon

track of where each the B hypothesis of each introduction rule is withdrawn).
The introduction rules have the additional condition that the withdrawn formula
B must be the leftmost (resp. rightmost) free hypothesis in the subproof ending
in A for the \I rule (resp. the /I rule) and that there must be at least one
other formula not already withdrawn (in other words, we exclude so-call empty
antecedent proofs of the form ` A/A and ` A\A).

A/B B

A
[/E]

. [B]j....
A

A/B
[/I]j

B B\A
A

[\E]

[B]j
A

B\A
[\I]j

Table 2. Natural deduction rules for L.

Figure 1 shows an example proof for the sentence “every student wrote some
report”. Each non-discharged formula in the proof corresponds to a word in the
lexicon, and we have written this word above the formula. Note that this is a
η-long normal form proof: we have an elimination rule immediately followed by
an introduction rule for the np hypothesis marked 1.

It is fairly easy, given a lexicon, to enumerate all long normal form proofs for
a sentence [9], and with the lexicon of Table 1 the sentence “every student wrote
some report” has exactly two such proofs, with the second shown in Figure 2.

every
(s/(np\s))/n

student
n

s/(np\s)
[/E]

[np]1

wrote
(np\s)/np [np]2

np\s
[/E]

s
[\E]

np\s
[\I]1

s
[/E]

s/np
[/I2]

some
((s/np)\s)/n

report
n

(s/np)\s
[/E]

s
[\E]

Fig. 1. Proof of “every student wrote some report”

every
(s/(np\s))/n

student
n

s/(np\s)
[/E]

[np]1

wrote
(np\s)/np [np]2

np\s
[/E]

s
[\E]

s/np
[/I2]

some
((s/np)\s)/n

report
n

(s/np)\s
[/E]

s
[\E]

np\s
[\I]1

s
[/E]

Fig. 2. Second proof of “every student wrote some report”

These two proofs correspond to the two readings of the sentence in a Montague-
style treatment of quantification [7]: one where the existential quantifier “some”
has wide scope over the universal quantifier “every”, and one where “every”
outscopes “some”.

1.2 Semantic term assignment

There is a very direct way to turn the two proofs of the previous section into
(lambda term representations) of the logical formulas representing the two pos-
sible meanings of the sentence. There is a division of labor here: the Lambek
calculus proof specifies how the word in the lexicon are combined (in the form
of a linear lambda term) and the lexical entry for each word specifies a (not
necessarily linear) lambda term corresponding to the meaning of the word.

We first turn to the term assignment for the Lambek calculus proofs. The
Lambek calculus is a non-commutative logic. For the semantic term assignment
we are generally not interested in whether a left or right implication was used.
In other words, semantic term assignment is done for proofs in the Lambek-van
Benthem calculus LP (also known as multiplicative intuitionistic linear logic
[3]).

In the Lambek-van Benthem calculus, there is only a single implication, the
linear implication ‘(’. The trivial a forgetful mapping from Lambek calculus
connectives to those of LP is the following:

p∗ = p

(A/B)∗ = B∗ (A∗

(B\A)∗ = B∗ (A∗

Definition 1. A lambda term M is linear [5] whenever:

– each free variable occurs exactly once, and
– for each subterm λx.N of M , x has exactly one free occurrence in N

Proofs in the Lambek-van Benthem calculus correspond to linear lambda
terms. Table 3 shows the natural deduction rules for LP together with term
assignment for the proof. The elimination rule has the condition that M and
N do not share variables. The introduction rule has the condition that exactly
one occurrence of the formula B (with variable x) is withdrawn. The mapping
.∗ has the property that it not only translates L formulas to LP formulas, but
also L derivation rule (and therefore derivations) to LP derivation rules (and
derivations).

Although we use the Lambek calculus as an example in this paper, most
type-logical grammars (including the multi-modal non associative Lambek cal-
culus) have a similar forgetful mapping from their logical connectives (and the
corresponding derivation rules) to LP [8].

The proofs in Figures 1 and 2 correspond to the lambda terms given in 1 and
2 respectively.

N : B M : B (A
(M N) : A

[(E]

[x : B]j....
M : A

λx.M : B (A
[(I]j

Table 3. Natural deduction rules for LP/multiplicative intuitionistic linear logic with
term labeling.

(w4 w5)(λy((w1 w2) (λx((w3 y)x)))) (1)
(w1 w2)(λx((w4 w5) (λy((w3 y)x)))) (2)

Finally, to obtain a representation of the meaning of the sentence we sub-
stitute the lexical meaning for each word. Following Montague, we leave some
words unanalyzed, using the constant student as the meaning of the word “stu-
dent”, and similarly for “wrote” and “report”, which are assigned the meaning
write and report respectively. The interesting words in this example are “every”
and “some”. Using the constants ∀ and ∃, both of type (e→ t)→ t, to represent
the universal and the existential quantifier, and the constants ∧, ∨ and ⇒ of
type t → (t → t) to represent the binary logical connectives, we can assign the
following lambda term to “every” and to “some":

λPλQ∀(λx.(⇒ (P x))(Qx)) (3)

λPλQ∃(λx.(∧(P x))(Qx)) (4)

Substituting the lexical terms for each of the corresponding variables derived
terms 1 and 2 produces the following two terms.

(λPλQ∃(λz.(∧(P z))(Qz)) report)(λy((λRλS∀(λv.(⇒ (Rv))(S v)) student) (λx((write y)x))))
(5)

(λRλS∀(λv.(⇒ (Rv))(S v)) student)(λx((λPλQ∃(λz.(∧(P z))(Qz)) report) (λy((write y)x))))
(6)

These terms normalize to:

∃(λz.(∧(report z))(∀(λv.(⇒ (student v)((write z) v) (7)
∀(λv.(⇒ (student v))(∃(λz.(∧(report z))((write z) v) (8)

In more standard logical notation, these terms represent the following two
formulas (it is always the case that closed β-normal η-long terms of type t with

constants of some logical system can unambiguously be interpreted as logical
formulas, see e.g. [9, Ch. 3]).

∃z.report(z) ∧ ∀v.[student(v)⇒ write(v, z)] (9)
∀v.student(v)⇒ ∃z.[report(z) ∧ write(v, z)] (10)

So we have two Lambek calculus proofs producing two different readings.
Now, while it is the case that two different natural deduction proofs for the
Lambek calculus always produce two different linear lambda terms (terms like 1
and 2), the question which will interest us in the rest of this paper is the follow-
ing: when can we guarantee that different Lambek calculus proofs (or proofs in
another system of type-logical grammar) produce different meanings? By this, we
mean different meaning in the sense of different lambda terms after lexical sub-
stitution and normalization, and not terms representing logical formulas which
are not logically equivalent. This distinction is obvious when we replace our ex-
ample sentence by “some student wrote some report”. Here we still produce two
different terms, where the two existential quantifiers have different scope with re-
spect to each other. However, these two terms correspond to logically equivalent
formulas.

Example 1. Even when we require different terms instead of terms representing
logical formulas which are not equivalent, the property doesn’t hold in general.
For example, given a binary concatenation operator “+” (which, for convenience,
we write as an infix operator1), the following substitution produces

every+ student+ wrote+ some+ report

for both 1 and 2.

w1 := λPλQ.Q(every+ P)

w2 := student
w3 := λyλx.x+ wrote+ y

w4 := λPλQ.Q(some+ P)

w5 = report

This example uses lambda terms to produce string, as is done in lambda-grammars/abstract
categorial grammars [11,4,10], and shows different meanings can correspond to
the same string.

2 When do different proofs produce different meanings?

A natural question when computing the logical formula associated from a Lam-
bek analysis and the semantic lambda term associated with each word is the
following:
1 We can define “+” as λyλxλzx(y z) (i.e. as function composition). Then, w3 gets
assigned the term λyλxλz(x (wrote (y z))), and similarly for the other terms.

Question 1. Assume that the sentence w1 · · ·wn has two syntactic analyses P1

and P2, when replacing each wi (a free variable representing mi in the syntactic
analysis that is a linear lambda term) by the associated semantic lambda term
ti (non linear, with constants) in P1 and in P2 does beta reduction give different
lambda terms (i.e. logical formulas), i.e. does one have

P1[w1 := t1] · · · [wn := tn]
β

6= P2[w1 := t1] · · · [wn := tn] ?

We shall see that in its full generality, this question must be answered neg-
atively, but we shall consider restrictions on the semantic lambda terms and
consider strongly different syntactic analyses.

Definition 2. A syntactic λ-term is a β-normal, simply-typed linear λ-term
with one occurrence of each free variable in w1, . . . , wn with n > 0 — those free
variables are the words of some analyzed sentence.

2.1 Semantic lambda terms and lambda I calculus

The answer to our question is negative:

Proposition 1. There exist P1, P2 two syntactic λ-terms both of type σ and with
the same free variables w1, w2 . . . wn, and and there exist t1, t2 . . . , tn n semantic
λ-terms such

P1

β

6= P2 AND P1[w1 := t1] · · · [wn := tn]
β
= P1[w1 := t1] · · · [wn := tn]

Proof. Take
P1 ≡ w1((w2w3)w4)

P2 ≡ w1((w2w4)w3)

where w1 : t→ t, w2 : e→ (e→ t) and w3, w4 are both of type e. Moreover take

t1 ≡ λy.k1 t2 ≡ λx1λx2((k2x1)x2)) t3 ≡ k3 t4 ≡ k4

where k1 : t, y : t, k2 : e → (e → t) and t3, t4, x1, x2 are of type e. Make the
following substitution.

P1[w1 := t1][w2 := t2][w3 := t3][w4 := t4] P2[w1 := t1][w2 := t2][w3 := t3][w4 := t4]

Both terms reduces to k1

This proposition (counter example to our question) holds because β-reduction
can delete i.e., when we have t := λxt′ in which x 6∈ Fv(t′) tM reduces in one
step to t′ for all t,M . Therefore is it essential to exclude such cases if one hopes to
give a positive answer to the claim. However people who experimented categorial
lexicons have probably noticed that semantic lambda terms are lambda I terms
i.e. β deduction never erase any subterm (it would be strange that a semantic

function of several arguments does not take one of its argument into account).
A λ-term t is called a λI term [5,1] iff for each sub-term of the form λx.M in
t, x occurs free in M at least once. The class of λI -terms are closed under βη
reduction i.e., every term obtained by reducing a member of the class is also a
member of the class.

One may wonder whether semantic lambda terms could be asked to be linear.
This would be damaging since the quantifiers are not linear lambda terms:

every : λPλQ∀(λx.(⇒ (P x))(Qx))

2.2 Simple semantic lambda terms

Given that we want the difference between the syntactic analyses to be pre-
served during β reduction, we focus on having constants as head variables in
the semantic lambda terms that are substituted with the free variables. Indeed,
otherwise when the head variable is bound, the reduction of the corresponding
redex creates a redex and turns an argument into a function: this is a substantial
modification of the lambda term which may identify different lambda terms as
opposed to the claim we would like to prove.

Definition 3. A simple semantic lambda term is a β-normal η-long λI-term
with constants whose head variable is a constant i.e.,

t := λz1, · · · znkT1T2 · · ·Tm

where k is a constant 2

The lambda terms given in Example 1 are not simple according to our def-
inition: the terms for “every” and “some” have a bound variable as head term;
the same is true for “wrote” when we write out the definition of “+” as indicated
in Footnote 1.

Furthermore, this requirement, to have a constant as the head variable sug-
gest a way to avoid some reductions to yield the same term, by a symmetric
treatment of the symmetric head constant.

Proposition 2. There exist P1, P2 two syntactic λ-terms both of type σ and
with the same free variables w1, w2, . . . wn, and and there exist t1, t2 . . . , tn n
simple semantic λ-terms such that

P1

β

6= P2 AND P1[w1 := t1] · · · [wn := tn]
β
= P1[w1 := t1] · · · [wn := tn]

Proof. take
P1 ≡ ((w1w2)w3)

P2 ≡ ((w1w3)w2)

2 Because this is a λI term Izi as a free occurrence in one of the Ti.

with w1 : e→ (e→ t) and w2, w3 of type e

t1 ≡ λx1λx2((k1x1)x2) t2 ≡ k2 t3 ≡ k2
with k1 : e→ (e→ t), x2, x2, k2 of type e and make the following substitution

P1[w1 := t1][w2 := t2][w3 := t3] P2[w1 := t1][w2 := t2][w3 := t3]

After β-reduction the two terms become beta-equal.

This counterexample shows that we should also require, at least, that the n
simple semantic lambda terms have different head-constant

2.3 Restrictions on the semantic lambda terms are not enough

Unfortunately — even with this restriction — if one formalizes the notion of
difference between the two syntactic analyses of the sentence w1 · · ·wn in terms
of β-difference between syntactic terms one is doomed to failure.

Proposition 3. There exist P1, P2 two syntactic terms, both of type σ, with the
same free variables w1, . . . , wn and t1, t2 . . . , tn n simple semantic lambda terms
such that ∀i∀j 1 ≤ i ≤ j ≤ n if i 6= j then the head-constant of ti is different
from the head-constant of tj.

P1

β

6= P2 AND P1[w1 := t1] · · · [wn := tn]
β
= P1[w1 := t1] · · · [wn := tn]

Proof. take
P1 ≡ w1(λxλy((w2x)y))

P2 ≡ w1(λyλx((w2x)y))

where x : e, y : e, w2 : e→ (e→ t), w1 : (e→ (e→ t))→ t. Take

t1 ≡ λP (k1((Px)x)) t2 ≡ (λzλy((k2z)y))

where P : (e→ (e→ t))→ t, k1 : t→ t, k2 : e→ (e→ t) and x, z, y are of type
e. And make the following substitution

P1[w1 := t1][w2 := t2] P2[w1 := t1][w2 := t2]

After β-reduction the two terms become beta-equal.

3 Strong differences in syntactic analyses yield different
readings

In the last section we have seen that the question has a negative answer if the
difference between the two syntactic analyses is just syntactic difference (up to
the renaming of bound variables). By consequence we can attack the problem
by using at least two different strategies.

Strategy 1 Refining our notion of syntactic lambda-terms. In fact we know that
not all linear lambda terms have a corresponding Lambek calculus deriva-
tion, because Lambek calculus is not commutative and therefore is proofs
correspond to a proper subset of the linear lambda terms. This may be a
good strategy, because syntactic analyses enjoy this restriction, even though
it may be hard to state precisely and succinctly (though we could follow the
ideas of [12] for a directional lambda calculus)

Strategy 2 Define a stronger notion of difference between syntactic analyses
and the resulting lambda terms.

The first strategy seems promising: we know that the two syntactic terms
P1 ≡ w1(λyλx((w2x)y)) P2 ≡ w1(λyλx((w2x)y)) of Proposition 2 could not
correspond to two parses obtained by the same category assignment to the free
variables w1 and w2. However it is really difficult to exactly characterize the
sub-class of typed linear lambda terms that corresponds to derivations in the
Lambek-calculus. The translation from the latter to the former is not injective
and thus some information that could be relevant is lost.

The second strategy could be pursued only if the new notion of difference
captures some interesting case of differences between syntactic analysis of the
same sentence e.g. scope ambiguity for quantifiers. We are going to pursue this
path by defining a notion of dominance between occurrences of unbound terms
in a normal λ-term.

3.1 Some remarks on head variables and constants

Before proceeding with dominance, let us state some useful and easy proposi-
tions.

Proposition 4. Let t be a simply typed λi-term in head-normal form having the
following shape.

t := λz1, · · · znkT1T2 · · ·Tm

where k is a constant. Call M the normal form of t. M has k as head-variable.

Corollary 1. Let t1, t2 be simply typed λi-terms in head-normal form having
the following shape.

t1 := λz1, · · · znk1T1T2 · · ·Tm t2 := λz′1, · · · z′nk2T ′1T ′2 · · ·T ′m

where k1, k2 are constants. If k1, the constant of t1, is different from k2, the
constant of t2, then t1 6=β t2

Proposition 5. Let t be a simply typed λI term in head-normal form in which
the head variable is free. Let R be a simple semantic term in which k is the
head-constant. Then the normal form M of t[x := R] has k has head-variable.

3.2 A positive answer when syntactic analyses define different
dominance relations

Definition 4 (Dominance). In a term M , occurrences of constants and free
variables are endowed with a dominance relation as follows.

If the termM is a sequence of abstractions λ~x. t (t is not itself an abstraction)
then the dominance relations are the ones in t.

If the term M is a sequence of application T0T1 · · ·Tn (T0 is not itself an
application) the dominance relations are the union of the ones in each of the Ti,
plus in some cases, additional relations: if T0 has a a head variable which is a
constant then this constant dominates all constants in all the Ti’s.

When x dominates y we will write this as x / y.

It should be observed that when a lambda term is normal, the dominance
relation is the transitive closure of “the head constant h dominates the head
constants in the terms it is applied to”.

A first obvious remark:

Proposition 6. Let P be a syntactic lambda term with words w1, . . . , wn. Let
ti be the corresponding simple semantic lambda terms with head constant ci. If
wi0 / wi1 in P then ci0 / ci1 in P [~w := ~t].

Proposition 7. Let U be a typed lambda I term (without erasing/weakening)
including two occurrences of constants c and c′ such that c / c′ in t. Assume
U

β−→ U ′. Then each trace ci of c is associated with a set of occurrences c′i
j of

c′ in U ′ with ci / c′i
j in U ′ — the sets C ′i = {c′i

j} define a partition of the traces
of c′. In particular there never is a relation the other way round after reduction:
c′i 6/ ci in U ′ for all i.

Proof. Checking this for the reduction of one redex is enough. A redex in U looks
like U = V [(λx.A)B] For each relation c / c′ (by induction on the number of β
reductions performed so far there might already be several such pairs), because
of the definition of dominance c and c′ are

1. outside of the redex, i.e. elsewhere in V , c and c′ do not move
2. both in A, c and c′ do not move
3. both in B, c and c′ moves in A being possibly duplicated
4. A = cA1 · · ·Ak and c′ is in B: c′ might be duplicated but c still dominates

each of the duplicates of c′ after reduction.
(a) c′ is in some Ak0 c and c′ do not move
(b) c′ is in B c′ moves in A being possibly duplicated, but c / c′ remains for

every pair of duplicates.

In any case c / c′ also holds after reduction to A[x := B]. In case the “initial”
c and c′ are both in B and A contains several occurrences of x, they have several
traces which are in a one to one correspondence with c / c′ in t′. In case c is the
head variable of A the reduction duplicates c′ and c dominates every duplicate
of c′.

Note that having λI terms is crucial otherwise both c and c′ or just c′ may
disappear during the β reduction.

It should be observed that dominance relations, even between occurrences
of constants, can be introduced by β-reduction (when a constant becomes the
head variable of some term) but this does not does not prevent the proposition
to hold, since we only require the dominance relation to not inverse an already
existing relation between two occurrences of constants.

Corollary 2. Assume two syntactic analyses P1 and P2 give opposite domi-
nance relation between two words, u / u′ in P1 and u / u′ in P2. Whatever the
semantic lambda terms for u and u′ with different head constant c and c′ are,
the associated logical forms will be different.

Proof. We have c / c′ in p1[~u := ~t] so the traces of c dominate the traces of c′ in
its normal form p1[~u := ~t]∗ because of the proposition 7.

We have c′ / c in p2[~u := ~t] so the traces of c′ dominate the traces of c in its
normal form p2[~u := ~t]∗ because of the proposition 7.

So these normal forms cannot be equal.

As an example, recall that there are two syntactic analyses of every student
passed some exam. In the ∀∃ reading one has ∀ / ∃ while in the ∀∃ reading one
has ∀ / ∃. Consequently we know in advance the logical forms are not going to
be the same – they are obtained by inserting the semantic lambda terms and
applying β-reduction.

The previous corollary does not mean that the logical forms cannot be log-
ically equivalent. For instance, in a sentence like every student passed all ex-
ams there are two syntactic analyses one with all / every and one in which
every / all, this will be true as well in the logical form: one ∀ dominates the
other in the normal form, and, depending on the syntactic analysis it is not the
same one. However, the logical formulas are equivalent, just like the formulas
∀xP (x) ⇒ ∀yQ(y) ⇒ R(x, y) and ∀yQ(y) ⇒ ∀xP (x) ⇒ R(x, y) are not equal
but equivalent.

4 Conclusion

We have shown that some quite reasonable formalizations of the claim “different
syntactic analyses yield different readings” are false. We nevertheless established
that with stronger hypotheses on semantic terms, and using dominance relation
between constants, the claim is true.

In the future we would like to both weaken the condition on semantic lambda
terms in order to incorporate reflexives (they look like λPλx. Pxx, they have
no head constant) and in balance to refine the notion of syntactic terms.

Indeed, syntactic lambda terms should be characterized as the class of linear
lambda terms that are issued from the Lambek calculus, i.e. linear lambda terms
that are typable in a non-commutative calculus. This path seems promising. As
we have mentioned at the beginning of Section 3, the two terms of Proposition 3
can not correspond correspond to two parses obtained by the same category
assignment to the free variables w1 and w2. This aspect seems to be tied to the
non-commutativity of the Lambek calculus.

References

1. Barendregt, H.P.: The lambda calculus: its syntax and semantics, Studies in Logic
and the Foundations of Mathematics, vol. 103

2. van Benthem, J.: Language in Action: Categories, Lambdas and Dynamic Logic.
MIT Press, Cambridge, Massachusetts (1995)

3. Girard, J.Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)
4. de Groote, P.: Towards abstract categorial grammars. In: Proceedings of the 39th

Annual Meeting on Association for Computational Linguistics. pp. 252–259. Asso-
ciation for Computational Linguistics (2001)

5. Hindley, J.R.: Basic Simple Type Theory, Cambridge Tracts in Theoretical Com-
puter Science, vol. 42. Cambridge University Press (1997), corrected edition, 2008

6. Lambek, J.: The mathematics of sentence structure. American Mathematical
Monthly 65, 154–170 (1958)

7. Montague, R.: The proper treatment of quantification in ordinary English. In:
Thomason, R. (ed.) Formal Philosophy. Selected Papers of Richard Montague.
Yale University Press, New Haven (1974)

8. Moortgat, M.: Categorial type logics. In: van Benthem, J., ter Meulen, A. (eds.)
Handbook of Logic and Language, chap. 2, pp. 93–177. Elsevier/MIT Press (1997)

9. Moot, R., Retoré, C.: The Logic of Categorial Grammars: A Deductive Account of
Natural Language Syntax and Semantics. No. 6850 in Lecture Notes in Artificial
Intelligence, Springer (2012)

10. Muskens, R.: Languages, lambdas and logic. In: Kruijff, G.J., Oehrle, R.T. (eds.)
Resource Sensitivity in Binding and Anaphora, pp. 23–54. Studies in Linguistics
and Philosophy, Kluwer (2003)

11. Oehrle, R.T.: Term-labeled categorial type systems. Linguistics & Philosophy
17(6), 633–678 (1994)

12. Wansing, H.: Formulas-as-types for a hierarchy of sublogics of intuitionistic proposi-
tional logic. In: Pearce, D., Wansing, H. (eds.) Nonclassical Logics and Information
Processing. pp. 125–145. Springer Berlin Heidelberg, Berlin, Heidelberg (1992)

