
EasyChair Preprint

№ 198

Routing Driverless Transport Vehicles in Car

Assembly with Answer Set Programming

Martin Gebser, Philipp Obermeier, Michel Ratsch-Heitmann,
Mario Runge and Torsten Schaub

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 31, 2018

Under consideration for publication in Theory and Practice of Logic Programming 1

Routing Driverless Transport Vehicles in Car
Assembly with Answer Set Programming

Martin Gebser, Philipp Obermeier, Torsten Schaub
University of Potsdam, Germany

Michel Ratsch-Heitmann, Mario Runge
Mercedes-Benz Ludwigsfelde GmbH, Germany

submitted [n/a]; revised [n/a]; accepted [n/a]

Abstract
Automated storage and retrieval systems are principal components of modern production and
warehouse facilities. In particular, automated guided vehicles nowadays substitute human-operated
pallet trucks in transporting production materials between storage locations and assembly stations.
While low-level control systems take care of navigating such driverless vehicles along programmed
routes and avoid collisions even under unforeseen circumstances, in the common case of multiple
vehicles sharing the same operation area, the problem remains how to set up routes such that a
collection of transport tasks is accomplished most effectively. We address this prevalent problem
in the context of car assembly at Mercedes-Benz Ludwigsfelde GmbH, a large-scale producer
of commercial vehicles, where routes for automated guided vehicles used in the production
process have traditionally been hand-coded by human engineers. Such ad-hoc methods may
suffice as long as a running production process remains in place, while any change in the factory
layout or production targets necessitates tedious manual reconfiguration, not to mention the
missing portability between different production plants. Unlike this, we propose a declarative
approach based on Answer Set Programming to optimize the routes taken by automated guided
vehicles for accomplishing transport tasks. The advantages include a transparent and executable
problem formalization, provable optimality of routes relative to objective criteria, as well as
elaboration tolerance towards particular factory layouts and production targets. Moreover, we
demonstrate that our approach is efficient enough to deal with the transport tasks evolving in
realistic production processes at the car factory of Mercedes-Benz Ludwigsfelde GmbH.

KEYWORDS: automated guided vehicle routing, car assembly operations, answer set programming

1 Introduction

Automated guided vehicles play a key role in modern industries, let it be in warehouses,
mines, or as in our case production facilities. Most of the time, however, these vehicles
are programmed by human engineers to execute specific tasks. This makes it impossible
to quickly reassign tasks in case of breakdowns or to easily react to changing produc-
tion requirements, not to mention the missing portability between different production
plants and factory layouts. The lack of elaboration tolerance does not only lead to high
expenditures, but the resulting rigid control also rules out any flexible fleet management.
In particular, no conclusions can be drawn about the effectiveness or even optimality of
pre-programmed vehicle routes.

2 M. Gebser, P. Obermeier, M. Ratsch-Heitmann, M. Runge, T. Schaub

Fig. 1. Real-world factory layout with transport corridors and directions indicated by arrows

In view of these common circumstances, we address the challenge of devising a new
control system for automated guided vehicles supplying the assembly lines at the car
factory of Mercedes-Benz Ludwigsfelde GmbH, which is expected to be flexible enough
to adapt to malfunctions and emerging requirements, and whose quality of operation
can be measured and optimized relative to given objectives. To make our specific task
more precise, consider the retouched layout of an assembly hall at the production plant of
Mercedes-Benz Ludwigsfelde GmbH in Figure 1. The overall goal is to guarantee that all
car components are at their designated place next to the assembly line when they are due
for installation. The corresponding transport tasks are accomplished by a heterogeneous
fleet of automated guided vehicles that fetch the necessary components from several
storage areas. For instance, a vehicle may first halt at some storage location to load
production material, then move on to an assembly station in need of the material, and
from there cart off leftover material to a recycling facility. The sketched task thus involves
stopovers at three distinct locations, between which the vehicle must pick a route without
getting blocked by others, where dedicated parking spaces are included in the layout to
let vehicles make room. Notably, the regular production process runs periodically, so that
the given transport tasks have to be repeatedly executed in fixed intervals.

To make the execution of transport tasks more effective, we propose to perform task as-
signment and vehicle routing by means of Answer Set Programming (ASP; Lifschitz 1999),
given its declarative and elaboration tolerant approach to combinatorial multi-objective
problem solving. This results in a transparent and easily adjustable problem description
along with optimal solutions relative to objective criteria. Regarding performance, it also
turns out that our approach is efficient enough to meet the industrial-scale requirements
of production processes at the car factory of Mercedes-Benz Ludwigsfelde GmbH.

The paper is structured as follows. In the next section, we start by formalizing automated
guided vehicle routing for transport tasks evolving in production processes at the car
factory of Mercedes-Benz Ludwigsfelde GmbH. Once this is accomplished, we provide in
Section 3 a corresponding ASP encoding, incorporating the hard and soft constraints on
solutions. In Section 4, we empirically evaluate our approach on use cases designed to
test the practical applicability of control systems for automated guided vehicles. Finally,
we conclude the paper with a brief discussion of related work and the achieved results.

2 Problem Formalization

In what follows, we formally describe the automated guided vehicle routing scenarios
faced in production processes at the car factory of Mercedes-Benz Ludwigsfelde GmbH,

Routing Driverless Transport Vehicles in Car Assembly with ASP 3

2

3

1

4

6

5

7

c1 : 0c2 : 0

t1[3] : 55
t2[3] : 49

t1[2] : 40 t2[2] : 34

t1[1] : 17

t2[1] : 19

6

4

10

14

21

2529

33

37

44

4852

4

8 12

16

23

27

3138

42

46

Fig. 2. Optimal routes to accomplish two transport tasks with three subtasks each by two vehicles

the conditions on their solutions, as well as objective criteria concerning solution quality
devised together with production engineers at Mercedes-Benz Ludwigsfelde GmbH.

An automated guided vehicle routing scenario is specified in terms of a directed graph
(V,E), where the nodes V stand for locations of interest and the edges E ⊆ V ×V provide
connections between them, along with a set T of transport tasks. Among the nodes in V ,
we distinguish particular halt and park nodes, given by h(V)⊆ V and p(V)⊆ V such that
h(V)∩p(V) = ∅ holds. Moreover, each task t ∈ T has an associated non-empty sequence
〈s1, . . . ,sm〉 of subtasks, whose elements are halt nodes, i.e., {s1, . . . ,sm} ⊆ h(V), and we
write s(t) =m and t[i] = si, for 1≤ i≤m, to refer to the number of or individual subtasks,
respectively, associated with t. In addition, every edge, halt or park node, and task is
characterized by some positive integer, denoted by d(x) for x∈E∪h(V)∪p(V)∪T , where
d(e) expresses the move duration for a connection e ∈ E, d(v) provides the halt or park
duration for a location v ∈ h(V)∪p(V), and d(t) constitutes the deadline for completing
a task t ∈ T . Finally, a set C of vehicles usable for transport tasks is given together with,
for each c ∈ C, an initial location l(c) ∈ V such that l(c) 6= l(c′) when c′ ∈ C \{c}. The
vehicles can accomplish transport tasks by taking connections and halting at the locations
of respective subtasks, whose halt durations reflect time spent to operate carried materials
(e.g., loading or unloading), while further stops are admitted at park nodes only, included
for allowing a vehicle to wait in case its subsequent route is temporarily blocked by others.

Example 1
The scenario depicted (in black) in Figure 2 consists of the nodes V = {1, . . . ,7} and
edges E = {(1,2),(1,7),(2,3),(3,4),(4,5),(4,7),(5,6),(6,1),(7,1),(7,4)}. The halt nodes
h(V) = {2,4,5,6} are indicated by diamonds in Figure 2, and the park node in p(V) = {7}
is marked by a square. The two tasks in T = {t1, t2} include three subtasks each, where the
respective sequences of halt nodes, 〈t1[1] = 5, t1[2] = 4, t1[3] = 2〉 and 〈t2[1] = 6, t2[2] = 4,
t2[3] = 2〉, are listed within red or blue labels, respectively, near the subtasks. Similarly,
the initial locations l(c1) = 1 and l(c2) = 2 of the vehicles in C = {c1, c2} are indicated
by corresponding labels. While Figure 2 does not display the durations, we assume a
uniform move duration d(e) = 4 per connection e ∈ E, a halt duration d(v) = 3 at each
of the four halt nodes v ∈ {2,4,5,6}, and a park duration d(7) = 2 at the park node 7.
Moreover, the deadline for both tasks, t1 and t2, is given by d(t1) = d(t2) = 60 and also
omitted in Figure 2 for better clarity. �

4 M. Gebser, P. Obermeier, M. Ratsch-Heitmann, M. Runge, T. Schaub

A solution to a guided vehicle routing scenario comprises a task assignment α : T → C

along with a strict partial order ≺ on T such that either t ≺ t′ or t′ ≺ t holds when
α(t) = α(t′) for tasks t 6= t′. In addition, for each vehicle c ∈ C, it contains a route π(c) =
〈r1, . . . , rk〉, where {r1, . . . , rk} ⊆ E∪h(V)∪p(V), subject to the following conditions:

1. If ri = (v,v′), for (v,v′) ∈E, or ri = v, for v ∈ h(V)∪p(V), holds for some 1≤ i≤ k,
then we require that ri−1 = (v′′,v) or ri−1 = v, where we let r0 = l(c).

2. For any subtask t[j] of a task t ∈ T with α(t) = c, we define its completion index by
g(t[j]) = min{i | 1≤ i≤ k,ri = t[j],max({g(t[j−1]) | 1<j}∪{g(t′[s(t′)]) | t′≺ t})< i}
and require that g(t[j]) ≤

∑
1≤i≤g(t[j]) d(ri) ≤ d(t). In words, the subtasks of all

tasks assigned to a vehicle c have to be completed in the order given by ≺ (as
well as sequences of subtasks) within their respective deadlines, where a subtask is
completed once the route π(c) includes a halt at its location such that all preceding
subtasks have been completed before.

3. If ri = v for a halt node v ∈ h(V) and 1≤ i≤ k, then we require that g(t[j]) = i for
some subtask t[j] of a task t ∈ T with α(t) = c. That is, halts may be included in
the route of a vehicle c exclusively for completing subtasks of tasks assigned to c.

4. With each x ∈ E ∪V , we associate a set of occupation times defined as u(c,x) =
{d+

∑
1≤j<i d(rj) | 1≤ i≤ k,ri = x,1≤ d≤ d(x)}∪{

∑
1≤j≤i d(rj) | 1≤ i≤ k,ri ∈E,

ri = (v,x)}. For any vehicle c′ ∈ C \{c}, the following requirements check that the
routes of c and c′ do not both lead to a joint location at the same time, and that c
and c′ do not meet in between nodes by taking connections in opposite directions:
for each location v ∈ V , we require that u(c,v)∩u(c′,v) = ∅, while u(c,(v,v′))∩
u(c′,(v′,v)) = ∅ must hold for each bidirectional connection pair {(v,v′),(v′,v)} ⊆E.

Example 2
The red and blue arrows and labels in Figure 2 indicate the routes of a solution to the
automated guided vehicle routing scenario from Example 1, where the task assignment
is given by α(t1) = c1 and α(t2) = c2. As no distinct tasks are assigned to the same
vehicle, we have that the order relation ≺ is empty, while c1 and c2 have to complete
the subtasks of t1 or t2, respectively, in order. The routes taken by c1 and c2 can be
traced by considering the times of completing route elements, included in labels along
nodes and edges, in increasing order, starting from c1 : 0 and c2 : 0 at the initial locations
l(c1) = 1 and l(c2) = 2. For vehicle c1, this yields the route π(c1) = 〈(1,7),7,(7,4),(4,5),5,
(5,6),(6,1),(1,2),(2,3),(3,4),4,(4,7),(7,1),(1,2),2〉, where the four stops at halt or park
nodes in h(V)∪ p(V) = {2,4,5,6,7} are of particular interest. In fact, the inclusion of
the park node 7 at the second position of π(c1) delays the subsequent move (7,4) by
the park duration d(7) = 2 in order to avoid arriving at node 4 at the same time as the
other vehicle c2. Unlike that, the later stops at the halt nodes 5, 4, and 2 are made to
complete the sequence 〈t1[1] = 5, t1[2] = 4, t1[3] = 2〉 of subtasks. While π(c1) makes c1
revisit the halt nodes t1[2] = 4 and t1[3] = 2, a halt would not be admitted on the first
arrival because the preceding subtask t1[1] = 5 or t1[2] = 4, respectively, has not yet been
completed. Hence, the halt at 5 comes before returning to and halting at 4, and then in
turn at 2 at the very end of the route π(c1). As one can check, the sum of durations over
connections as well as halt and park nodes in π(c1) is 55, which means that the task t1
gets completed within its deadline d(t1) = 60. Regarding the other vehicle c2, tracing

Routing Driverless Transport Vehicles in Car Assembly with ASP 5

the blue labels in Figure 2 yields the route π(c2) = 〈(2,3),(3,4),(4,5),(5,6),6,(6,1),(1,7),
(7,4),4,(4,7),(7,1),(1,2),2〉 for completing the sequence 〈t2[1] = 6, t2[2] = 4, t2[3] = 2〉 of
subtasks. Along this route, c2 visits the halt nodes t2[2] = 4 and t2[3] = l(c2) = 2 twice,
where halts are in both cases made on the second arrival for completing the subtasks
of t2 in order. Moreover, no stop at the park node 7 is needed to avoid meeting the other
vehicle c1, and the durations of connections and halt nodes in π(c2) sum up to 49, so that
also the task t2 gets completed within its deadline d(t2) = 60. �

While an automated guided vehicle routing scenario may have plenty feasible solutions,
we apply the following objective criteria, below ordered by significance, to distinguish
preferred collections of routes π(ci) = 〈r1i , . . . , rki

〉 for the vehicles ci ∈ C:

1. The makespan ms of a solution is the maximum sum of durations over the route
elements of some vehicle, i.e.,

ms = max{
∑

1≤ji≤ki
d(rji) | ci ∈ C}.

2. The route length rl of a solution is the sum of durations over elements in the routes
of all vehicles, i.e.,

rl =
∑

ci∈C,1≤ji≤ki
d(rji).

3. The crossing number cn is the number of pairs ({ci, ci′},v) such that ci ∈ C,
ci′ ∈ C \{ci}, and we have that rji = (v′,v) and rji′ = (v′′,v) for some connections
{(v′,v),(v′′,v)} ⊆ E with v′ 6= v′′, 1≤ ji ≤ ki, and 1≤ ji′ ≤ ki′ , i.e.,

cn = |{({ci, ci′},v) | ci ∈ C,ci′ ∈ C \{ci},1≤ ji ≤ ki,1≤ ji′ ≤ ki′ ,

{rji , rji′} ⊆ E,rji = (v′,v), rji′ = (v′′,v),v′ 6= v′′}|.

In words, the crossing number estimates how often the routes of distinct vehicles
come together at a joint location (at different times). Although solutions are such
that vehicles do not share any location at the same time, it is desirable to make
routes as disjoint as possible to keep knock-on effects in case of a disruption short.

4. The overlap number on is the number of triples ({ci, ci′}, rji , rji′) such that ci ∈ C,
ci′ ∈ C \{ci}, and we have that rji = (v,v′) and rji′ = (v,v′) (or rji′ = (v′,v)) for
some connection (v,v′) ∈ E (or connections {(v,v′),(v′,v)} ⊆ E), 1≤ ji ≤ ki, and
1≤ ji′ ≤ ki′ , i.e.,

on = |{({ci, ci′}, rji , rji′) | ci ∈ C,ci′ ∈ C \{ci},1≤ ji ≤ ki,1≤ ji′ ≤ ki′ ,

{rji , rji′ } ⊆ E,rji = (v,v′), rji′ ∈ {(v,v′),(v′,v)}}|.

The motivation for aiming at a small overlap number is the same as with the crossing
number, while connections taken by distinct vehicles are considered instead of
crossing locations. Note that, for a bidirectional connection pair {(v,v′),(v′,v)} ⊆E,
two vehicles ci and ci′ that move between v and v′ in either direction can contribute
one, two, or four triples ({ci, ci′}, rji , rji′), depending on whether neither, one, or
both include (v,v′) as well as (v′,v) in their routes. Unlike that, only the triple
({ci, ci′},(v,v′),(v,v′)) is obtained when (v,v′) ∈ E but (v′,v) /∈ E.

For each of the four objective criteria specified above, a smaller value is preferred to
greater ones. The order of significance is chosen such that the completion of all transport
tasks in as little time as possible has the highest priority, minimizing the overall utilization

6 M. Gebser, P. Obermeier, M. Ratsch-Heitmann, M. Runge, T. Schaub

Fact Meaning
node (v) v ∈ V
halt (v,d(v)) v ∈ h(V) with halt duration d(v)
park (v,d(v)) v ∈ p(V) with park duration d(v)
stay (v,d(v)) v ∈ h(V)∪p(V) with halt or park duration d(v)> 1
edge (v,v′,d(v,v′)) (v,v′) ∈ E with move duration d((v,v′))
less (v′,v′′,v) {(v′,v),(v′′,v)} ⊆ E for lexicographically consecutive locations v′ < v′′

time (n) 0≤ n≤max{d(t) | t ∈ T}
task (t) t ∈ T
task (t,d(t)) t ∈ T with deadline d(t)
tasks (t,t′) t ∈ T and t′ ∈ T \{t}
subtask (t,s(i)) t ∈ T with 1≤ i≤ s(t)
subtask (t,s(i),v) t ∈ T , 1≤ i≤ s(t), and t[i] = v with v ∈ h(V)
vehicle (c) c ∈ C
vehicle (c,v) c ∈ C with initial location l(c) = v

Table 1. Fact format for specifying automated guided vehicle routing scenarios in ASP

of vehicles comes second, keeping routes disjoint is third, and the avoidance of overlapping
connections takes the lowest priority.

Example 3
The solution to the automated guided vehicle routing scenario from Example 1 indicated
in Figure 2 and described further in Example 2 happens to be optimal relative to the
applied objective criteria. Given that the sums 55 and 49 are obtained for the durations of
elements of the route π(c1) or π(c2), respectively, the makespan ms matches the maximum
55, and the route length rl amounts to 55 + 49 = 104. Regarding the crossing number cn,
π(c1) and π(c2) visit three locations, 1, 4, and 7, via different connections, as witnessed
by occurrences of (6,1) and (7,1), (3,4) and (7,4), as well as (1,7) and (4,7) in π(c1)
or π(c2), respectively. Moreover, the overlap number on = 14 is obtained in view of the
inclusion of the connections (1,2), (2,3), (3,4), (4,5), (5,6), and (6,1) in both π(c1) and
π(c2) along with moves between the nodes 1 and 4 as well as 4 and 7 in either direction,
each of the latter contributing four triples counted together by on. While the gap between
the makespan ms = 55 and the deadline d(t1) = d(t2) = 60 for t1 and t2 may seem small,
let us mention that 561 solutions are feasible and that only one of them is optimal. Such
discrepancy clearly indicates that human engineers will hardly be able to perform an
exhaustive optimization of routes in realistic scenarios of greater size only by hand. �

3 Problem Encoding

Following the common modeling methodology of ASP, we represent (optimal) solutions
to automated guided vehicle routing scenarios by facts specifying an instance along
with a uniform problem encoding. To begin with, Table 1 surveys the format of facts
describing the locations, connections, tasks, and vehicles belonging to an automated
guided vehicle routing scenario. The respective fact representation of the scenario from
Example 1 is given in Listing 1, using the shorthands ‘..’ and ‘;’ of clingo (Gebser et al.
2015) to abbreviate facts for a range or collection of arguments, respectively. Note that
facts of the form stay (v,d(v)) combine halt and park nodes v ∈ h(V)∪ p(V) whose
associated duration d(v) is greater than one, as such non-atomic durations are subject

Routing Driverless Transport Vehicles in Car Assembly with ASP 7

Listing 1. Instance of automated guided vehicle routing with two tasks and two vehicles
node(v(1..7)).
halt(v(2),3). stay(v(2),3).
halt(v(4),3). stay(v(4),3).
halt(v(5),3). stay(v(5),3).
halt(v(6),3). stay(v(6),3).
park(v(7),2). stay(v(7),2).

edge(v(6;7),v(1),4). less(v(6),v(7),v(1)).
edge(v(1),v(2),4).
edge(v(2),v(3),4).
edge(v(3;7),v(4),4). less(v(3),v(7),v(4)).
edge(v(4),v(5),4).
edge(v(5),v(6),4).
edge(v(1;4),v(7),4). less(v(1),v(4),v(7)).

time(0..60).
task(t(1)). task(t(1),60). tasks(t(1),t(2)).
task(t(2)). task(t(2),60). tasks(t(2),t(1)).
subtask(t(1),s(1)). subtask(t(1),s(1),v(5)).
subtask(t(1),s(2)). subtask(t(1),s(2),v(4)).
subtask(t(1),s(3)). subtask(t(1),s(3),v(2)).
subtask(t(2),s(1)). subtask(t(2),s(1),v(6)).
subtask(t(2),s(2)). subtask(t(2),s(2),v(4)).
subtask(t(2),s(3)). subtask(t(2),s(3),v(2)).

vehicle(c(1)). vehicle(c(1),v(1)).
vehicle(c(2)). vehicle(c(2),v(2)).

to dedicated conditions in our problem encoding below. For locations v ∈ V that have
several incoming connections, facts of the form less (v′,v′′,v) provide lexicographically
consecutive locations v′ < v′′ such that {(v′,v),(v′′,v)} ⊆ E, based on the standard term
order of the ASP-Core-2 language (Calimeri et al. 2012). Our encoding below makes use of
the lexicographical order of predecessor locations for a compact formulation of conditions
to detect crossings. Moreover, facts time (n) give time points of interest, ranging from
zero to the latest deadline of any transport task, and tasks (t,t′) holds for distinct tasks
t ∈ T and t′ ∈ T \ {t}, which have to be ordered by ≺ when α(t) = α(t′). Facts of the
remaining predicates list further properties of automated guided vehicle routing scenarios
in a straightforward way, and their respective meanings are summarized in Table 1.

Our uniform problem encoding, given in Listings 2 and 3, can be understood as a
merger of four logical parts, addressing task assignment and ordering, task completion,
vehicle routing, as well as objective criteria (the latter part shown separately in Listing 3).
Table 2 follows this logical structure in providing the meanings of predicates defined in
each of the four parts, where a condition written in the right column applies if and only
if a corresponding atom of the form given in the left column belongs to a stable model.

In more detail, the encoding part addressing task assignment and ordering is shown in
Lines 3–12 of Listing 2. The choice rule in Line 3 makes sure that exactly one atom of the
form assign (c,t) holds per task t ∈ T , providing the vehicle c ∈ C such that α(t) = c.

8 M. Gebser, P. Obermeier, M. Ratsch-Heitmann, M. Runge, T. Schaub

Atom Meaning
assign (c,t) α(t) = c for t ∈ T and c ∈ C
share (t,t′) α(t) = α(t′) for {t, t′} ⊆ T such that t < t′ lexicographically
order (t,t′) t≺ t′ for t ∈ T and t′ ∈ T \{t} such that α(t) = α(t′)
check (t) t ∈ T is topological in (T,{(t′, t′′) | order (t′,t′′) holds})
check (t,t′) t⊀ t′ or check (t) holds for t ∈ T and t′ ∈ T \{t}
pass (c,t,s(i),v,d(v),n) α(t) = c, 1≤ i≤ s(t), t[i] = v, and n ∈ u(c,v)∪{0 | l(c) = v}

for t ∈ T and c ∈ C with π(c) = 〈r1, . . . , rk〉 such that
m≤

∑
1≤j≤m d(rj)≤ n < d(t),

where m= max({g(t[i−1]) | 1< i}∪{g(t′[s(t′)]) | t′ ≺ t})
done (t,s(i),n) t ∈ T , 1≤ i≤ s(t), and 1≤ n≤ d(t) such that g(t[i])≤∑

1≤j≤g(t[i]) d(rj)≤ n for α(t) = c with π(c) = 〈r1, . . . , rk〉
wait (t,n) t′ ≺ t and 0≤ n <min{d(t),d(t′)} for t ∈ T and t′ ∈ T \{t}

such that n <max{g(t′[s(t′)]),
∑

1≤j≤g(t′[s(t′)]) d(rj)},
where α(t) = α(t′) = c with π(c) = 〈r1, . . . , rk〉

at(c,v,n) n ∈ u(c,v)∪{0 | l(c) = v} for c ∈ C and v ∈ V with
n≤max{d(t) | t ∈ T}

move (c,v,v′,n) π(c) = 〈r1, . . . , ri, . . . , rk〉 for c ∈ C, ri ∈ E, ri = (v,v′),
and n=

∑
1≤j<i d(rj) with n+d(ri)≤max{d(t) | t ∈ T}

move (c,n) move (c,v,v′,n) holds for some connection (v,v′) ∈ E
moving (c,v,v′,n) π(c) = 〈r1, . . . , ri, . . . , rk〉 for c ∈ C, ri ∈ E, ri = (v,v′),

and
∑

1≤j<i d(rj)< n≤
∑

1≤j≤i d(rj)≤max{d(t) | t ∈ T}
moving (v,v′,n) moving (c,v,v′,n) holds for some vehicle c ∈ C
free (c,d(v),n) c ∈ C, v ∈ h(V)∪p(V), and 0≤ n≤max{d(t) | t ∈ T}

with d(v)> 1 and n′ ∈ u(c,v)∪{0 | l(c) = v} such that
(n′−1) /∈ u(c,v)∪{0 | l(c) = v}, n= n′+ i∗d(v) for some
i≥ 0, and {n′′ ∈ u(c,e) | e ∈ E,n′ < n′′ < n,
n′′+d(e)−1≤max{d(t) | t ∈ T}}= ∅

free (c,n) c ∈ C and 0≤ n≤max{d(t) | t ∈ T} such that
n /∈

⋃
v∈h(V)∪p(V),d(v)>1u(c,v) or free (c,d,n) holds,

where d= d(v)> 1 for some v ∈ h(V)∪p(V)
used (c,n) c ∈ C and 0≤ n≤max({0}∪

⋃
v∈V u(c,v)) with

n≤max{d(t) | t ∈ T}
move (c,v,v′) move (c,v,v′,n) holds for some 0≤ n≤max{d(t) | t ∈ T}
mark (c,v′,v) move (c,v′′,v) holds for some connections

{(v′,v),(v′′,v)} ⊆ E such that v′ < v′′ lexicographically
same (c,c′,v,v′) move (c,v,v′) and move (c′,v,v′) hold for {c,c′} ⊆ C

such that c < c′ lexicographically
Table 2. Atoms characterizing solutions to automated guided vehicle routing scenarios

Further rules deal with the order ≺ among tasks assigned to a common vehicle, where
share (t,t′) is derived by the rule in Line 5 if α(t) = α(t′) for tasks t < t′. The choice rule
in Line 6 then either picks order (t,t′), expressing that t≺ t′, or the rule in Line 7 yields
order (t′,t), standing for t′ ≺ t, otherwise. The remaining rules in Lines 9–12 check that
the order relation ≺ is acyclic, utilizing modeling methods detailed in (Gebser et al.).

The second encoding part in Lines 16–27 deals with the completion of transport tasks.
To this end, the two rules in Lines 16–19 indicate time points n such that the vehicle c∈C
with α(t) = c visits the halt node given by a subtask t[i], while any preceding subtasks
according to ≺ as well as the sequence of subtasks of t are already completed at time n.
In case i= 1, the latter condition is in Line 17 checked by the absence of yet incomplete

Routing Driverless Transport Vehicles in Car Assembly with ASP 9

Listing 2. Encoding of task assignment, completion, and automated guided vehicle routing
1 % task assignment

3 {assign(C,T) : vehicle(C)} = 1 :- task(T).

5 share(T1,T2) :- assign(C,T1), assign(C,T2), T1 < T2.
6 {order(T1,T2)} :- share(T1,T2).
7 order(T2,T1) :- share(T1,T2), not order(T1,T2).

9 check(T1,T2) :- tasks(T1,T2), not order(T1,T2).
10 check(T1,T2) :- tasks(T1,T2), check(T1).
11 check(T2) :- task(T2), check(T1,T2) : tasks(T1,T2).
12 :- task(T2), not check(T2).

14 % task completion

16 pass(C,T,s(1),V,D,N) :- assign(C,T), at(C,V,N), halt(V,D), task(T,M),
17 subtask(T,s(1),V), not wait(T,N), N < M.
18 pass(C,T,s(I),V,D,N) :- assign(C,T), at(C,V,N), halt(V,D), task(T,M),
19 subtask(T,s(I),V), done(T,s(I-1),N), N < M.

21 done(T,S,N+D) :- pass(C,T,S,V,D,N), task(T,M), not move(C,N), N+D <= M.
22 done(T,S,N+1) :- done(T,S,N), not task(T,N).
23 :- task(T,M), subtask(T,S), not done(T,S,M).

25 wait(T2,N) :- order(T1,T2), task(T1,M1), task(T2,M2), time(N),
26 subtask(T1,s(I)), not subtask(T1,s(I+1)),
27 not done(T1,s(I),N), N < M1, N < M2.

29 % vehicle routing

31 at(C,V,0) :- vehicle(C,V), time(0).
32 at(C,V2,N+D) :- move(C,V1,V2,N), edge(V1,V2,D).
33 at(C,V,N+1) :- at(C,V,N), park(V,D), time(N+1), not move(C,N).
34 at(C,V,N+1) :- pass(C,T,S,V,D,N), not done(T,S,N), not move(C,N).
35 :- node(V), time(N), #count{C : at(C,V,N)} > 1.
36 :- vehicle(C), time(N), #count{V : at(C,V,N)} > 1.

38 {move(C,V1,V2,N) : edge(V1,V2,D), time(N+D)} < 2 :- vehicle(C), time(N).
39 move(C,N) :- move(C,V1,V2,N).
40 :- move(C,V1,V2,N), not at(C,V1,N).

42 moving(C,V1,V2,N+1) :- move(C,V1,V2,N).
43 moving(C,V1,V2,N+1) :- moving(C,V1,V2,N), time(N+1), not at(C,V2,N).
44 moving(V1,V2,N) :- moving(C,V1,V2,N).
45 :- moving(V1,V2,N), moving(V2,V1,N).

47 free(C,D,N) :- at(C,V,N), stay(V,D), not at(C,V,N-1).
48 free(C,D,N+D) :- free(C,D,N), time(N+D), not move(C,N).
49 free(C,N) :- free(C,D,N).
50 free(C,N) :- vehicle(C), time(N), not at(C,V,N) : stay(V,D).
51 :- move(C,N), not free(C,N).

10 M. Gebser, P. Obermeier, M. Ratsch-Heitmann, M. Runge, T. Schaub

tasks t′ such that t′ ≺ t, and otherwise the completion of t[i−1] up to time n is required
by preconditions in Line 19. The rule in Line 21 then derives done (t,s(i),n+d(t[i])),
signaling the completion of t[i], provided that n+d(t[i]) does not exceed the deadline d(t)
for t and the vehicle c to which t is assigned halts at time n. Note that the occurrence of a
halt in the route of c is determined by the absence of move (c,n) from a stable model, an
atom that would otherwise indicate that c takes some connection at time n. The condition
that all transport tasks have to be completed within their respective deadlines is further
taken care of by the rule in Line 22, which successively propagates the completion of a
subtask t[i] on to the deadline d(t), along with requiring the completion of any subtask
at d(t) by means of the integrity constraint in Line 23. Finally, the rule in Lines 25–27
derives wait (t,n), an atom inspected in Line 17, in view of a yet incomplete subtask
t′[s(t′)] of some task t′ such that t′ ≺ t at time n< d(t), where considering the last subtask
t′[s(t′)] of t′ only is sufficient because the subtasks of t′ must be completed in order.

The actual routes of vehicles are tracked by the third encoding part in Lines 31–51. To
begin with, the rule in Line 31 derives at(c,l(c),0), expressing that any vehicle c ∈ C
starts from its initial location l(c) at time 0. The new location v′ ∈ V resulting from a move
(v,v′) ∈E at time n is reflected by the rule in Line 32 yielding at(c,v′,n+d((v,v′))). A
stop at some park node v ∈ p(V) is addressed by the rule in Line 33, deriving at(c,v,n+1)
from at(c,v,n) in the absence of any move made by c at time n. Moreover, the rule in
Line 34 takes care of a halt to complete some subtask t[i] by deriving at(c,t[i],n+ 1) in
case no subtask preceding t[i] is yet incomplete and t[i] itself is not already completed
at time n, provided that the vehicle c with α(t) = c does not make any move at n. As a
consequence, atoms of the form at(c,v,n) in a stable model match times n ∈ u(c,v)∪
{0 | l(c) = v} for vehicles c ∈ C and locations v ∈ V , where halts can only be made
for completing assigned subtasks. Given this, the integrity constraint in Line 35 makes
sure that u(c,v)∩u(c′,v) = ∅ for any c′ ∈ C \ {c}, and the one in Line 36 asserts that
u(c,v)∩u(c,v′) = ∅ for any v′ ∈ V \ {v}, thus constituting a redundant/entailed state
constraint that may still be helpful regarding solving performance (Gebser et al. 2012).

Unlike stops at halt or park nodes, a move (v,v′) ∈ E by some vehicle c ∈ C at time n
such that n+d((v,v′)) is still of interest is signaled by an atom move (c,v,v′,n), picked
by means of the choice rule in Line 38. The rule in Line 39 then provides the projection
of such an atom to move (c,n), and the integrity constraint in Line 40 requires c to
be at the location v at time n. Moreover, atoms moving (c,v,v′,n′), derived by the
rules in Lines 42–43 for n < n′ ≤ n+d((v,v′)), yield time points n′ ∈ u(c,(v,v′)). Their
projection to moving (v,v′,n′) in Line 44 is inspected by the integrity constraint in
Line 45 to, in case (v′,v) ∈ E, make sure that u(c,(v,v′))∩u(c′,(v′,v)) = ∅ holds for any
c′ ∈C \{c}. The remaining rules in Lines 47–51 check that the moves of a vehicle c respect
non-atomic durations d(v)> 1 of halt and park nodes v ∈ h(V)∪p(V). To this end, an
atom free (c,d(v),n) is derived by the rule in Line 47 when c is not already at v at
time n−1, and then propagated on in steps of the halt or park duration d(v) by the rule
in Line 48 as long as c does not make any move. The projection to free (c,n) in Line 49
along with the rule in Line 50, also deriving free (c,n) in case c is not at any halt or
park node v ∈ h(V)∪p(V) with d(v)> 1 at time n, indicate all times n at which c may
make a move, and the integrity constraint in Line 51 restricts moves to such time points.

While the encoding parts described so far make sure that stable models match solutions
to automated guided vehicle routing scenarios, the fourth part in Listing 3 addresses the

Routing Driverless Transport Vehicles in Car Assembly with ASP 11

Listing 3. Encoding part for makespan, route length, crossing, and overlap minimization
53 % objective criteria

55 used(C,N) :- at(C,V,N).
56 used(C,N-1) :- used(C,N), 0 < N.
57 :˜ used(C,N). [1@4,N]
58 :˜ used(C,N). [1@3,C,N]

60 move(C,V1,V2) :- move(C,V1,V2,N).

62 mark(C,V1,V) :- less(V1,V2,V), move(C,V2,V).
63 mark(C,V1,V) :- less(V1,V2,V), mark(C,V2,V).
64 :˜ mark(C1,V1,V), move(C2,V1,V), C1 < C2. [1@2,C1,C2,V]
65 :˜ move(C1,V1,V), mark(C2,V1,V), C1 < C2. [1@2,C1,C2,V]

67 same(C1,C2,V1,V2) :- move(C1,V1,V2), move(C2,V1,V2), C1 < C2.
68 :˜ move(C1,V1,V2), move(C2,V2,V1), C1 < C2, V1 < V2. [1@1,C1,C2,V1,V2]
69 :˜ move(C1,V2,V1), move(C2,V1,V2), C1 < C2, V1 < V2. [1@1,C1,C2,V1,V2]
70 :˜ same(C1,C2,V1,V2), V1 < V2. [1@1,C1,C2,V1,V2]
71 :˜ same(C1,C2,V2,V1), V1 < V2. [1@1,C1,C2,V1,V2]
72 :˜ same(C1,C2,V1,V2), move(C1,V2,V1), V1 < V2. [1@1,C1,C2,V2,V1]
73 :˜ same(C1,C2,V1,V2), move(C2,V2,V1), V1 < V2. [1@1,C1,C2,V2,V1]
74 :˜ same(C1,C2,V2,V1), move(C1,V1,V2), V1 < V2. [1@1,C1,C2,V2,V1]
75 :˜ same(C1,C2,V2,V1), move(C2,V1,V2), V1 < V2. [1@1,C1,C2,V2,V1]
76 :˜ same(C1,C2,V1,V2), same(C1,C2,V2,V1), V1 < V2. [2@1,C1,C2,V1,V2]

objective criteria to distinguish optimal routes. To begin with, the rules in Lines 55–56
derive atoms used (c,n) to indicate that the route of a vehicle c ∈C is not finished before
time n. The makespan ms is then minimized by means of the weak constraint with the
highest priority 4 in Line 57, associating a cost of 1 with each time n. To then minimize
the route length rl with priority 3, the weak constraint in Line 58 likewise penalizes
used (c,n), where a cost of 1 for each time n is charged per vehicle c. The rule in Line 60
provides the projection of moves to move (c,v,v′) in order formulate conditions regarding
crossings and overlaps of routes without referring to particular times of moves. In fact,
the rules in Lines 62–63 investigate and propagate move (c,v′′,v) on to locations v′
such that (v′,v) ∈ E and v′ < v′′ lexicographically, thus signaling the inclusion of some
other predecessor location of v in the route of c in terms of mark (c,v′,v). The weak
constraints in Lines 64–65 make use of this to detect a crossing at v by the move (v′,v)
of another vehicle c′ ∈ C \ {c}, while the lexicographical order of distinct predecessor
locations of v in the routes of c and c′ may likewise be switched. In either case, a crossing
at v accounts for a cost of 1 with priority 2, where the set {c,c′} in pairs ({c,c′},v)
contributing to cn is reflected by requiring that c < c′ lexicographically. The remaining
rules and weak constraints take care of overlapping connections, where the rule in Line 67
yields same (c,c′,v,v′) when distinct vehicles c < c′ both include (v,v′) in their routes.
This case as well as taking (v,v′) and (v′,v) in opposite directions is sanctioned by a cost
of 1 with priority 1 in view of the weak constraints in Lines 68–71. If c or c′ includes both
directions, (v,v′) and (v′,v), in its route, an additional cost of 1 is charged by some of the

12 M. Gebser, P. Obermeier, M. Ratsch-Heitmann, M. Runge, T. Schaub

weak constraints in Lines 72–75, by means of using a different term order regarding v and
v′ than before. Finally, the weak constraint in Line 76 accounts for a cost of 2 if c and c′
both take (v,v′) as well as (v′,v), in which case the resulting sum of four matches the
number of triples ({c,c′},e,e′) such that {e,e′}= {(v,v′),(v′,v)} contributing to on. As
a consequence, we have that the sums of costs with particular priority coincide with the
objectives ms, rl, cn, and on, where priorities follow the criteria’s order of significance.

Example 4
The optimal solution to the automated guided vehicle routing scenario from Example 1
indicated in Figure 2 and described further in Example 2 is such that the vehicles
c1 and c2 finish their last halts at t1[3] = t2[3] = 2 at the times 55 and 49. Hence,
a stable model representing this solution, obtained for the facts in Listing 1 along
with the encoding in Listings 2 and 3, contains the atoms at(c (1) ,v (2) , 55) and
at(c (2) ,v (2) , 49) . These in turn imply atoms used (c(i),ni) for i∈ {1,2}, 0≤ n1 ≤ 55,
and 0≤ n2 ≤ 49. The weak constraints with priorities 4 and 3 thus yield 56 or 106 distinct
terms, respectively, of the form [1 @4,ni] or [1 @3,c(i),ni], where the numbers of terms
match ms +1 = 55+1 = 56 and rl + i= 104+2 = 106. Note that the addends 1 or i to ms
and rl are due to atoms of the form used (c(i),0), which can be deterministically derived
in view of the initial locations of vehicles and do not affect the preference order of solutions.
Regarding crossings, as detailed in Example 3, the connections taken by c1 and c2 trigger
weak constraints associated with the terms [1 @2,c (1) ,c (2) ,v (1)] , [1 @2,c (1) ,c (2) ,
v (4)] , and [1 @2,c (1) ,c (2) ,v (7)] , leading to the sum cn = 3 of costs. Moreover, six
unidirectional overlaps of the routes of c1 and c2 are indicated by terms of the form
[1 @1,c (1) ,c (2) ,v(v),v(v′)] for (v,v′) ∈ {(1,2),(2,3),(3,4),(4,5),(5,6),(1,6)}, among
which the lexicographically ordered pair (1,6) stands for the connection (6,1) taken in the
opposite direction. However, such term ordering matters for bidirectional connections only,
where (v,v′) ∈ {(1,4),(4,7)} yield three distinct terms each: [1 @1,c (1) ,c (2) ,v(v),
v(v′)], [1 @1,c (1) ,c (2) ,v(v′),v(v)], and [2 @1,c (1) ,c (2) ,v(v),v(v′)]. That is,
the weak constraints with priority 1 lead to twelve terms in total, ten of them accounting
for a cost of 1 and two having a cost of 2 (written before ‘@’), summing up to on = 14. �

4 Empirical Results

A preliminary field study by production engineers at Mercedes-Benz Ludwigsfelde GmbH
investigated viable options for implementing a new control system for automated guided
vehicles used in car assembly, where one goal consists of setting the routes for such
vehicles up automatically rather than by hand. This study raised interest in the open-
source control system software openTCS (see http://www.opentcs.org), developed by
Fraunhofer IML. While openTCS offers a generic platform for automated guided vehicle
control, it is not geared to ship a solver for hard combinatorial tasks such as the multi-
objective optimization of routes off the shelf. Instead, the system is extensible and allows
for integrating customized components, which is where our ASP approach to vehicle
routing is envisaged to come into play in the future. For reference, however, we contrast
our results to those obtained with the default scheduler of openTCS, which implements a
simple round-robin procedure to assign tasks to and pick shortest routes for vehicles.

In order to evaluate the practical applicability of control systems, the engineers at

Routing Driverless Transport Vehicles in Car Assembly with ASP 13

Fig. 3. Use cases solved by means of ASP (in blue) and the default scheduler of openTCS (in red)

Mercedes-Benz Ludwigsfelde GmbH defined 18 use cases based on a factory layout with 25
locations and 35 connections, resembling the storage areas, assembly lines, and transport
routes at the physical car factory. Such use cases are run in simulation to test the entire func-
tionality of a control system, where task assignment and vehicle routing are incorporated at
the high level. According to the main test targets, the use cases (available at http://www.
cs.uni-potsdam.de/wv/projects/daimler/resources-iclp18.tar.xz) are grouped
into five categories: A) communication and feedback, B) task assignment and execution,
C) routing and traffic management, D) special conditions and breakdowns, and E) full
production cycle. While test cases in the first four groups focus on particular scenarios of
small size, i.e., up to three tasks and vehicles, the use case in category E emulates a full
production cycle of roughly 20 minutes in real time, involving ten transport tasks with 39
subtasks in total to be accomplished by four automated guided vehicles.

For computing optimal routes with clingo (version 5.2.2), we represented the scenarios
of the use cases in terms of facts as described in the previous section, thus focusing on task
assignment and vehicle routing rather than system control. As indicated by the blue bars
in Figure 3, we succeeded in obtaining provably optimal routes in all of the 18 use cases,
where the runtimes of clingo on a desktop machine equipped with Intel i7-6700 3.40GHz
CPU ranged from split seconds to ten seconds at most for each of the 17 small scenarios in
the first four groups. While these small instances stem from use cases primarily created to
test the reaction of a control system to some isolated situation, the scenario in E aims at
managing all of the transport tasks recurring within each full production cycle, a complex
operation that has so far been carried out by human engineers before a production process
starts or is resumed with an updated configuration, respectively. In fact, optimizing the
routes for automated guided vehicles over the full production cycle is computationally
challenging, even for a system like clingo that is geared to hard combinatorial problem
solving, and it took about 5 hours to compute a provably optimal solution. Its makespan
of 225 clock cycles amounts to five times as many seconds in real time, roughly 20 minutes,
the route length 891 corresponds to about 75 minutes of operation, shared between four
vehicles whose computed routes involve 39 crossings and 141 overlaps in total. While 5
hours of computation time can certainly not be afforded by a control system that has to
react to incidents in real time, the dimension of what has to be anticipated in comparable
scenarios is nevertheless encouraging, as it tells us that routes for accomplishing recurrent
transport tasks in realistic production processes can be programmed in an automated
fashion, going along with optimality that cannot be established by human engineers alone.

The red bars shown in Figure 3 exhibit that the default scheduler shipped with openTCS

14 M. Gebser, P. Obermeier, M. Ratsch-Heitmann, M. Runge, T. Schaub

fails to come up with a feasible solution in 8 of the 18 use cases, which is due to its greedy
approach to assign a task and lock locations along the shortest route of a vehicle one by
one. E.g., such an approach is bound to fail on the example scenario in Figure 2, where
each of the vehicles c1 and c2 must necessarily visit node 4 in order to complete any
subtask, which locks the respective other vehicle out from visiting node 4, while a single
vehicle cannot alone complete both transport tasks, t1 and t2, within their deadlines.
This observation along with the fact that clingo can timely handle the small scenarios
of use cases in the first four groups clearly motivate its integration into openTCS as a
component in charge of task assignment and vehicle routing, which we are working on.

5 Discussion

The problem of assigning transport tasks to and routing automated guided vehicles
in car assembly reveals parallels to Generalized Target Assignment and Path Finding
(GTAPF; Nguyen et al. 2017) as well as Temporal Planning (cf. Fisher 2008). Similar to
automated guided vehicle routing scenarios, GTAPF allows for more tasks than there are
agents, sequences of subtasks, and deadlines for tasks, while its framework assumes that
tasks are completed according to some total order and it does not feature (non-atomic)
durations. Unlike that, durations play a fundamental role in Temporal Planning, but
standard representations such as the Planning Domain Definition Language (PDDL; Fox
and Long 2003) lack constructs for conveniently modeling task assignment and ordering.
We thus stick to a native ASP encoding, and a corresponding approach likewise turned
as advantageous for planning by means of tabled logic programming (Zhou et al. 2015).

Early work on using ASP for solving basic multi-agent path finding problems was done
by Erdem et al. (2013); also, Nguyen et al. (2017) used ASP for solving GTAPF problems.
Action durations and intervals were previously considered in ASP by Son et al. (2004).
Notably, we checked that clingo requires less than 1 GB of RAM to represent durations
and makespan of a full production cycle at the car factory of Mercedes-Benz Ludwigsfelde
GmbH, while extensions by difference logic (Neubauer et al. 2017) or integer variables
(Banbara et al. 2017) may possibly handle even greater time intervals in a compact way.

The contributions of our work include a transparent and elaboration tolerant formal-
ization of transport tasks evolving in realistic production processes by specifying them
in ASP, thus also making off-the-shelf solving systems accessible for computing optimal
vehicle routes. As it turns out, our declarative approach allows for handling a scenario
covering the full production cycle at the car factory of Mercedes-Benz Ludwigsfelde
GmbH, so that it can assist human engineers in setting up routes to be periodically
taken by automated guided vehicles. Moreover, scenarios of small size, resembling task
reassignment or vehicle rerouting in case of unforeseen circumstances, can virtually be
handled in real time, which also makes the future integration of clingo as a component of
the control system software openTCS for task assignment and vehicle routing attractive.

Acknowledgments This work was partially funded by DFG grant SCHA 550/9. We are
grateful to the anonymous reviewers for their helpful comments.

Routing Driverless Transport Vehicles in Car Assembly with ASP 15

References

Banbara, M., Kaufmann, B., Ostrowski, M., and Schaub, T. 2017. Clingcon: The next
generation. Theory and Practice of Logic Programming 17, 4, 408–461.

Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., Leone,
N., Ricca, F., and Schaub, T. 2012. ASP-Core-2: Input language format.

Erdem, E., Kisa, D., Öztok, U., and Schüller, P. 2013. A general formal framework for
pathfinding problems with multiple agents. In Proceedings of AAAI’13. AAAI Press, 290–296.

Fisher, M. 2008. Temporal representation and reasoning. In Handbook of Knowledge Represen-
tation. Elsevier Science, 513–550.

Fox, M. and Long, D. 2003. PDDL2.1: An extension to PDDL for expressing temporal planning
domains. Journal of Artificial Intelligence Research 20, 61–124.

Gebser, M., Janhunen, T., and Rintanen, J. Declarative encodings of acyclicity properties.
Journal of Logic and Computation, in press.

Gebser, M., Kaminski, R., Kaufmann, B., Lindauer, M., Ostrowski, M., Romero, J.,
Schaub, T., and Thiele, S. 2015. Potassco User Guide. University of Potsdam.

Gebser, M., Kaminski, R., Kaufmann, B., and Schaub, T. 2012. Answer Set Solving in
Practice. Morgan and Claypool Publishers.

Lifschitz, V. 1999. Answer set planning. In Proceedings of ICLP’99. MIT Press, 23–37.
Neubauer, K., Wanko, P., Schaub, T., and Haubelt, C. 2017. Enhancing symbolic system

synthesis through ASPmT with partial assignment evaluation. In Proceedings of DATE’17.
IEEE Press, 306–309.

Nguyen, V., Obermeier, P., Son, T., Schaub, T., and Yeoh, W. 2017. Generalized target
assignment and path finding using answer set programming. In Proceedings of IJCAI’17.
IJCAI/AAAI Press, 1216–1223.

Son, T., Baral, C., and Tuan, L. 2004. Adding time and intervals to procedural and
hierarchical control specifications. In Proceedings of AAAI’04. AAAI Press, 92–97.

Zhou, N., Barták, R., and Dovier, A. 2015. Planning as tabled logic programming. Theory
and Practice of Logic Programming 15, 4-5, 543–558.

