
EasyChair Preprint

№ 215

Paychecks, Presupposition, and Dependent Types

Ribeka Tanaka, Koji Mineshima and Daisuke Bekki

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

June 1, 2018

Paychecks, Presupposition, and Dependent Types∗

Ribeka Tanaka1, Koji Mineshima2, and Daisuke Bekki2

1Kyoto Unviersity
2Ochanomizu University

tanaka@nlp.ist.i.kyoto-u.ac.jp, mineshima.koji@ocha.ac.jp, bekki@is.ocha.ac.jp

1 Introduction

The interpretation of a paycheck pronoun poses a problem in that while it is clear that the pronoun is
anaphorically related to some preceding expression, there is no antecedent expression that shares the deno-
tation with the pronoun. For instance, in (1), the pronoun her does not refer to a particular individual but
is interpreted as her mother, where her is anaphoric on every girl.

(1) Every boy1 loves his1 mother. Every girl2 hates her.

In this paper, we account for the interpretation of paycheck pronouns by using dependent function types
(Π-types) in dependent type theory (Martin-Löf, 1984). The semantic framework we will adopt in this
study is Dependent Type Semantics (DTS; Bekki and Mineshima, 2017). DTS has been developed as an
alternative framework to model-theoretic dynamic semantics such as DRT (Kamp and Reyle, 1993) and DPL
(Groenendijk and Stokhof, 1991), providing a compositional account of anaphora and presupposition from
a proof-theoretic perspective. In particular, DTS provides a unified analysis of various uses of pronouns,
including coreference, bound variable anaphora, E-type anaphora, and donkey anaphora (Bekki, 2014; Bekki
and Mineshima, 2017). The goal of the paper is to extend this analysis to paycheck sentences such as (1) and
to show that it gives an adequate analysis of paycheck pronouns without introducing any special machinery
for handling them.

The proposed account differs from the previous approaches in the following respects:

1. The syntax and semantics of paycheck pronouns is the same as that of standard referential pronouns:
a pronoun is given a single meaning in the lexicon. Neither complex meaning (cf. Cooper, 1979; Eng-
dahl, 1986) nor type-shifting mechanism (cf. Jacobson, 2000; Charlow, 2017) is necessary for handling
paycheck pronouns.

2. Some authors argue that a paycheck pronoun picks up a contextually salient function, i.e., a ‘paycheck’
function which maps individuals to their paychecks (cf. Cooper, 1979; Engdahl, 1986); we argue that
in cases like (1), the ‘paycheck’ function is derived from the presupposition arising from the possessive
NP that contains a free variable bound by an outside quantifier; e.g., his mother in (1).

In §2, we will briefly introduce the basic analysis of anaphora and presupposition in DTS. In particular, we
will see how dependent function types (Π-types) can contribute to the interpretation of pronominal anaphora
in quantificational subordination. In §3, we show that this independently motivated account of pronominal
anaphora can extend to the case of paycheck anaphora without introducing additional formal mechanisms to
the system.1

∗We thank the anonymous reviewers for their valuable comments and suggestions. This work was partially supported by
JST CREST Grant Number JPMJCR1301, Japan.

1To make fully explicit how the system works, we will mostly focus on basic examples of paycheck pronouns. Thus, it is not

1

2 Dependent Type Semantics

2.1 Dependent types

DTS is a proof-theoretic natural language semantics based on dependent type theory (Martin-Löf, 1984).
Dependent type theory is a formal system that extends simple type theory with the notion of types depending
on terms.2 For example, we say man(x) is a type depending on a term x. Under the so-called Curry-
Howard correspondence (the propositions-as-types principle), a type can be regarded as a proposition; the
type man(x) is used to represent the proposition that x is a man. A term inhabiting the type man(x) is
called a proof term. For instance, t : man(x) expresses that a proof term t has the type man(x), i.e., t is
a proof for the proposition that x is a man. Proof terms play a crucial role in representing a context for
resolving pronominal anaphora.

There are two type constructors in the system, Σ and Π, which play a key role in the analysis developed
below. For these types, we use the following notations:

Σ-type (dependent product type) Π-type (dependent function type)
(x : A)×B (x : A) → B

For readability, a Σ-type (x : A)×B is also written as

[
x : A
B

]
.

Some remarks are in order about what each type means.

1. Σ-type, (x : A)×B, is a generalized form of product type A×B. A term of type (x : A)×B is a pair
(m,n) such that m is of type A and n is of type B(m). The projection functions π1 and π2 are defined
in such a way that π1(m,n) = m and π2(m,n) = n. Under the Curry-Howard correspondence, Σ-type
corresponds to existential proposition. When the variable x does not occur free in B, (x : A) × B is
reduced to conjunction A×B.

2. Π-type, (x : A) → B, is a generalized form of function type A → B. A term of type (x : A) → B is
a function that takes a term a of type A and returns a term f(a) of type B(a). Π-type corresponds
to universal proposition. When the variable x does not occur free in B, (x : A) → B is reduced to
implication A → B.

DTS is augmented with underspecified terms, written as @, which are used in the semantic representation
(SR) of anaphoric expressions such as pronouns and presupposition triggers. Underspecified terms enable us
to obtain the SR of a sentence in a fully compositional way. Below we will explain how one can use dependent
types for the SRs of basic sentences (existential and universal sentences) and how the anaphora resolution
process works in DTS.

2.2 Σ-type anaphora

As is well known, existential sentences and universal sentences have different anaphoric potentials; any theory
of anaphora must capture the difference between two types of sentences. Using dependent types, we classify
the class of anaphoric phenomena into two groups: Σ-type anaphora and Π-type anaphora.

An existential quantifier is said to be externally dynamic (Groenendijk and Stokhof, 1991) in the sense
that the entity introduced by an existential quantifier is accessible to the subsequent sentences. This property
can be captured by representing existential quantifiers by means of Σ-types. We call the type of anaphora in
which an object (discourse referent) introduced by an existential quantifier is referred to from the subsequent
discourse Σ-type anaphora.

our purpose here to discuss how the current proposal can extend to related phenomena discussed in the literature, such as Weak
Crossover effects, Bach-Peters sentences, and functional questions, among others (cf. Jacobson, 2000). This is left for another
occasion.

2Dependent type theory has been applied to natural language semantics, in particular, to dynamic semantics and lexical
semantics (Sundholm, 1986; Ranta, 1994; Cooper, 2005; Luo, 2012) and to the study of natural language inferences in compu-
tational semantics (Chatzikyriakidis and Luo, 2014).

2

Γ ⊢ A : type Γ, u : A ⊢ B : type

Γ ⊢ (u : A) → B : type
ΠF

Γ ⊢ A : type Γ, u : A ⊢ B : type

Γ ⊢ (u : A)×B : type
ΣF

Γ ⊢ t : (x : A) → B Γ ⊢ u : A

Γ ⊢ t(u) : B[u/x]
ΠE

Γ ⊢ t : (x : A)×B

Γ ⊢ π1(t) : A
ΣE

Γ ⊢ t : (x : A)×B

Γ ⊢ π2(t) : B[π1(t)/x]
ΣE

Γ, x : A ⊢ t : B

Γ ⊢ λx.t : (x : A) → B
ΠI

Γ ⊢ t : A Γ ⊢ u : B[t/x]

Γ ⊢ ⟨t, u⟩ : (x : A)×B
ΣI

Γ ⊢ A : type Γ ⊢ A true

Γ ⊢ (@ : A) : A
@

Figure 1: Inference rules: formation rules (ΠF ,ΣF), elimination rules (ΠE,ΣE), introduction rules (ΠI,ΣI) and
@-rule.

As an illustration, consider the case of singular E-type anaphora, which is a typical case of Σ-type
anaphora. In DTS, the sentences (2a) and (3a) are given the SRs (2b) and (3b), respectively.

(2) a. A man entered.

b.

 u :

[
x : entity
man(x)

]
enter(π1u)

(3) a. He whistled.

b. whistle(@ : entity)

The underspecified term @ : entity in (3b) is introduced by the pronoun he.3 The @-term plays the role of
a gap to be filled by the antecedent of the pronoun in question. The form @ : Λ is called type annotation,
where Λ specifies the type of the underspecified term @.

The conjunction of two sentences is represented by a Σ-type; the mini-discourse consisting of (2a) and
(3a) is given the SR shown in (4), by conjoining the two SRs (2b) and (3b) in terms of Σ-type.

(4)

 v :

 u :

[
x : entity
man(x)

]
enter(π1u)

whistle(@ : entity)

We will focus on the reading of the mini-discourse where he refers back to a man. In this case, the final

representation should be as shown in (5).

(5)

 v :

 u :

[
x : entity
man(x)

]
enter(π1u)

whistle(π1π1v)

The argument of the predicate whistle, i.e., the place of @ in (4), is to be filled by the term π1π1v. Note
that the SR (5) is equivalent to (x : entity)× (man(x)× enter(x)×whistle(x)), which says that there is
an entity that satisfies the three conditions, man(x), enter(x) and whistle(x).

Now the question is how to derive (5) from (4). In DTS, anaphora resolution is defined as an operation
to replace the occurrences of underspecified terms with concrete proof terms. The process consists of type
checking and proof search. Type checking is triggered by the felicity condition of a sentence or a discourse,
i.e., the requirement that the SR of a sentence or a discourse be a type under the given context. Thus, for
the mini-discourse consisting of (2a) and (3a) to be felicitous, the following judgment must hold:

3For simplicity, we omit the gender information and treat the pronoun he as an expression referring to an entity.

3

(6) K ⊢

 v :

 u :

[
x : entity
man(x)

]
enter(π1u)

whistle(@ : entity)

 : type

The context K is called a global context, which contains lexical and world knowledge encoded as judgments.
Type checking follows inference rules in dependent type theory and a rule for @-operator called @-rule. These
rules are shown in Figure 1. Here we write B[t/x] for the substitution of a term t for free occurrences of the
variable x in the term B, with possible capture-avoiding renaming of bound variables.

The derivation tree for type checking of (6) can be given as follows.

....

K ⊢

 u :

[
x : entity
man(x)

]
enter(π1u)

 : type

....

K, v :

 u :

[
x : entity
man(x)

]
enter(π1u)

 ⊢ whistle : entity → type

....

K, v :

 u :

[
x : entity
man(x)

]
enter(π1u)

 ⊢ entity : type K, v :

 u :

[
x : entity
man(x)

]
enter(π1u)

 ⊢ entity true

K, v :

 u :

[
x : entity
man(x)

]
enter(π1u)

 ⊢ (@ : entity) : entity

@

K, v :

 u :

[
x : entity
man(x)

]
enter(π1u)

 ⊢ whistle(@ : entity) : type

ΠE

K ⊢

 v :

 u :

[
x : entity
man(x)

]
enter(π1u)

whistle(@ : entity)

 : type

ΣF

The crucial step is the one where @-rule is applied. We use a judgment of the form A true to mean that the
type A is inhabited, that is, there exists a term of the type A. Thus, according to the @-rule, at the step
in question we must show that (i) entity is a type, which is obviously true, and (ii) there exists a term of
entity under the given context. The goal to be proved for (ii) is repeated here.

(7) K, v :

 u :

[
x : entity
man(x)

]
enter(π1u)

 ⊢ entity true

This judgment launches a process of proof search. In this case, it is shown that a proof term π1π1v inhabits
the type entity. Then, by substitute π1π1v for @ in (4), we can obtain the fully-specified representation in
(5), which corresponds to the intended reading in question.4

The final representation in (5) shows how Σ-types capture the externally-dynamic aspects of existential
sentences. The proof term v introduced by the Σ-type for the sentence (2a) is a structured object (i.e., a
tuple). The point is that even if the term x itself is no longer accessible from the argument position of
whistle, one can pick up that term by applying the sequence of projection functions to v.

Underspecified terms can have more complex types. Consider the case where (3b) is followed by the
sentence (8), where the subject NP is a definite description.

(8) The man whistled.

The SR of (8) is given as follows.

(9) whistle

(
π1

(
@ :

[
x : entity
man(x)

]))

4DTS can account for various factors that select plausible antecedents among entities appearing in the discourse. For instance,
the notion of accessibility is obtained for free from the structure of dependent types Σ and Π (cf. Bekki, 2014). Agreement on
pronouns, such as gender, person, and number agreement, can be also accounted for by annotating the underspecified term with
more fine-grained types, as in the case of presupposition (Tanaka et al., 2017a).

4

The underspecified term is introduced by the presupposition trigger the. The type annotation corresponds to
the proposition there is a man, which is the existence presupposition associated with the definite description.

To resolve this presupposition, one needs to find a proof term of this proposition at the stage of proof
search. This corresponds to the so-called presupposition binding. Another option, presupposition accommo-
dation, is also available, which is just to assume the existence of a proof term and add one into the current
context. In this way, DTS gives a uniform account of anaphora resolution and presupposition resolution using
a proof-theoretic setting, along similar lines to the “presupposition as anaphora” paradigm in DRT (van der
Sandt, 1992). One crucial difference from DRT is that in DTS, the antecedents of pronominal anaphora and
presupposition are constructed by means of proof search; an empirical difference will become clear in the case
of Π-type anaphora we will see below.5 For more details on presupposition projection in DTS, including the
treatment of filtering and bridging inferences, see Bekki and Mineshima (2017) and Tanaka et al. (2017a).6

2.3 Π-type anaphora

The externally static property of universal quantifiers can be captured by Π-types: a term of Π-type is not a
pair of objects but a function, so there is no way to directly access to its part. One difference from the standard
treatment in dynamic semantics is that a universal quantifier also introduces an object; a Π-type introduces
a function as a discourse referent (Ranta, 1994). By Π-type anaphora we mean the type of anaphora where
a functional discourse referent is used in the subsequent discourse and contributes to resolving anaphoric
expressions.

The so-called quantificational subordination is a typical instance of Π-type anaphora, which is exhibited
by (10).7

(10) If every boy receives a present, some boy will open it.

Here, in its most natural reading, the pronoun it in the consequent clause refers to the present that the boy
in question received. In other words, the pronoun receives the interpretation which depends on some boy.
The SR of (10) is given in (11).

(11)

v :

(
u :

[
x : entity
boy(x)

])
→

 p :

[
y : entity
present(y)

]
receive(π1u, π1p)

 →

 w :

[
z : entity
boy(z)

]
open(π1z,@: entity)

According to type checking, the following judgment must hold.

(12) K, v :

(
u :

[
x : entity
boy(x)

])
→

 p :

[
y : entity
present(y)

]
receive(π1u, π1p)

 , w :

[
z : entity
boy(z)

]
⊢ (@ : entity) : entity

Using the @-rule, then, the question becomes whether the type entity is inhabited under this context. In
this case, by applying the function v to the term w, we can construct a term of type entity, i.e., π1π1v(w).
By replacing @ with π1π1v(w) in (11), we obtain the fully-specified representation for (10), which captures
the intended dependent interpretation. This analysis is in contrast to that in DRT, where discourse referents
are limited to individuals and thus an additional machinery is needed to capture the dependency relation (cf.
Krifka, 1996). For more discussion on other kinds of Π-type anaphora including plural anaphora, see Tanaka
et al. (2017b).

5See also Yana et al. (2017) for a detailed comparison of DTS and DRT.
6The idea that the reference of an anaphoric expression can be constructed via inference originates from Krahmer and Piwek

(1999). It should be noted here that a naive implementation of this idea leads to a problem similar to formal link between a
pronoun and an antecedent in the context of E-type approaches to pronouns (Heim, 1990); that is, the theory over-generates in
the case of (ii).

(i) A man has a wife. She is sitting next to him.
(ii) * A man is married. She is sitting next to him.

In contrast to (i), the pronoun she in (ii) cannot anaphorically refer to the man’s wife, because there is no NP antecedent. If
there is knowledge that every married man has a wife, however, the referent corresponds to the man’s wife can be constructed
via inference. It is beyond the scope of this paper to discuss this issue in detail.

7This example is taken from Ranta (1994, p. 97), attributed to Lauri Karttunen in Hintikka and Carlson (1979).

5

Expression Semantic Representation Type
a, some λFλG. (u : (x : e)× F (x))×G(π1u) (e → t) → (e → t) → t
every λFλG. (u : (x : e)× F (x)) → G(π1u) (e → t) → (e → t) → t
the π1(@ : (x : e)× F (x)) e
and λPλQ. (u : P)×Q t → t → t
if λPλQ. (u : P) → Q t → t → t
man λx.man(x) e → t
mother λyλx.motherOf(x, y) e → e → t
enter λx.enter(x) e → t
receive λyλx.receive(x, y) e → e → t
he, she, it @ : e e
his, her λR.π1(@ : (x : e)×R(x,@ : e)) (e → e → t) → e

Figure 2: Some lexical entries.

2.4 Possessive presupposition

Before moving on to the analysis of paycheck sentences, let us explain what SR and presupposition are
associated with possessive NPs. Consider the sentence (13), whose SR is given in (14).8

(13) His mother left.

(14) leave

(
π1

(
@1 :

[
x : entity
motherOf(x,@2 : entity)

]))
Here, underspecified terms that correspond to distinct proof terms are indexed with different natural numbers.
In (14), @2 is embedded in the annotated type of @1. To prove that the SR in (14) is a type under the global
context K, the following two judgments (15) and (16) should hold for @1 and @2, respectively.

(15) K ⊢
(
@1 :

[
x : entity
motherOf(x,@2 : entity)

])
:

[
x : entity
motherOf(x,@2 : entity)

]
(16) K, x : entity ⊢ (@2 : entity) : entity

Applying the @-rule to (15) requires to prove the following:

(17)

[
x : entity
motherOf(x,@2 : entity)

]
: type

The embedded underspecified term @2 is involved here, so that we first need to resolve @2 in (16); this
triggers proof search to find a term of entity. If such a term, say john of type entity, is obtained, the type
annotated to @1 becomes (x : entity)×motherOf(x, john). This means that the presupposition of (13) is
predicted to be John has a mother.

The derivations of initial underspecified SRs can be formalized in a fully compositional way. Figure 2
shows some of the lexical entries, where we abbreviate type type as t and entity as e.9 Note that we assume
that in initial underspecified SRs, each occurrence of @ is assigned a mutually distinct index. We only
give SRs and their types, abstracting away from particular syntactic theories. It is fairly straightforward to
compositionally derive the SRs we discussed so far, using these lexical entries. We skip the detailed semantic
composition steps due to space limitations.

8An example like mother is what Barker (1995) calls lexical possession, where the possession relation derives from the
lexical meaning of the noun, in contrast to extrinsic possession, where the possession relation is determined depending on
context. For possessive NPs with extrinsic possession like his paycheck, we can specify the lexical entry for possessive pronouns
as λF.π1(@i : (x : e) × (F (x)× own(@j : e, x)), which is of type (e → t) → e. Here we simply assume that the possession
relation is the ‘owning’ relation; instead we can also represent such an contextually determined relation by using a higher-order
underspecified term @ of type e → e → t.

9Note also that we write a two-place predicate receive(y)(x) as receive(x, y), and so on.

6

3 Paycheck sentences as Π-type anaphora

This section provides an analysis of paycheck sentences in DTS. We will show that the interpretation of pay-
check pronouns can be regarded as an instance of Π-type anaphora by taking into account the presuppositions
of paycheck sentences.

3.1 Simple paycheck sentences

Let us consider the following simpler paycheck sentence for illustration.

(18) Every boy loves his mother. Mary hates her.

The SRs for the first and second sentences are given as (19) and (20), respectively. Note that the paycheck
pronoun her is represented in the same way as the standard referential pronoun. The term mary is of type
entity, which is assumed to be in the global context.

(19)

(
u :

[
x : entity
boy(x)

])
→ love

(
π1u, π1

(
@1 :

[
y : entity
motherOf(y,@2 : entity)

]))
(20) hate(mary,@3 : entity)

The type checking procedure goes as follows. First, the following judgment should hold under the felicity
condition of the first sentence.

(21) K ⊢
(
u :

[
x : entity
boy(x)

])
→ love

(
π1u, π1

(
@1 :

[
y : entity
motherOf(y,@2 : entity)

]))
: type

To prove this judgment, we first need a proof term that can replace @2. We will focus on the reading where
his is bound by every boy, thus @2 is substituted with π1u of type entity. The next step is to prove the
following judgment for @1.

(22) K, u :

[
x : entity
boy(x)

]
⊢

(
@1 :

[
y : entity
motherOf(y, π1u)

])
:

[
y : entity
motherOf(y, π1u)

]
What is required is to find a proof that can replace @1. Although the current context does not supply for
such a proof term, the proof search succeeds if one can assume, by presupposition accommodation, that there
is a proof term p of the proposition everyone has a mother.

(23) K, p : (x : entity) →
[
y : entity
motherOf(y, x)

]
, u :

[
x : entity
boy(x)

]
⊢

[
y : entity
motherOf(y, π1u)

]
true

Note that this universal presupposition is not derived from the uniqueness presupposition associated with
the paycheck pronoun his mother but from the structure of the proof step in (22), where the underspecified
term contains a free variable that is bound by an outside quantifier. Thus the same functional proof term
can be added to the context in a case where the outside quantifier is existential. For instance, the present
theory gives the same prediction for a case in which the first sentence in (18) is replaced by Some boy loves
his mother, which also gives rise to the paycheck reading.10

By adding p into the context, the term p(π1u) of type (y : entity)×motherOf(y, π1u) can be constructed.
Thus, one obtains the following fully-specified representation by substitution.

(24)

(
u :

[
x : entity
boy(x)

])
→ love (π1u, π1p(π1u))

The second sentence in (18) is interpreted subsequently. Again, the following judgment should hold for
the whole mini-discourse.

10This agrees with Heim’s (1983) prediction for the presuppositions of existentially quantified sentences. Although it has been
debated whether universal inference is supported by existential quantifiers (see Sudo (2012) and the references cited there), we
accept this universal presupposition as one plausible way to fulfill the felicity condition, perhaps with an additional assumption
on domain restrictions.

7

(25) K, p : (x : entity) →
[
y : entity
motherOf(y, x)

]
⊢

 v :

(
u :

[
x : entity
boy(x)

])
→ love (π1u, π1p(π1u))

hate(mary,@3 : entity)

 : type

The underspecified term @3 corresponds to the paycheck pronoun her, which is resolved in the following
context.

(26) K, p : (x : entity) →
[
y : entity
motherOf(y, x)

]
, v :

(
u :

[
x : entity
boy(x)

])
→ love (π1u, π1p(π1u)) ⊢ (@3 : entity) : entity

Just as we do not have an antecedent expression for the pronoun in (18), there is no term of type entity
that the context directly supplies. At this stage, however, we already have an additional function p, which
has been introduced into the context to interpret the first sentence. This function is exactly the ‘paycheck’
function. By applying the paycheck function p to a term mary of type entity, we obtain term p(mary) :
(y : entity)×motherOf(y,mary), from which we obtain the term π1p(mary) of type entity. By substituting
@3 with this term, we obtain the fully-specified representation for (18), which is the interpretation of our
interest.

(27)

 v :

(
u :

[
x : entity
boy(x)

])
→ love (π1u, π1p(π1u))

hate(mary, π1p(mary))

This representation corresponds to the reading Mary hates her mother.

The analysis proposed here shares with the previous approaches (Cooper, 1979; Engdahl, 1986) the view
that the reference of a paycheck pronoun is an application of the ‘paycheck’ function to an individual. Note
that our account does not require any additional lexical entry for pronouns nor any type-shifting rule for
deriving the paycheck reading. The resolution of paycheck anaphora is achieved using a function as a discourse
referent introduced by Π-types, in combination of the context-passing mechanism realized by Σ-types. We
also argue that the presupposition of a possessive NP that contains a free variable is taken as a source
of the ‘paycheck’ function. In contrast to typical examples of Π-type anaphora where a Π-type explicitly
appears as a preceding sentence, the relevant function arises from the presuppositional inference in paycheck
constructions.11 The process of anaphora resolution is couched within the overall architecture of DTS where
anaphora and presupposition resolution involve inferences, i.e., processes of constructing proof terms for
underspecified terms.

3.2 Generalizing to n-place functions

In the previous section, we consider the case where a one-place ‘paycheck’ function takes one individual as
argument. It is observed that there is a case where a n-place function is applied to n individuals (Cooper,

11An anonymous reviewer suggested that there is a notable empirical difference between quantificational subordination and
paycheck anaphora. In the case of quantificational subordination, the pronoun must be in the scope of an operator whose
restrictor is a subset of the domain of the Π-type. Thus, (iii) is ungrammatical.

(iii) * If every third-grade boy receives a present, every forth-grade boy will open it. 　

By contrast, the situation is more flexible in the case of paycheck sentences. The following paycheck sentences are both acceptable.

(iv) a. Every third-grade loves his mother. Every forth-grade boy hates her. (Jacobson, 2012)

b. If every butcher spends their paycheck, every baker will deposit it.

In our analysis, the difference lies between the case where a function is explicitly introduced by a Π-type and the case where a
function is derived from presuppositional inferences. The former corresponds to quantificational subordination and the latter to
paycheck constructions. Note that universal inferences induced by presuppositions are often flexible; thus, (iv) could give rise to
the presupposition Everyone (in the domain) has a mother or a weaker one such as Every third grade boy has a mother. This
view is consistent with the observation made on the semi-conditional presupposition (Geurts, 1999):

(v) If John is a scuba diver and he wants to impress his girlfriend, he’ll bring his wetsuit.

This sentence gives rise to a presupposition If John is a scuba diver, he has a wetsuit, rather than a fully conditional one If
John is a scuba diver and he wants to impress his girlfriend, he has a wetsuit. In both cases of (iv) and (v), the restrictor of the
universal proposition, i.e., the domain of the function introduced, is not linguistically fixed but contextually determined. This
is in sharp contrast to the case of Π-type anaphora in quantificational subordination.

8

1979; Engdahl, 1986; Jacobson, 2000). The following is taken from Jacobson (2000, p. 132).12

(28) The woman1 who told Sears2 that the money she1 owned them2 was in the mail was wiser than the
woman3 who told Filene’s4 that it had not yet been mailed.

The paycheck pronoun it is interpreted as the money she3 owned them4.
It is straightforward to generalize the present account to the n-place function case. The sentence of (28)

is schematically represented as follows.

(29) [... X1 ... Y2 ... [PT ... PRON1 ... PRON2 ...]].
[... Z ... W ... it ...].

Here, X, Y, Z, and W are entity denoting expressions, Z and W being parallel to X and Y, respectively.
PT is a presupposition trigger that embeds pronouns PRON1 and PRON2, which are bound by X1 and Y2,
respectively. In the case of (28), PT is a definite description. Each of the anaphoric expressions, PRON1,
PRON2, and the definite description PT, introduces underspecified terms: @1, @2, and @3, respectively. We
will then obtain the following judgment for @3.

(30) K, ..., x : entity, ..., y : entity, ... ⊢ @3 : φ(@1,@2)

Here, x : entity and y : entity are introduced by X1 and Y2, respectively, and φ(@1,@2) is a type annotation
of @3, which embeds two underspecified terms corresponding to PRON1 and PRON2.

Suppose that the embedded underspecified terms have been resolved according to the intended reading,
namely, @1 = x and @2 = y.

(31) K, ..., x : entity, ..., y : entity, ... ⊢ @3 : φ(x, y)

Then we have to find a proof term of type φ(x, y). This is the same situation encountered for (22). Thus, one
plausible way to resolve the presupposition is to add a function p : (x : entity) → (y : entity) → φ(x, y) to
the context. In this way, we can obtain the two-place function. The resolution of the paycheck pronoun in this
case is thus an instance of Π-type anaphora where a two-place function is used to construct an antecedent
proof term. Here again, the representation of paycheck pronoun is same as a standard pronoun, which
searches for a term of entity. The required term can be constructed by applying the two-place function to
two individuals Z and W. This analysis can be applied to the cases where PT is the other presupposition
trigger such as possessive NPs.

4 Conclusion

In this paper, we proposed an analysis of paycheck sentences in DTS. By taking into account the presupposi-
tions of paycheck sentences, we showed that the resolution of paycheck anaphora is formalized as an instance
of the resolution of Π-type anaphora. Our analysis is based on the analysis of anaphora and presupposition
in the standard framework of DTS, which has independent motivations. Also, it has an advantage in that
there is no need to extend the basic system with additional machineries for handling paycheck pronouns.

References

Barker, C. (1995) Possessive Descriptions. CSLI Publications.

Bekki, D. (2014) “Representing Anaphora with Dependent Types”, In: N. Asher and S. Soloviev (eds.):
Logical Aspects of Computational Linguistics 2014, LNCS 8535. Springer, pp.14–29.

Bekki, D. and K. Mineshima. (2017) “Context-Passing and Underspecification in Dependent Type Semantics”,
In: S. Chatzikyriakidis and Z. Luo (eds.): Modern Perspectives in Type Theoretical Semantics, Studies in
Linguistics and Philosophy. Springer, pp.11–41.

12Another possible interpretation of this sentence is that the pronoun it is coreferential with the money she1 owned them2.
It is straightforward to account for this reading in terms of presupposition binding.

9

Charlow, S. (2017) “A modular theory of pronouns and binding”, In the Proceedings of Proceedings of Logic
and Engineering of Natural Language Semantics 14 (LENLS14).

Chatzikyriakidis, S. and Z. Luo. (2014) “Natural Language Inference in Coq”, Journal of Logic, Language
and Information 23(4), pp.441–480.

Cooper, R. (1979) “The interpretation of pronouns”, Syntax and Semantics 10, pp.61–92.

Cooper, R. (2005) “Records and Record Types in Semantic Theory”, Journal of Logic and Computation
15(2), pp.99–112.

Engdahl, E. (1986) Constituent Questions. Reidel, Dordrecht.

Geurts, B. (1999) Presuppositions and Pronouns. Amsterdam, Elsevier.

Groenendijk, J. and M. Stokhof. (1991) “Dynamic Predicate Logic”, Linguistics and Philosophy 14(1), pp.39–
100.

Heim, I. (1983) “On the Projection Problem for Presuppositions”, In: M. Barlow, D. Flickinger, and M.
Wescoat (eds.): Proceedings of WCCFL 2. Stanford, CA, Stanford University, pp.114–125.

Heim, I. (1990) “E-Type Pronouns and Donkey Anaphora”, Linguistics and Philosophy 13(2), pp.137–177.

Hintikka, J. and L. Carlson. (1979) “Conditionals, Generic Quantifiers, and Other Applications of Subgames”,
In: E. Saarinen (ed.): Game-Theoretical Semantics. Springer, pp.179–214.

Jacobson, P. (2000) “Paycheck pronouns, Bach-Peters sentences, and variable-free semantics”, Natural Lan-
guage Semantics 8(2), pp.77–155.

Jacobson, P. (2012) “Direct Compositionality and ‘Uninterpretability’: The Case of (Sometimes) ‘Uninter-
pretable’ Features on Pronouns”, Journal of Semantics 29(3), pp.305–343.

Kamp, H. and U. Reyle. (1993) From Discourse to Logic: Introduction to Modeltheoretic Semantics of Natural
Language, Formal Logic and Discourse Representation Theory. Springer.

Krahmer, E. and P. Piwek. (1999) “Presupposition Projection as Proof Construction”, In: H. Bunt and R.
Muskens (eds.): Computing Meaning, Studies in Linguistics & Philosophy. Dordrecht, Kluwer Academic
Publishers, pp.281–300.

Krifka, M. (1996) “Parametrized sum individuals for plural anaphora”, Linguistics and Philosophy 19(6),
pp.555–598.

Luo, Z. (2012) “Formal semantics in modern type theories with coercive subtyping”, Linguistics and Philos-
ophy 35(6), pp.491–513.

Martin-Löf, P. (1984) Intuitionistic Type Theory: Notes by Giovanni Sambin of a series of lectures given in
Padua, June 1980. Bibliopolis.

Ranta, A. (1994) Type-Theoretical Grammar. Oxford University Press.

Sudo, Y. (2012) “On the semantics of phi features on pronouns”, Ph.D. thesis, MIT.

Sundholm, G. (1986) “Proof Theory and Meaning”, In: D. M. Gabbay and F. Guenthner (eds.): Handbook
of Philosophical Logic, Vol. 3. Dordrecht, Reidel, pp.471–506.

Tanaka, R., K. Mineshima, and D. Bekki. (2017a) “Factivity and Presupposition in Dependent Type Seman-
tics”, Journal of Language Modelling 5(2), pp.385–420.

Tanaka, R., K. Mineshima, and D. Bekki. (2017b) “On the Interpretation of Dependent Plural Anaphora in
a Dependently-Typed Setting”, In: S. Kurahashi, Y. Ohta, S. Arai, K. Satoh, and D. Bekki (eds.): New
Frontiers in Artificial Intelligence. Springer, pp.123–137.

van der Sandt, R. A. (1992) “Presupposition Projection as Anaphora Resolution”, Journal of Semantics 9,
pp.333–377.

Yana, Y., K. Mineshima, and D. Bekki. (2017) “Variable Handling in DRT and DTS”, In the Proceedings
of Proceedings of the Workshop on Logic and Algorithms in Computational Linguistics 2017 (LACom-
pLing2017). pp.131–159.

10

